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ABSTRACT. We establish a characterization of adequate knots
in terms of the degree of their colored Jones polynomial. We
show that, by assuming the Strong Slope conjecture, our char-
acterization can be reformulated in terms of “Jones slopes” of
knots and the essential surfaces that realize the slopes. For al-
ternating knots, the reformulated characterization follows by re-
cent work of J. Greene and J. Howie.

1. INTRODUCTION

Adequate knots form a large class of knots that behave well with respect to Jones-
type knot invariants and have nice topological and geometric properties [1, 2,
6–12, 24, 27]. Several well-known classes of knots are adequate; these include all
alternating knots and Conway sums of strongly alternating tangles. The definition
of adequate knots, much like that of alternating knots, requires the existence of
a knot diagram of a particular type (see Definition 3.1). The work of Kauffman
[20], Murasugi [25], and Thistlethwaite [26] that settled the Tait conjectures pro-
vided a characterization of alternating knots in terms of the degree of the Jones
polynomial: it showed that a knot is alternating precisely when the degree span of
its Jones polynomial determines the crossing number of the knot. In this note, we
obtain a similar characterization for adequate knots in terms of the degree span
of colored Jones polynomial. Roughly speaking, we show that adequate knots are
characterized by the property that the degree of their colored Jones polynomial
determines two basic topological invariants: the crossing number and the Turaev
genus.
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To state our results, recall the colored Jones polynomial of a knot K is a col-
lection of Laurent polynomials

{JK(n) := JK(n, t) | n = 1,2, . . . },

in a variable t such that we have JK(1, t) = 1, and JK(2, t) is the ordinary Jones
polynomial of K. Throughout the paper, we use the normalization adopted in
[19] (see Section 2). Let d+[JK(n)] and d−[JK(n)] denote the maximal and
minimal degree of JK(n, t) in t. Garoufalidis [13] showed that, given a knot K,
there is a number nK > 0 such that, for n > nK , we have

d+[JK(n)]− d−[JK(n)] = s1(n)n2 + s2(n)n+ s3(n),

where, for i = 1,2,3, si : N→ Q is a periodic function with integral period.
Observe that, given a knot diagram D = D(K), one can define its Turaev

genus gT (D) (see Section 4). The Turaev genus of a knot K, denoted by gT (K),
is defined to be the minimum gT (D) over all knot diagrams representing K. Al-
though the original definition of the Turaev genus is based on Kauffman states of
knot diagrams [5, 28], the work of Armond, Druivenga, and Kindred [3] implies
that it can be defined purely in terms of certain projections of knots on certain
Heegaard surfaces of S3.

Our main result is the following.
Theorem 1.1. For a knot K, let c(K) and gT (K) denote the crossing number

and the Turaev genus of K, respectively. The knot K is adequate if and only if, for some
n > nK , we have

(1.1) s1(n) = c(K)/2 and s2(n) = 1− gT(K) − c(K)/2.

Furthermore, every diagram of K that realizes c(K) is adequate, and also realizes
gT(K).

Some ingredients for the proof of Theorem 1.1 are a result of Lee [21, 22] on
upper bounds on the degree of the colored Jones polynomial, and of Abe [1] on
the Turaev genus of adequate knots.

It is known that a knot is alternating precisely when gT(K) = 0. As a corollary
of Theorem 1.1 and its proof, we have the following result.

Corollary 1.2. Let the notation and setting be as above. A knot K is alternating
if and only if, for some n > nK , we have

(1.2) 2s1(n)+ 2s2(n) = 2 and 2s1(n) = c(K).

Furthermore, every diagram of K that realizes c(K) is alternating.
The degree of the colored Jones polynomial is conjectured to contain infor-

mation about essential surfaces in knot complements. The Strong Slope Conjecture,
which was stated by the author and Tran in [19] and refines the Slope Conjecture
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of Garoufalidis [14], asserts that the cluster points of the function s1 are boundary
slopes of the knot K, and that the cluster points of s2 predict the topology of essen-
tial surfaces in the knot complement realizing these boundary slopes. The cluster
points of s1 are called Jones slopes of K. See the next section for more details. By
assuming the Strong Slope Conjecture, Theorem 1.1 leads to a characterization of
adequate knots in terms of Jones slopes and essential spanning surfaces (see The-
orem 4.3). In particular, by assuming the Strong Slope Conjecture, Corollary 1.2
can be reformulated as follows. A knot K is alternating if and only if it admits
Jones slopes s, s∗ that are realized by essential spanning surfaces S, S∗ such that

(1.3) (s − s∗)/2 + χ(S)+ χ(S∗) = 2 and s − s∗ = 2c(K).

