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ABSTRACT

We describe a normal surface algorithm that decides whether a knot, with known
degree of the colored Jones polynomial, satisfies the Strong Slope Conjecture. We also
discuss possible simplifications of our algorithm and state related open questions. We
establish a relation between the Jones period of a knot and the number of sheets of
the surfaces that satisfy the Strong Slope Conjecture (Jones surfaces). We also present
numerical and experimental evidence supporting a stronger such relation which we state
as an open question.
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1. Introduction

The Strong Slope Conjecture, stated by the first named author and Tran in [16],
refines the Slope Conjecture of Garoufalidis [6]. It has made explicit a close relation-
ship between the degrees of the colored Jones polynomial and essential surfaces in
the knot complement. In particular, it implies that the linear terms in the degrees
of the colored Jones polynomial detect the unknot. The conjecture predicts that
the asymptotics of the degrees determine the boundary slopes and the ratios of the
Euler characteristic to the number of sheets of essential surfaces in the knot comple-
ment. Such surfaces are called Jones surfaces (see Sec. 2). Not much is known about
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the nature of these Jones surfaces, and it is unclear how they are distinguished from
other essential surfaces of the knot complement.

Our purpose in this paper is two-fold: On one hand we are interested in the
information about the topology of Jones surfaces encoded in the period of the degree
of the colored Jones polynomial. On the other hand we are interested in the question
of how Jones surfaces behave with respect to normal surface theory in the knot
complement.

We show that there is a relation between the number of sheets of a Jones surface,
the Euler characteristic and the period of the knot (see Proposition 3.1). Then, we
present numerical evidence suggesting that the number of sheets of a Jones surface
should divide the period of the knot. See Examples 3.3–3.6 and Question 3.8. We
also examine the Jones surfaces of knots from the viewpoint of normal surface
theory in the knot complement. The question that we are concerned with is the
following: If a knot satisfies the Strong Slope Conjecture, what are the simplest
Jones surfaces, in the sense of normal Haken sum decompositions [8]? In particular,
can we find Jones surfaces that are fundamental in the sense of Haken? As a result
of our analysis, and using Proposition 3.1, we show that there is an algorithm to
decide whether a knot, with given asymptotics of the degree of its colored Jones
polynomial, satisfies the Strong Slope Conjecture.

To state our result, for a knot K ⊂ S3 let JK(n) denote the nth colored Jones
polynomial of K and let d+[JK(n)] and d−[JK(n)] denote the maximal and minimal
degree of JK(n), respectively. See Sec. 2 for definitions and details. Our main result
is a slightly stronger version (see Theorem 4.3) of the following.

Theorem 1.1. Given a knot K with known d+[JK(n)] and d−[JK(n)], there is a
normal surface theory algorithm that decides whether K satisfies the Strong Slope
Conjecture.

The paper is organized as follows: In Sec. 2, we state the Strong Slope Conjecture
and briefly survey the cases where the conjecture has been proven. In Sec. 3, we
discuss the relations between the Jones period and the number of sheets of Jones
surfaces of knots. In Sec. 4, we study Haken sum decompositions of Jones surfaces
and we prove Theorem 4.3 which implies Theorem 1.1. We also discuss possible
simplifications of our algorithm and state related open questions.

We thank Josh Howie for useful comments and bringing to our attention an
oversight in the proof of Theorem 4.3 in an earlier version of the paper.

2. Jones Slopes and Surfaces

2.1. Definitions and statements

We recall the definition of the colored Jones polynomial; for more details the reader
is referred to [19]: We first recall the definition of the Chebyshev polynomials of the
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second kind. For n ≥ 0, the polynomial Sn(x) is defined recursively as follows:

Sn+2(x) = xSn+1(x) − Sn(x), S1(x) = x, S0(x) = 1. (1)

Let D be a diagram of a knot K. For an integer m > 0, let Dm denote the
diagram obtained from D by taking m parallel copies of K. This is the m-cable
of D using the blackboard framing. If m =1 then D1 = D. Let 〈Dm〉 denote the
Kauffman bracket of Dm. This is a Laurent polynomial over the integers in the
variable t−1/4, normalized so that 〈unknot〉 = −(t1/2 + t−1/2). Let c = c(D) =
c++c− denote the crossing number and w = w(D) = c+−c− denote the writhe of D.

