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Abstract

Young tableaux have found extensive application in combinatorics [Vie 84], group
representations [Jam 78], invariant theory [DRS 74, DKR 78], symmetric funcions
[Mad 79], and the theory of algorithms [Knu 73, pages 48-72]. This paper is an
expository treatment of some of the highlights of tableaux theory. These include
the hook and determinantal formulae for enumeration of both standard and gener-
alized tableaux, their connection with irreducible representations of matrix groups,
and the Robinson-Schensted-Knuth algorithm.



1 Three families of tableaux

Young tableaux were first introduced in 1901 by the Reverend Alfred Young
[You 01, page 133] as a tool for invariant theory. Subsequently, he showed that
they can give information about representations of symmetric groups. Since then,
tableaux have played an important rôle in many areas of mathematics from enu-
merative combinatorics to algebraic geometry. This paper is a survey of some of
these applications.

In recent years the number of tableaux of various types has been increasing
at an impressive rate. To limit this paper to a reasonable length, our discussion
will be restricted to three fundamental families of tableaux: ordinary, shifted and
oscillating.

The rest of this section will be devoted to the definitions and notation need to
describe these arrays. In Section 2 we present the hook and determinantal formulae
for enumeration of standard tableaux. The third section examines the connection
with representations of the symmetric group. The Robinson-Schensted algorithm
appears in Section 4 as a combinatorial way of explaining the decomposition of
the regular representation. The next four sections rework the material from the
first four using generalized tableaux (those with repeated entries), representations
of general linear and symplectic groups, and the theory of symmetric functions.
Section 9 is a brief exposition of some open problems.

1.1 Ordinary tableaux

In what follows, N and P stand for the non-negative and positive integers
respectively. A partition λ of n ∈ N, written λ ` n, is a sequence of positive
integers λ = (λ1, λ2, · · · , λl) in weakly decreasing order such that

∑l
i=1 λi = n.

The λi are called the parts of λ. The unique partition of 0 is λ = φ. The shape
of λ is an array of boxes (or dots or cells) with l left-justified rows and λi boxes
in row i. We will use λ to represent both the partition and its shape, while (i, j)
will denote the cell in row i and column j. By way of illustration, the following
figure shows the shape of the partition λ = (2, 2, 1) ` 5 with cell (3,1) displayed as
a diamond1.

1In deference to Alfred Young’s nationality, we have chosen to draw partition shapes in the
English style, i.e., as if they were part of a matrix. The reader should be aware that some
mathematicians (notably the French) prefer to use the conventions of coordinate geometry where
λ1 cells are placed along the x-axis, λ2 cells are placed along the line y = 1, etc. To them and to
René Descartes, we abjectly apologize.
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A standard Young tableau (SYT) of shape λ, denoted P , is obtained by filling
the cells of λ ` n with the integers from 1 to n so that

1. each integer is used exactly once, and

2. the rows and columns increase.

We let pi,j denote the elemenet of P in cell (i, j). There are 5 SYT of shape (2, 2, 1):

1 2 , 1 2 , 1 3 , 1 3 , 1 4
3 4 3 5 2 4 2 5 2 5
5 4 5 4 3

and the first tableau has p3,1 = 5. Letting fλ be the number of SYT of shape λ,
we see that f (2,2,1) = 5.

1.2 Shifted tableaux

A partition λ∗ = (λ1, λ2, · · · , λl) of n is strict, λ∗ |= n, if λ1 > λ2 > · · · > λl.
The shifted shape of λ∗ is like the ordinary shape except that row i starts with its
leftmost box in position (i, i). The fact that the parts of λ∗ strictly decrease assures
that shifting the rows in this manner does not cause any cells to stick out from the
right-hand boundary. As an example, the shifted shape of λ∗ = (4, 2, 1) |= 7 is:

2 2 2 2

2 2 .
2

A standard shifted Young tableau (SST) of shape λ∗, P ∗, is a filling of the
shifted shape λ∗ satisfying the same two conditions as for an SYT. The notation
p∗i,j should be self-explanatory. The number of SST of shape λ∗ is denoted gλ. The

list below displays all SST of shifted shape (4, 2, 1), demonstrating that g(4,2,1) = 7.