The Strong Slope Conjecture is known for adequate knots [19]; the proof
shows that alternating knots satisfy equations (1.3). Conversely, recent work of
Howie [17] implies that knots that satisfy equation (1.3) are alternating, provid-
ing additional evidence supporting the conjecture. More specifically, Howie [17]
and, independently, Greene [15] obtained intrinsic topological characterizations
of alternating knots in terms of essential spanning surfaces, and gave normal sur-
face theory algorithms to recognize the alternating property. In particular, [17]
shows that a non-trivial knot K is alternating if and only if it admits essential
spanning surfaces S, S∗ with boundary slopes s, s∗ such that

(1.4) (s − s∗)/2+ χ(S)+ χ(S∗) = 2.

Thus, if K is a knot that satisfies equations (1.3), then it satisfies (1.4), and,
therefore, K is alternating. The results of this paper, and in particular Theorem
4.3, and our discussion above, motivate the following problem.

Problem 1.3. Show that a knot K is adequate if and only if it admits Jones slopes
s, s∗ that are realized by essential spanning surfaces S, S∗ such that

s − s∗ = 2c(K) and χ(S)+ χ(S∗)+ c(K) = 2− 2gT (K).

Note that Theorem 1.1 and Corollary 1.2 also hold for links. On the other
hand, the picture of the relations between the degree of colored Jones polynomi-
als and boundary slopes is better developed for knots. For this reason, and for
simplicity of exposition, we chose to discuss only knots throughout this note.

This paper is organized as follows: in Section 2, we recall the definition of
the colored Jones polynomial and above-mentioned conjectures from [14, 19]. In
Section 3, we recall definitions and background about adequate knots. In Section
4, we prove a stronger version of Theorem 4.2. Then, using the fact that the
Strong Slopes Conjecture is known for adequate knots (see Theorem 3.3), we
reformulate Theorem 4.2 in terms of spanning knot surfaces (Theorem 4.3). In
Section 5, we discuss the special case of alternating knots and compare equations
(1.2), (1.3), and (1.4), shown above.
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2. THE COLORED JONES POLYNOMIAL

We briefly recall the definition of the colored Jones polynomial in terms of Cheby-
shev polynomials (see [23]).

For n ≥ 0, the Chebyshev polynomials of the second kind Sn(x) are defined
recursively, as follows:

(2.1) Sn+2(x) = xSn+1(x)− Sn(x), S1(x) = x, S0(x) = 1.

Let D be a diagram of a knot K. For an integer m > 0, let Dm denote the
diagram obtained from D by taking m parallels copies of K. This is the m-cable
of D using the blackboard framing; if m = 1, then D1 = D. Let ⟨Dm⟩ denote
the Kauffman bracket of Dm: this is a Laurent polynomial over the integers in
a variable t−1/4 normalized so that ⟨unknot⟩ = −(t1/2 + t−1/2). Let c+(D) and
c−(D) denote the number of positive and negative crossings in D, respectively.
Furthermore, let c = c(D) = c+(D) + c−(D) denote the crossing number, and
w = w(D) = c+(D)− c−(D) denote the writhe of D.

For n > 0, we define JK(n) := ((−1)n−1t(n2−1)/4)w(−1)n−1⟨Sn−1(D)⟩,
where Sn−1(D) is a linear combination of blackboard cablings of D, obtained
via equation (2.1), and the notation ⟨Sn−1(D)⟩ means to extend the Kauffman
bracket linearly. That is, for diagrams D1 and D2, and scalars a1 and a2,

⟨a1D1 + a2D2⟩ = a1⟨D1⟩+ a2⟨D2⟩.

We have

Junknot(n) =
tn/2 − t−n/2
t1/2 − t−1/2 .

For a knot K ⊂ S3, let d+[JK(n)] and d−[JK(n)] denote the maximal and
minimal degree of JK(n) in t.