For n > 0, we define

JK(n) := ((−1)n−1t(n
2−1)/4)w(−1)n−1〈Sn−1(D)〉,

where Sn−1(D) is a linear combination of blackboard cables of D, obtained via
equation (1), and the notation 〈Sn−1(D)〉 means extend the Kauffman bracket
linearly. That is, for diagrams D1 and D2 and scalars a1 and a2,

〈a1D1 + a2D2〉 = a1〈D1〉 + a2〈D2〉.

For a knot K ⊂ S3 let d+[JK(n)] and d−[JK(n)] denote the maximal and
minimal degree of JK(n) in t, respectively.

Garoufalidis [5] showed that the degrees d+[JK(n)] and d−[JK(n)] are quadratic
quasi-polynomials. This means that, given a knot K, there is nK ∈ N such that for
all n > nK we have

d+[JK(n)] = aK(n)n2 + bK(n)n + cK(n),

d−[JK(n)] = a∗
K(n)n2 + b∗K(n)n + c∗K(n),

where the coefficients are periodic functions from N to Q with finite integral period.

Definition 2.1. The least common multiple of the periods of all the coefficient
functions is called the Jones period p of K.

For a sequence {xn}, let {xn}′ denote the set of its cluster points.

Definition 2.2. An element of the sets

jsK := {4n−2d+[JK(n)]}′, js∗K := {4n−2d−[JK(n)]}′

is called a Jones slope of K. Also let

jxK := {2n−1�d+[JK(n)]}′ = {2bK(n)}′,

jx∗
K := {2n−1�d−[JK(n)]}′ = {2b∗K(n)}′,

where �d+[JK(n)] and �d−[JK(n)] denote the linear term of d+[JK(n)] and
d−[JK(n)], respectively.
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Given a knot K ⊂ S3, let n(K) denote a tubular neighborhood of K and let
MK := S3\n(K) denote the exterior of K. Let 〈µ, λ〉 be the canonical meridian–
longitude basis of H1(∂n(K)). A properly embedded surface

(S, ∂S) ⊂ (MK , ∂n(K))

is called essential if it is π1-injective and it is not a boundary parallel annulus.
An element a/b ∈ Q ∪ {1/0} with gcd(a, b) = 1 is called a boundary slope of

K if there is an essential surface (S, ∂S) ⊂ (MK , ∂n(K)), such that ∂S represents
[aµ + bλ] ∈ H1(∂n(K)). Hatcher showed that every knot K ⊂ S3 has finitely
many boundary slopes [10]. The Slope Conjecture [6, Conjecture 1] asserts that the
Jones slopes of any knot K are boundary slopes. The Strong Slope Conjecture [16,
Conjecture 1.6] asserts that the topology of the surfaces realizing these boundary
slopes may be predicted by the linear terms of d+[JK(n)], d−[JK(n)].

Strong Slope Conjecture. Given a Jones slope of K, say a/b ∈ jsK , with b >

0 and gcd(a, b) = 1, there is an essential surface S ⊂ MK with |∂S| boundary
components such that each component of ∂S has slope a/b, and

χ(S)
|∂S|b ∈ jxK .

Similarly, given a∗/b∗ ∈ js∗K , with b∗ > 0 and gcd(a∗, b∗) = 1, there is an essential
surface S∗ ⊂ MK with |∂S∗| boundary components such that each component of
∂S∗ has slope a∗/b∗, and

− χ(S∗)
|∂S∗|b∗ ∈ jx∗

K .

Definition 2.3. With the notation as above, a Jones surface of K is an essential
surface S ⊂ MK such that either

• ∂S represents a Jones slope a/b ∈ jsK , with b > 0 and gcd(a, b) = 1, and we
have

χ(S)
|∂S|b ∈ jxK ; or

• ∂S represents a Jones slope a∗/b∗ ∈ js∗K , with b∗ > 0 and gcd(a∗, b∗) = 1, and
we have

− χ(S)
|∂S|b∗ ∈ jx∗

K .

The number |∂S|b (or |∂S|b∗) is called the number of sheets of the Jones surface.

We note that the Strong Slope Conjecture implies that the cluster points of the
linear terms in the degree of the colored Jones polynomial alone detect the trivial
knot. More specifically, we have the following.

Theorem 2.4. If the Strong Slope Conjecture holds for all knots, then the following
is true: A knot K is the unknot if and only if jxK = {1}.
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Proof. With the normalization of [16] if K is the unknot we have jxK = {1}. On
the other hand if jxK = {1}, and the Strong Slopes Conjecture holds for K, then
we have a Jones surface S for K with boundary slope 0 and with χ(S) > 0. Then
S must be a collection of disks which means that a Seifert surface for K is a disk
and thus K is the unknot.

2.2. What is known

The Strong Slope Conjecture is known for the following knots.

• Alternating knots [6] and adequate knots [3, 4].
• Iterated torus knots [16].
• Families of 3-tangle pretzel knots [18] .
• Knots with up to nine crossings [6, 12, 16].
• Graph knots [21].
• An infinite family of arborescent non-Montesinos knots [2].
• Near-alternating knots [17] constructed by taking Murasugi sums of an alternat-

ing diagram with a non-adequate diagram.
• Knots obtained by iterated cabling and connect sums of knots from any of the

above classes [16, 21].

The Slope Conjecture is also known for a family of 2-fusion knots, which is a 2-
parameter family K(m1, m2) of closed 3-braids, obtained by the (−1/m1,−1/m2)
Dehn filling on a 3-component link K [7].

3. Jones Period and Jones Surfaces

We show that the Strong Slope Conjecture implies a relationship between the num-
ber of sheets of a Jones surface for a knot K, its Euler characteristic, and the Jones
period.

Proposition 3.1. Suppose that K ⊂ S3 is a knot of Jones period p. Let a/b ∈
jsK ∪ js∗K be a Jones slope and let S be a corresponding Jones surface. Then b

divides p2 and b|∂S| divides 2p2χ(S).
In particular, if p = 1 then all the Jones slopes of K are integral and for every

Jones surface we have 2χ(S)
|∂S| ∈ Z.

Proof. Suppose, for notational simplicity, that a/b ∈ jsK and thus S corresponds
to the highest degree 4d+[JK(n)] = 4aK(n)n2 + 4bK(n)n + 4cK(n) for some fixed
n > nK with respect to a/b. The case a/b ∈ js∗K is completely analogous.

The claim that b divides p2 is shown in [6, Lemma 1.10]. By the above discussion
we can assume that for some fixed n > nK with respect to a/b and for every integer
m > 0 we have

4aK(n) = 4aK(n + mp) =
a

b
and 4bK(n) = 4bK(n + mp) =

2χ(S)
|∂S|b ,
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while 4cK(n+mp) = 4cK(n). Furthermore, we have that d+[JK(n)] and d+[JK(n+
mp)] are integers for all m > 0 as above. If |∂S|b = 1 then there is nothing to prove.
Otherwise, set m =1 and consider 4d+[JK(n + mp)] − 4d+[JK(n)]. We have

4d+[JK(n + p)] − 4d+[JK(n)] =
2anp|∂S|+ ap2|∂S| + 2pχ(S)

b|∂S|

=
2anp

b
+

ap2

b
+

2pχ(S)
b|∂S| ,

which must be an integer. Since b divides p2, the term ap2/b is an integer. We
conclude that

2anp

b
+

2pχ(S)
b|∂S|

is an integer. Multiplying the last quantity by p also gives an integer; thus

2anp2

b
+

2p2χ(S)
b|∂S|

is an integer. But since 2anp2/b is an integer, we have that 2p2χ(S)/b|∂S| is an
integer, and the conclusion follows that b|∂S| divides 2p2χ(S).

It turns out that for all knots where the Strong Slope Conjecture is known and
the Jones period is calculated, for each Jones slope we can find a Jones surface
where the number of sheets b|∂S| actually divides the Jones period. This leads us
to give the following definition.

Definition 3.2. We call a Jones surface S of a knot K characteristic if the number
of sheets of S divides the Jones period of K.

Example 3.3. An adequate knot has Jones period equal to 1, two Jones slopes
and two corresponding Jones surfaces each with a single boundary component [3].
By the proof of [16, Theorem 3.9], this property also holds for iterated cables of
adequate knots. Thus in all the cases, we can find characteristic Jones surfaces. Note
that for adequate knots the characteristic Jones surfaces are spanning surfaces that
are often non-orientable. In these cases the orientable double cover is also a Jones
surface but it is no longer characteristic since it has two boundary components.