Garoufalidis [13] showed that the degrees d+[JK(n)] and d−[JK(n)] are
quadratic quasi-polynomials. This means, given a knot K, there is nK ∈ N such
that for all n > nK we have

4d+[JK(n)] = a(n)n2 + b(n)n+ c(n)
and

4d−[JK(n)] = a∗(n)n2 + b∗(n)n+ c∗(n),

where the coefficients are periodic functions from N to Q with integral period. By
taking the least common multiple of the periods of these coefficient functions, we
get a common period. This common period of the coefficient functions is called
the Jones period of K.

For a sequence {xn}, let {xn}′ denote the set of its cluster points.
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Definition 2.1. The elements of the sets

jsK := {4n−2d+[JK(n)]}′ and js∗K := {4n−2d−[JK(n)]}′

are called Jones slopes of K.
Given a knot K ⊂ S3, let n(K) denote a tubular neighborhood of K, and

let MK := S3 \n(K) denote the exterior of K. Furthermore, let ⟨µ,λ⟩ be the
canonical meridian-longitude basis of H1(∂n(K)). A properly embedded surface
(S, ∂S) ⊂ (MK, ∂n(K)) is called essential if it is π1-injective and is not a boundary
parallel annulus. An element a/b ∈ Q ∪ {1/0} is called a boundary slope of
K if there is an essential surface (S, ∂S) ⊂ (MK, ∂n(K)) such that ∂S represents
aµ+bλ ∈ H1(∂n(K)). Hatcher showed that every knot K ⊂ S3 has finitely many
boundary slopes [16]. The Slope Conjecture [14, Conjecture 1.2] asserts that the
Jones slopes of any knot K are boundary slopes.

Definition 2.2. Let ℓd+[JK(n)] denote the linear term of d+[JK(n)], and
let

jxK := {2n−1ℓd+[JK(n)]}′ = {bK(n)}′

and
jx∗K := {2n−1ℓd−[JK(n)]}′ = {b∗K(n)}′.

The Strong Slope Conjecture [19, Conjecture 1.6] asserts that, given a Jones
slope of K, such as a/b ∈ jsK , with b > 0 and gcd(a, b) = 1, there is an essential
surface S ⊂ MK with |∂S| boundary components such that each component of ∂S
has slope a/b and

2χ(S)
|∂S|b ∈ jxK.

Similarly, given a∗/b∗ ∈ js∗K , with b∗ > 0 and gcd(a∗, b∗) = 1, there is
an essential surface S∗ ⊂ MK with |∂S∗| boundary components such that each
component of ∂S∗ has slope a∗/b∗ and

−2χ(S∗)
|S∗|b ∈ jx∗K .

Definition 2.3. With the notation as above, a Jones surface of K is an essential
surface S ⊂MK such that one of the following holds:

• Either ∂S represents a Jones slope a/b ∈ jsK , with b > 0 and with
gcd(a, b) = 1, and we have

2χ(S)
|∂S|b ∈ jxK ;

• Or ∂S∗ represents a Jones slope a∗/b∗ ∈ js∗K , with b∗ > 0 and with
gcd(a∗, b∗) = 1, and we have

−2χ(S∗)
|∂S∗|b∗ ∈ jx∗K .
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3. JONES SURFACES OF ADEQUATE KNOTS

Let D be a link diagram, and x a crossing of D. Associated with D and x are two
link diagrams called the A-resolution and B-resolution of the crossing (see Figure
3.1). A Kauffman state σ is a choice of A-resolution or B-resolution at each
crossing of D. The result of applying a state σ to D is a collection sσ of disjointly
embedded circles in the projection plane. We can encode the choices that lead to
the state σ in a graphGσ , as follows. The vertices ofGσ are in 1-1 correspondence
with the state circles of sσ . Every crossing x of D corresponds to a pair of arcs that
belong to circles of sσ ; this crossing gives rise to an edge in Gσ whose endpoints
are the state circles containing those arcs.

Given a Kauffman state σ , we construct a surface Sσ , as follows. Each state
circle ofσ bounds a disk in S3. This collection of disks can be disjointly embedded
in the ball below the projection plane. At each crossing of D, we connect the pair
of neighboring disks by a half-twisted band to construct a surface Sσ ⊂ S3 whose
boundary is K (see Figure 3.2).

FIGURE 3.1. From left to right: A crossing, the A-resolution,
and the B-resolution.