Example 3.4. For each non-alternating knot up to nine crossings, Table 1 gives
the Jones period, the Jones slopes, and the numbers of sheets of corresponding
characteristic Jones surfaces.

The Jones slopes and Jones period in the table are compiled from [6]. The Jones
surface data for all examples, but 947 and 949, are obtained from [16]. The proof
that the knots 947 and 949 satisfy the Strong Slope Conjecture was recently done
by Howie [12].

Example 3.5. By [16], the Jones slopes of a (p, q)-torus knot K = T (p, q) are
pq and 0, with Jones surfaces an annulus and a minimum genus Seifert surface,
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Table 1. Eight and nine crossing non-alternating knots.

Knot jsK |∂S| χ(S) b|∂S| js∗K |∂S∗| χ(S∗) b∗|∂S∗| p
819 {12} 2 0 2 {0} 1 −5 1 2
820 {8/3} 1 −3 3 {−10 } 1 −4 1 3
821 {1} 2 −4 2 {−12} 1 −3 1 2
942 {6} 2 −2 2 {−8} 1 −5 1 2
943 {32/3} 1 −3 3 {−4} 1 −5 1 3
944 {14/3} 1 −6 3 {−10} 1 −4 1 3
945 {1} 2 −4 2 {−14} 1 −4 1 2
946 {2} 2 −2 2 {−12} 1 −5 1 2
947 {9} 2 −4 2 {−6} 1 −4 1 2
948 {11} 2 −6 2 {−4} 1 −3 1 2
949 {15} 2 −6 2 {0} 1 −3 1 2

respectively. The Jones period of K is 2 and thus both Jones surfaces are charac-
teristic. By the proof of [16, Theorem 3.9], this property also holds for iterated torus
knots.

Example 3.6. Consider the pretzel knot K = P (1/r, 1/s, 1/t) where r, s, t are
odd, r < 0, and s, t > 0. If 2|r| < s and 2|r| < t, then we can find Jones surfaces
which are spanning surfaces of K [18] for each Jones slope. For each Jones surface
the number of sheets is 1, which clearly divides the Jones period p = 1 of K.

If |r| > s or |r| > t, the Jones period is equal to p = −2+s+t
2 , the Jones slopes

are given by jsK = {2( 1−st
−2+s+t − r)} and js∗K = {−2(s + t)}. A Jones surface S

with boundary slope in jsK has number of sheets the least common multiple of the
denominators of two fractions − 1−st

−2+s+t and t−1
−2+s+t , each reduced to lowest terms.

Since s, t are odd, the resulting reduced fractions all have denominators dividing
p = −2+s+t

2 . For details on how the fractions are assigned and their relations to the
number of sheets of S, see [18]. A Jones surface with boundary slope in js∗K is a
spanning surface of K. In both cases the number of sheets divides the period and
hence the Jones surfaces are characteristic.

For example, the pretzel knot P (−1/101, 1/35, 1/31) has a Jones slope jsK =
{1345/8} realized by a Jones surface with 32 sheets. The 32 sheets come from
taking the least common multiple of the denominators of the fractions 271/16
and 15/32. This means that the number of boundary components is 4. The Jones
period is 32. This is an interesting example where both b and |∂S| are not equal to
1. Yet another interesting example comes from this family — the pretzel knot
P (−1/101, 1/61, 1/65), which has Jones period p = 62. It has a Jones slope
jsK = {4280/31} from a Jones surface of 31 sheets (the corresponding reduced
fractions are 991/31 and 16/31) which divides the Jones period 62, but is not equal
to it.

We note that currently there are no examples of knots which admit multiple
Jones slopes for either d+[JK(n)] or d−[JK(n)]. That is, in all the known cases the
functions aK(n), a∗

K(n) are both constant. One may ask the following.
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Question 3.7. Are there knots for which aK(n), a∗
K(n) are not eventually constant

functions? That is, is there a knot K that admits multiple Jones slopes for d+[JK(n)]
or d−[JK(n)]?

The discussion above and examples also raise the following question.

Question 3.8. Is it true that for every Jones slope of a knot K we can find a
characteristic Jones surface?

4. Haken Sums for Jones Surfaces

In this section, we show that there is a normal surface theory algorithm to decide
whether a given knot satisfies the Strong Slope Conjecture.