FIGURE 3.2. The two resolutions of a crossing, the arcs record-
ing them, and their contribution to state surfaces.

Definition 3.1. A link diagram D is called A-adequate if the state graph GA
corresponding to the all-A state contains no 1-edge loops. Similarly, D is called
B-adequate if the all-B graph GB contains no 1-edge loops. A link diagram is
adequate if it is both A- and B-adequate. A link that admits an adequate diagram
is also called adequate.

It is known that the number of negative crossings c−(D) of an A-adequate
knot diagram is a knot invariant. Similarly, the number of positive crossings
c+(D) of a B-adequate knot diagram is a knot invariant. Observe that, in fact,
the crossing number of K is realized by the adequate diagram; that is, we have
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c(K) = c(D) = c−(D) + c+(D) [23]. Let vA(D) and vB(D) be the number of
state circles in the all-A (respectively, all-B) state of the knot diagram D. Also, let
SA = SA(D) and SB = SB(D) denote the surfaces corresponding to the all-A and
all-B state of D. The following theorem summarizes known results about bounds
on the degree of the colored Jones polynomials. The first inequalities in both
part (a) and (b) below are well-known results that can be found, for example, in
Lickorish’s book [23, Lemma 5.4]. Inequalities (3.1) and (3.2), which generalize
and strengthen results of [18], have been more recently established by Lee (see
Theorem 2.4 in [22] or [21]).

Theorem 3.2. Let D be a diagram of a knot K.
(a) We have

4d−[JK(n)] ≥ −2c−(D)n2 + 2(c(D)− vA(D))n+ 2vA(D)− 2c+(D).

If D is A-adequate, then equality holds for all n ≥ 1. Moreover, if D is not
A-adequate, then

(3.1) 4d−[JK(n)] ≥ −2c−(D)n2 + 2(c(D)− vA(D)+ 1)n+ e(n),

where e(n) : N → Q is a periodic function of n with integral period.
(b) We have

4d+[JK(n)] ≤ 2c+(D)n2 + 2(vB(D)− c(D))n+ 2c−(D)− 2vB(D).

If D is B-adequate, then equality holds for all n ≥ 1. Moreover, if D is not
B-adequate, then

(3.2) 4d+[JK(n)] ≤ 2c+(D)n2 + 2(vB(D)− c(D)− 1)n+ e∗(n),

where e∗(n) : N → Q is a periodic function of n with integral period.
The following theorem, which shows that the Strong Slope Conjecture is true

for adequate knots, was proven in [19] building on work in [8, 9].
Theorem 3.3. Let D be an A-adequate diagram of a knot K. Then, the surface

SA is essential in the knot complement MK, and has boundary slope −2c−. Further-
more, we have

−2c− = lim
n→∞

4n−2d−[JK(n)] and 2χ(SA) = 2(vA(D)− c(D)).

Similarly, if D is a B-adequate diagram of a knot K, then SB is essential in the
knot complement MK, and it has boundary slope 2c+. Furthermore, we have

2c+ = lim
n→∞

4n−2d+[JK(n)] and 2χ(SB) = 2(vB(D)− c(D)).

In particular, if Kis adequate, then it satisfies the Strong Slope Conjecture, and SA, SB
are Jones surfaces.
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4. COLORED JONES POLYNOMIALS AND ADEQUATE KNOTS

Let the notation be as in the last section. We recall that the Turaev genus of a knot
diagram D = D(K) is defined by

(4.1) gT(D) = (2− vA(D)− vB(D)+ c(D))/2.

The Turaev genus of a knot K is defined by

gT (K) = min{gT(D) | D = D(K)}.

The genus gT(D) is the genus of the Turaev surface F(D), corresponding to D.
This surface is constructed as follows. Let Γ ⊂ S2 be the planar, 4-valent graph
of the diagram D. Thicken the (compactified) projection plane to S2 × [−1,1],
so that Γ lies in S2 × {0}. Outside a neighborhood of the vertices (crossings),
Γ × [−1,1] will be part of F(D).

Observe that in the neighborhood of each vertex, we insert a saddle, which
is positioned so that the boundary circles on S2 × {1} are the components of the
B-resolution and the boundary circles on S2 × {−1} are the components of the
A-resolution (see Figure 4.1). Then, we cap off each circle with a disk, obtaining
a closed surface F(D).