Here we will briefly recall a few facts about normal surfaces. For more back-
ground and terminology on normal surface theory, the reader is referred to [20, 15],
or the introduction of [14]. Our notations here closely follow that of [11].

Let M be a 3-manifold with a triangulation T consisting of t tetrahedra. A prop-
erly embedded surface S is called normal if for every tetrahedron ∆, the intersection
∆∩S consists of triangular or quadrilateral disks each intersecting each edge of the
tetrahedron in at most one point and away from vertices of T . There are seven nor-
mal isotopy classes of normal disks, four are triangular and three are quadrilateral;
these are called disk types. Thus we have total of 7t normal disk types in T . Fixing
an order of these normal disks, D1, . . . , D7t, S is represented by a unique (up to
normal isotopy) 7t-tuple of non-negative integers n(S) = (y1, . . . , y7t), where yi is
the number of the disks Di contained in S.

Conversely, given a 7t-tuple of non-negative integers n, we can impose con-
straints on the yi’s so that it represents a unique up to isotopy normal surface in
T . These constraints are known as normal surface equations.

Definition 4.1. Two normal surfaces S1, S2 are called compatible if they do not
contain quadrilateral disks of different types. Given compatible normal surfaces
S1, S2 one can form their Haken sum S1 ⊕ S2: This is a geometric sum along each
arc and loop of S1 ∩ S2 and it is uniquely determined by the requirement that the
resulting surface S1 ⊕ S2 be normal in T . See Fig. 1.

If n(S1) = (y1, . . . , y7t) and n(S2) = (y′
1, . . . , y

′
7t), then

n(S1 ⊕ S2) = n(S1) + n(S2) = (y1 + y′
1, . . . , y7t + y′

7t),

and χ(S1 ⊕ S2) = χ(S1) + χ(S2).

Definition 4.2. A normal surface S is called fundamental if n(S) cannot be written
as a Haken sum of two solutions to the normal surface equations.

There are only finitely many fundamental surfaces and there is an algorithm to
find all of them. Furthermore, all normal surfaces can be written as a finite sum of
fundamental surfaces [8].
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Fig. 1. The Haken sum of compatible normal surfaces S1 and S2 (left) and the resulting normal
curves from ∂S1 and ∂S2 (right).

Theorem 4.3. Given a knot K with known sets jsK , js∗K , jxK , jx∗
K and known

Jones period p, there is a normal surface theory algorithm that decides whether K

satisfies the Strong Slope Conjecture.

Proof. There is an algorithm to determine whether MK = S3\n(K) is a solid
torus and thus if K is the unknot [8, 15]. If K is the unknot then the Strong Slope
Conjecture is known and we are done. If K is not the unknot then we can obtain
a triangulation T1 of the complement MK together with a meridian of MK that is
expressed as a path that follows edges of T1 on ∂MK . A process for getting this
triangulation is given in [9, Lemma 7.2]. Apply the algorithm of Jaco and Rubinstein
[13, Proposition 5.15 and Theorem 5.20] to convert T1 to a triangulation T that
has a single vertex (a one-vertex triangulation) and contains no normal embedded
2-spheres. The algorithm ensures that the only vertex of the triangulation lies on
∂MK . Then we can apply the process known as “layering” a triangulation to alter
the edges on ∂MK till the meridian becomes a single edge in the triangulation (see
[14]). We will continue to denote this last triangulation by T and we will use µ to
denote the single edge corresponding to the meridian of K.

For notational simplicity we will work with jsK and jxK as the argument for
js∗K and jx∗

K is completely analogous. Fix a Jones slope a/b ∈ jsK , with b > 0 and
gcd(a, b) = 1, and suppose that we have Jones surfaces corresponding to it. Let S

be such a surface with β := χ(S)
|∂S|b ∈ jxK . By Proposition 3.1, |∂S|b divides 2p2χ(S),

where p is the Jones period of K. Thus

2p2χ(S) − λ|∂S|b = 0 where λ = 2p2β ∈ Z. (2)

Lemma 4.4. Suppose that S is a Jones surface with boundary slope s := a/b ∈
jsK , where K has Jones period p, and with β = χ(S)

|∂S|b ∈ jxK and λ as defined in
(2). Then, exactly one of the following is true:

1850039-9
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(1) There is a Jones surface Σ with boundary slope a/b ∈ jsK and with

χ(Σ)
|∂Σ|b = β =

λ

2p2
, (3)

that is also a normal fundamental surface with respect to T .
(2) There is a non-empty set EZ ′

s of essential surfaces that are normal fundamental
surfaces with respect to T , have boundary slope s and for every Σ ∈ EZ ′

s we
have

2p2χ(Σ) − λ|∂Σ|b 	= 0 and |∂Σ| ≤ |∂S|.

Proof. Let S be a Jones surface as above. Any essential surface in MK may be
isotoped to a normal surface with respect to above fixed T . Moreover, this normal
surface S may be taken to be minimal in the sense of [20, Definition 4.1.6]: This
means that the surface minimizes the number of intersections with the 1-skeleton T 1

of T in the (normal) isotopy class of the surface. The significance of this minimality
condition is the following: By [20, Corollary 4.1.37], applied to (MK , µ), if S can be
written as a Haken sum of non-empty normal surfaces then each of these summands
is essential in MK . See also [14, Theorem 5.1].

Suppose that S is not fundamental. Then S can be represented as a Haken sum

S = Σ1 ⊕ · · · ⊕ Σn ⊕ F1 ⊕ · · · ⊕ Fk, (4)

where each Σi is a fundamental normal surface with boundary, and each Fi is a
closed fundamental normal surface. By Jaco and Sedgwick [14, Proposition 3.7 and
Corollary 3.8] each Σi has the same boundary slope as S. As said earlier we have

χ(S) = χ(Σ1) + · · · + χ(Σn) + χ(F1) + · · · + χ(Fk). (5)

Recall that the number of sheets of a surface S, that is properly embedded in
MK , is the number of intersections of ∂S with the edge µ. We also recall that the
boundary of a Haken sum S1 ⊕ S2 is obtained by resolving the double points in
∂S1 ∩ ∂S2 so that the resulting curves are still normal. In particular, the homology
class of ∂(S1⊕S2) is the sum of the homology classes of ∂S1 and ∂S2 in H1(∂MK).
This implies that the number of intersections of ∂(S1 ⊕ S2) with µ is the sum of
the numbers of intersection of ∂S1 and ∂S2 with µ. Thus by (4) we obtain

|∂S|b = |∂Σ1|b + · · · + |∂Σn|b. (6)

As said above, [20, Corollary 4.1.37] shows that Σi must be essential, for all i =
1, . . . , n.

If for some i we have 2p2χ(Σi) − λ|∂Σi|b = 0, then Σ := Σi is a Jones surface
as claimed in (1) in the statement of the lemma. Otherwise we have

2p2χ(Σi) − λ|∂Σi|b 	= 0, (7)

for all 1 ≤ i ≤ n. It follows immediately by Eq. (6) that |∂Σi| ≤ |∂S| and hence
option (2) is satisfied.
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To continue suppose that there exist Jones surfaces S, with boundary slope
s := a/b, with β = χ(S)

|∂S|b , and λ defined as in (2), but there are no such surfaces that
are fundamental with respect to T . Then, by Lemma 4.4, we have a set EZ ′

s 	= ∅ of
properly embedded essential surfaces in MK such that for every Σi ∈ EZ ′

s we have:

• Σi has boundary slope s and is a normal fundamental surface with respect to T ;
and

• we have 2p2χ(Σi) − λ|∂Σi|b 	= 0.

By the proof of Lemma 4.4, a Jones surface S as above is a Haken sum of
essential fundamental surfaces

S =

(⊕
i

niΣi

)
⊕


⊕

j

mjFj


, (8)

where Σi ∈ EF s, the Fj ’s are closed surfaces and ni, mj ≥ 0 are integers. We have

χ(S) =
∑

i

χ(Σi)ni +
∑

j

χ(Fj)mj ,

and

|∂S|b =
∑

i

|∂Σi|bni.

Multiplying the first equation by 2p2, the second by λ and subtracting we obtain∑
i

x(Σi)ni + 2p2
∑

j

χ(Fj)mj = 0, (9)

where

x(Σi) := 2p2χ(Σi) − λ|∂Σi|b 	= 0.