FIGURE 4.1. A saddle between components of the A-, B-
resolutions near a vertex of the 4-valent graph Γ corresponding
to a crossing of D. The portion of Γ on the saddle is indicated by
solid lines. The dashed lines indicate the edges of the state graphs
GA, GB corresponding to the crossing.

The surface F(D) has the following properties:
(i) It is a Heegaard surface of S3.

(ii) D is alternating on F(D); in particular, D is an alternating diagram if and
only if gT(F(D)) = 0.
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(iii) The 4-valent graph underlying D defines a cellulation of F(D) for which
the 2-cells can be colored in a checkerboard fashion.

We warn the reader that these properties are not enough to characterize the
Turaev surface F(D) (see [5] or a survey article by Champanerkar and Kofman
[4]).

We will need the following result of Abe [1, Theorem 3.2].
Theorem 4.1. Suppose that D is an adequate diagram of a knot K. Then, we

have
gT(K) = gT(D) =

2− vA(D)− vB(D)+ c(D)
2

.

We are now ready to state and prove the main result of this paper, which
implies Theorem 1.1 stated in the Introduction.

Theorem 4.2. For a knot K, let jsK , js∗K , and jxK , jx∗K be the sets associated
with JK(n) as in Definitions 2.1 and 2.2. Also, let c(K) and gT (K) denote the
crossing number and the Turaev genus of K, respectively. Then, K is adequate if and
only if the following are true:

(1) There are Jones slopes s ∈ jsK and s∗ ∈ js∗K , with s − s∗ = 2c(K).
(2) There are x ∈ jxK and x∗ ∈ jx∗K with

x − x∗ = 2(2− 2gT (K)− c(K)).

Furthermore, any diagram of K that realizes c(K) is adequate, and also realizes
gT(K).

Proof. Suppose that K is a knot with an adequate diagram D = D(K). We
know that c(K) = c(D) = c+(D)+ c−(D). By Theorem 3.2, equation (4.1), and
Theorem 4.1, we have

4d+[JK(n)]− 4d−[JK(n)]

= 2c(K)n2 + 2(vB(D)+ vA(D)− 2c(D))n + 2(c(D)− vB(D)− vA(D))
= 2c(K)n2 + 2(2− 2gT (D)− c(D))n + 2(c(D)− vB(D)− vA(D))
= 2c(K)n2 + 2(2− 2gT (K)− c(K))n+ 2(2gT(K) − 2),

where the last equation follows from the fact that, sinceD is adequate, by Theorem
4.1 we have gT (D) = gT(K). Observe that, thus, the quantities s = 2c+(D),
s∗ = −2c−(D), x = 2(vA(D) − c(D)), and x∗ = 2(c(D) − vB(D)) satisfy the
desired equations.

Conversely, suppose that we have s, s∗, x, x∗ as in the statement above, and
let p = p(K) denote the common period of 4d−[JK(n)], 4d+[JK(n)].

There is 0 ≤ i ≤ p such that for infinitely many n≫ 0, we have

a(n) = s and a∗(n+ i) = s∗.
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Let D be a diagram of K that realizes the crossing number c(K). Let c+(D) and
c−(D) denote the number of positive and negative crossings in D, respectively. By
applying Theorem 3.2 to D, we must have sn2 + o(n) ≤ 2c+(D)n2 + o(n) for
infinitely many n≫ 0; hence, we obtain s ≤ 2c+(D). Similarly, we have

s∗(n+ i)2 + o(n) ≤ 2c−(D)(n+ i)2 + o(n),

and we conclude that −s∗ ≤ 2c−(D). Since, by assumption, s − s∗ = 2c(K) and
c−(D)+ c+(D) = c(K), we conclude that s = 2c+(D) and − s∗ = 2c−(D).

To continue, recall that, by assumption, there is 0 ≤ j ≤ p such that for
infinitely many n≫ 0, we have

(4.2) b(n) = x and b∗(n+ j) = x∗.

Now, by equation (4.2), and using Theorem 3.2 as above, we obtain

x ≤ 2(vB(D)− c(D)).

Similarly, using −s∗ = 2c−(D), we get that for infinitely many n≫ 0, we have

−x∗(n+ j)+ 4nc−(D) ≤ −2(c(D)− vA(D))(n+ j)+ 4nc−(D).

Hence, we obtain −x∗ ≤ 2(c(D) − vA(D)). This in turn, combined with equa-
tion (4.1), gives

(4.3) x − x∗ ≤ 2(vB(D)+ vA(D)− 2c(D)) = 2(2− 2gT (D)− c(D)).

On the other hand, by assumption,

(4.4) x − x∗ = 2(2− 2gT (K)− c(K)).

Since gT(K) ≤ gT(D) and c(D) = c(K), by equations (4.3) and (4.4), we con-
clude that gT(K) = gT (D), x = 2c(D)− 2vB, and x∗ = 2vA − 2c(D). This in
turn implies that, for infinitely many n > nK, we have

4d−[JK(n)] = −2c−(D)n2 + 2(c(D)− vA(D))n+ f (D),(4.5)
and

4d+JK(n)] = 2c+(D)n2 + 2(c(D)− vB(D))n+ f∗(D),(4.6)

where f (D), f∗(D) are periodic functions of n. It follows that f (D), f∗(D) can
take at most finitely many distinct values, and they are bounded by a universal
constant. Now, Theorem 3.2 implies that D has to be both A and B adequate,
and hence adequate. Otherwise, one of the inequalities (3.1), (3.2) would have to
hold, which would contradict equations (4.5) and (4.6).

To finish the proof, note that the arguments above imply that if K is a knot
for which (1), (2) are satisfied and D is a diagram of K that realizes c(K), then D
is adequate. Thus, by Theorem 4.1, we also have gT (D) = gT(K). ❐
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Now, we explain how Theorem 1.1 follows.

Proof of Theorem 1.1. First, suppose that K is a knot with an adequate diagram
D. Then, c(K) = c(D). The first part of the proof of Theorem 4.2 implies
that equations (1.1) are satisfied for all n > 0. Suppose conversely that for some
n > nK , equations (1.1) are satisfied. Observe that, since s1(n), s2(n) are periodic
with integral period, we conclude there must be infinitely many n≫ 0 for which
equations (1.1) are true. If we take D, a knot diagram of K that realizes c(K),
the argument in the second proof of Theorem 4.2 implies gT (D) = gT(K), and
equations (4.5) and (4.6) hold for D. Hence, as before, D is adequate. ❐

Theorem 3.3 implies that the Strong Slope Conjecture is true for adequate
knots. The next result implies that, for knots that satisfy the conjecture, the char-
acterization provided by Theorem 4.2 can be expressed in terms of properties of
their spanning surfaces.

Theorem 4.3. Given a knot K with crossing number c(K) and Turaev genus
gT(K), the following are equivalent:

(1) K is adequate.
(2) There are Jones surfaces S and S∗ with boundary slopes s, s∗ such that

(4.7) s − s∗ = 2c(K) and
χ(S)
|∂S| +

χ(S∗)
|∂S∗| + c(K) = 2− 2gT (K).

(3) There are Jones surfaces S and S∗ that are, in addition, spanning surfaces of
K (i.e., ∂S = ∂S∗ = K) such that

s − s∗ = 2c(K) and χ(S)+ χ(S∗)+ c(K) = 2− 2gT (K).

Proof. Suppose that K is adequate. Then, by Theorem 3.3 and the calcula-
tion in the beginning of the proof of Theorem 4.2, the state surfaces SA and SB
obtained from any adequate diagram of K satisfy equations (4.7). In fact, in this
case, we have |∂S| = |∂S∗| = 1.

Conversely, suppose there are Jones surfaces S and S∗ with boundary slopes
s, s∗ such that s − s∗ = 2c(K). By the proof of Theorem 4.2, if D is a diagram
realizing c(K), we have s = 2c+(D) and s∗ = −2c−(D). Since S and S∗ have
integral slopes, we have b = b∗ = 1. Since S and S∗ are Jones surfaces, we have

x = 2χ(S)
|∂S| ∈ jxK and x∗ = −2χ(S∗)

|∂S∗| ∈ jx∗K .

Thus, we get x − x∗ = 2(2 − 2gT(K) − c(K)). Therefore, by Theorem 4.2, D
must be an adequate diagram of K. This shows that (1) and (2) are equivalent.