Thus the vector n : = (n1, . . . , m1, . . .) corresponds to a solution of the homo-
geneous equation (9), with non-negative integral entries. We recall that a solution
vector n with non-negative integer entries, for Eq. (9), is called fundamental if it
cannot be written as a non-trivial sum of solution vectors with non-negative integer
entries. For any system of linear homogeneous equations, there is a finite number
of fundamental solutions that can be found algorithmically, and every solution is
linear combination of fundamental ones (see, for example, [20, Theorem 3.2.8]).

Lemma 4.5. Suppose that there is a Jones surface S corresponding to boundary
slope s which satisfies equation (2). Suppose moreover that there are no normal
fundamental surfaces with respect to T that are Jones surfaces satisfying (3). Then,

there is a Jones surface Σ′, with boundary slope s and χ(Σ′)
|∂Σ′|b = β = λ

2p2 , such that

Σ′ =

(⊕
i

kiΣ′
i

)
⊕


⊕

j

ljFj


,

where k = (k1, . . . , l1, . . . , ) is a fundamental solution of Eq. (9).
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Proof. By assumption we have a Jones surface S of the form shown in Eq. (8)
corresponding to a solution n with non-negative integer entries of Eq. (9). If n is not
fundamental, then n = k+m where k is fundamental and m a non-trivial solution
with non-negative integer entries of Eq. (9), corresponding to normal surfaces Σ′

and Σ′′ via Eq. (8). We have S = Σ′ ⊕ Σ′′. In order for Σ′ to be a Jones surface
it is enough to see that Σ′ is essential. But this follows by [20, Corollary 4.1.37] as
noted earlier.

Now we are ready to present our algorithm and finish the proof of the theorem:
Given a knot K with known sets jsK , js∗K , jxK , jx∗

K , and known Jones period p,
to check whether it satisfies the Strong Slope Conjecture we need to check that the
elements in jsK ∪ js∗K are boundary slopes and to find Jones surfaces for all these
slopes. To use Lemma 4.4, we need to know the fundamental normal surfaces with
respect to the triangulation T fixed in the beginning of the proof. There are finitely
many fundamental surfaces in MK and there is an algorithm to find them [8].

Algorithm for finding Jones surfaces. Let Z = {Z1, . . . , Zk} denote the list of
all fundamental surfaces. There is an algorithm to compute χ(Z) for all surfaces
Z ∈ Z, and to compute the boundary slopes of the ones with boundary [15]. Let

A = {a1/b1, . . . , am/bm}

denote the list of distinct finite boundary slopes of the surfaces in Z, where (ai, bi) =
1 and bi > 0. Now proceed as follows:

(1) Check whether jsK ⊂ A and js∗K ⊂ A. If one of the two inclusions fails then
K does not satisfy the Slope Conjecture.

(2) If Z contains no closed surfaces move to the next step. If we have closed surfaces
we need to find any incompressible ones among them. There is an algorithm
that decides whether a given 2-sided surface is incompressible, and boundary
incompressible if the surface has boundary. See [20, Theorem 4.1.15; Theo-
rem 4.1.19], or [1, Algorithm 3]. Apply the algorithm to each closed surface
in Z to decide whether they are incompressible. Let C ⊂ Z denote the set of
incompressible surfaces found, that have genus bigger than one.

(3) For every s := a/b ∈ jsK ⊂ A consider the set Zs ⊂ Z that has boundary
slope a/b. By [14] we know that Zs 	= ∅. Decide whether Zs contains essential
surfaces and find them. Note that the surfaces in Zs may not be 2-sided. To
decide that a 1-sided surface is essential one applies the incompressibility and
∂-incompressibility algorithm to the double of the surface. Let EZs denote the
set of essential surfaces found. If EZs = ∅ then K fails the conjecture.

(4) For every λ ∈ 2p2jxK and every Σ ∈ EZs calculate the quantity

x(Σ) := 2p2χ(Σ) − λb|∂Σ|.

Suppose that there is Σ ∈ EZs with x(Σ) = 0. Then any such Σ is a Jones
surface corresponding to s.
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(5) Suppose EZ ′
s := {Σ1, . . . , Σr} 	= ∅ and that we have x(Σ) 	= 0, for all Σ ∈ EZ ′

s.
Then consider Eq. (9)

x(Σ1)n1 + · · · + x(Σr)nr + 2p2χ(C1)m1 + · · · + 2p2χ(Ct)mt = 0,

where Ci runs over all the surfaces in C. Find and enumerate all the fundamental
solutions Σ′ of the equation as in Lemma 4.5. Among these solutions pick
the admissible ones: That is solutions for which, for any incompatible pair of
surfaces in C ∪ EZ ′

s, at most one of the corresponding entries in the solution
should be nonzero. Hence pairs of nonzero numbers correspond to pairs of
compatible surfaces. Every admissible fundamental solution represents a normal
surface. By Lemma 4.5, we need only to check if one of these surfaces is essential.
If a surface in this set is essential, then it is a Jones surface, otherwise, K fails
the Strong Slope Conjecture.

(6) For every a/b ∈ jsK ⊂ A repeat steps (3)–(5) above and run the analogous
process for the Jones slopes in js∗K .

The next Corollary gives conditions where Jones surfaces can be chosen to be
fundamental.

Corollary 4.6. Suppose that S is a Jones surface with boundary slope s := a/b ∈
jsK ∪ js∗K . Suppose moreover that S is a spanning surface of K (i.e. |∂S|b = 1)
that has maximal Euler characteristic over all spanning surfaces of K with boundary
slope s. Then there is a Jones surface Σ1 corresponding to s that is also a normal
fundamental surface with respect to T .

Proof. Consider a Haken sum decomposition of S as in Eq. (4) in the proof of
Lemma 4.4. Since b|∂Σi| ≤ b|∂S| = 1, we obtain that b|∂Σi| = 1 and by Eq. (6) we
have n = 1. Thus

S = Σ1 ⊕ F1 ⊕ · · · ⊕ Fk, (10)

where Σ1 is a fundamental essential spanning surface of slope s and each Fi is
a closed fundamental, incompressible, normal surface with χ(Fi) ≤ 0. If we have
χ(Fi) 	= 0, for some 1 ≤ i ≤ k, then χ(S) < χ(Σ1). Since the latter inequality con-
tradicts the assumption that S has maximal Euler characteristic over all spanning
surfaces of K with boundary slope s, it follows that χ(Fi) = 0 for all 1 ≤ i ≤ k.
Thus χ(S) = χ(Σ1) and, since b|∂Σ1| = 1 and Σ1 has boundary slope s, it follows
that Σ1 is a Jones surface.

Corollary 4.6 applies to positive closed braids: Let Bn denote the braid group on
n strings, and let σ1, . . . , σn−1 be the elementary braid generators. Let Db denote
the closed braid diagram obtained from the braid b = σr1

i1
σr2

i2
· · ·σrk

ik
. If rj > 0 for

all j, the positive braid diagram Db will be A-adequate. Let K denote the knot
represented by Db. By [3, Example 9], js∗K = {0} and an essential surface SA that
realizes this Jones slope is a fiber in S3\K (thus an orientable Seifert surface of
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maximal Euler characteristic). By [16, Theorem 3.9] and its proof, SA is a Jones
surface of K corresponding to slope zero. Thus the hypotheses of Corollary 4.6
are satisfied and in this case we can find a Jones surface that is fundamental with
respect to T .

At this writing we do not know if there are examples of knots with Jones slopes
that do not admit Jones surfaces that are fundamental with respect to T . In other
words, we do not know if there are examples of Jones slopes where step (5) of above
given algorithm is needed in order to find the corresponding Jones surfaces. We ask
the following.

Question 4.7. Is there a knot K that satisfies the Strong Slope Conjecture and
such that there a Jones slope s ∈ jsK ∪ js∗K for which we cannot find a Jones
surface that is a normal fundamental surface with respect to T ?

Remark 4.8. Suppose that Question 3.8 has an affirmative answer: That is for
every Jones slope s := a/b there is a Jones surface S, with χ(S) = β|∂S|b, for some
β such that β or −β ∈ jxK ∪ jx∗

K , that is characteristic (i.e. |∂S|b divides the
period p). Thus |∂S|b ≤ p and

−χ(S) + |∂S|b ≤ (1 − β)p. (11)

Now [20, Theorem 6.3.17] applied to (MK , µ) implies that there are finitely many
essential surfaces in MK that satisfy (11) and they can be found algorithmically.
Using this observation, one can see that a positive answer to Question 3.8 will lead
to an alternative algorithm for finding Jones surfaces than the one outlined above.
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