Now, (3) clearly implies (2). Finally, since, by Theorem 4.2, (2) implies that
K is adequate, and (3) is true for adequate knots, we get that (2) implies (3). ❐
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5. ALTERNATING KNOTS

Recall a knot K is alternating if and only if gT (K) = 0 [5]. Combining this with
Theorem 4.2, we show the following.

Corollary 5.1. For a knot K, let jsK, js∗K , and jxK, jx∗K be the sets associated
with JK(n), as in Definitions 2.1 and 2.2. Then, K is alternating if and only if the
following are true:

(1) There are Jones slopes s ∈ jsK and s∗ ∈ js∗K , with s − s∗ = 2c(K).
(2) There are x ∈ jxK and x∗ ∈ jx∗K with x − x∗ = 4− 2c(K).

Proof. If K is alternating, then Theorem 4.2 and the fact that gT(K) = 0
imply that (1) and (2) hold. Conversely, suppose we have s, s∗, x,x∗, as in
the statement above, and let D be a diagram of K such that c(D) = c(K). Let
gT(D) denote the Turaev genus of D. The argument in the proof of Theorem 4.2
implies that x − x∗ = 4− 2c(K) ≤ 4− 2gT (D)− 2c(K), which can only hold if
gT(D) = 0, and hence D is alternating. ❐

Recently, Howie [17] and, independently, Greene [15] gave characterizations
of alternating knots in terms of properties of spanning surfaces. In particular,
[17, Theorem 2] states that a non-trivial knot K is alternating if and only if it
admits spanning surfaces S and S∗ such that the following hold:

χ(S)+ χ(S∗)+ i(∂S, ∂S∗)/2 = 2 and i(∂S, ∂S∗)/2 = c(K),

where i(∂S, ∂S∗) denotes the geometric intersection number of ∂S, ∂S∗ on the
∂MK. Note, we assume that this intersection number is minimal in the isotopy
classes of ∂S, ∂S∗.

Combining this with Theorem 4.3, we obtain the following result.
Corollary 5.2. Given a non-trivial knot K with crossing number c(K), the

following are equivalent:
(1) K is alternating.
(2) There are Jones surfaces S and S∗ that are spanning surfaces of K with bound-

ary slopes s, s∗ such that

χ(S)+ χ(S∗)+ (s − s∗)/2 = 2 and s − s∗ = 2c(K).

(3) There are spanning surfaces S and S∗ of K such that

χ(S)+ χ(S∗)+ i(∂S, ∂S∗)/2 = 2 and i(∂S, ∂S∗) = 2c(K).

Proof. Suppose D is a reduced alternating diagram for a knot K. Then, D
is both A- and B-adequate and gT (D) = gT(K) = 0. Now, the checkerboard
surfaces S, S∗ of D are the all-A and all-B state surface, which are Jones surfaces.
Thus, they satisfy the desired properties.
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Conversely, suppose we have Jones surfaces S and S∗ as above, and let D be a
diagram of K that realizes c(K). Set

x = 2χ(S) and x∗ = −2χ(S∗).

By hypothesis,

(5.1) x − x∗ = 4− 2c(K).

By Theorem 3.2, as in the proof of Theorem 4.2, we get

(5.2) x − x∗ ≤ 2(vB(D)+ vA(D)− 2c(D)) = 2(2− 2gT (D)− c(D)).

Since c(D) = c(K), combining equations (5.1) and (5.2), we have

4− 2c(K) ≤ 2(2− 2gT(D)− c(K)),

which gives gT (D) = 0. This in turn implies that D is alternating [5]. Thus, we
show that (1) and (2) are equivalent.

Now, we explain how (2) implies (3). Let D be a diagram of K that realizes
c(K); as above, D is alternating. The argument in the proof of Theorem 4.2
shows that if we have Jones slopes s, s∗ as above such that 2c(K) = s − s∗, then
s = 2c+(D) and s∗ = −2c−(D). Suppose that the simple closed curves ∂S, ∂S∗
have been isotoped on the torus ∂n(K) to minimize their intersection number.
Then, we have

i(∂S, ∂S∗) = 2c+(D)− (−2c−(D)) = 2c(K) = s − s∗.

Thus (3) follows. Hence, (1) above implies (3).
Finally, by [17, Theorem 2], (3) implies (1). ❐
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