1 2 3 4 , 1 2 3 5 , 1 2 3 6 , 1 2 3 7 ,
5 6 4 6 4 5 4 5

7 7 7 6

1 2 4 5 , 1 2 4 6 , 1 2 4 7 .
3 6 3 5 3 5

7 7 6
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1.3 Oscillating tableaux

To motivate the definition of an oscillating tableau, we must first look again at
the definition of an SYT. An SYT P of shape λ gives rise to a sequence of shapes
φ = λ0 ⊂ λ1 ⊂ λ2 ⊂ · · · ⊂ λn = λ where λm is the shape containing the
numbers 1, 2, · · · ,m in P , i. e. , λm is obtained from λm−1 by adding the cell (i, j)
such that pi,j = m. For example if

P =
1 3
2 5
4

then the corresponding sequence is

φ ⊂ 2 ⊂ 2 ⊂ 2 2 ⊂ 2 2 ⊂ 2 2 = λ.
2 2 2 2 2

2 2

Conversely it should be clear that any sequence of shapes starting with φ and
adding a box at each stage corresponds to a SYT. The definition of oscillating
tableau generalizes this concept.

An oscillating Young tableau (OYT) of shape λ and length k, P̃
λ

k , is a sequence
of shapes (φ = λ0, λ1, · · · , λk = λ) such that λm is obtained from λm−1 by adding
or subtracting a cell. Oscillating tableaux are also called up-down or alternating
tableaux. We let f̃λk denote the number of OYT of shape λ and length k. If λ = (1)
and k = 3 then a complete list of the corresponding OYT is:

(φ , 2 , φ , 2 ) ; (φ , 2 , 2 2 , 2 ) ; (φ , 2 , 2 , 2 ) .
2

It follows that f̃
(1)
3 = 3 .

2 Enumeration of tableaux

It would be useful to have an expression for the number of tableaux of a given
shape, since enumeration by hand (as in the previous section) rapidly becomes
unwieldy as n increases. There are two principle formulae of this type, one involving
products (the hook formula) and one involving determinants.
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2.1 Ordinary tableaux

If (i, j) is a cell in the shape of λ then it has hook

Hi,j = {(i, j)} ∪ {(i, j′) | j′ > j} ∪ {(i′, j) | i′ > i}

with corresponding hooklength hi,j = |Hi,j| (where | · | stands for cardinality). The
sets {(i, j′)|j′ > j} and {(i′, j)|i′ > i} are called the arm and leg of the hook
respectively. If λ = (6, 5, 3, 2) then the diamonds in

2 2 3 3 3 3

2 2 3 2 2

2 2 3

2 2

represent the hook H1,3 with hooklength h1,3 = 6 . The famous hook formula
expresses the number of SYT in terms of hooklengths.

Theorem 2.1.1 (Frame-Robinson-Thrall [FRT 54]) If λ ` n then

fλ =
n!∏

(i,j)∈λ hi,j
.

Before discussing various proofs of this theorem, let us look at an example to see
how easy it is to apply the hook formula. If λ = (2, 2, 1) ` 5 then the hooklengths
of λ are given in the diagram

4 2
3 1
1

where hi,j is placed in cell (i, j). Thus f (2,2,1) = 5!/4 · 3 · 2 · 12 = 5 which agrees
with our previous computation in Section 1.1. There are many different proofs of
the hook formula; we outline a few of them next.
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Proof sketches.

1. (inductive) It is easy to prove the hook formula by induction on n. Unfortu-
nately this type of proof gives no inkling of why the hooklengths should play
a role.

2. (probabilistic) Greene, Nijenhuis, and Wilf [GNW 79] have given a beautiful
probabilistic proof where the hooks do enter in a very strong way. The general
idea is this. Fix a shape λ ` n. If we can find an algorithm that produces
any SYT P with probability prob(P ) =

∏
hi,j/n!, then we will be done since

the distribution is uniform. In what follows a corner cell is (i, j) ∈ λ such
that (i+ 1, j), (i, j + 1) ∈/ λ .

(a) Pick (i, j) ∈ λ with probability 1/n.

(b) While (i, j) is not a corner cell do begin

i. pick a cell c ∈ Hi,j − {(i, j)} with probability 1/(hi,j − 1);

ii. (i, j) := c, i.e., c becomes the new value for (i, j) end.

(c) Give the label n to the corner cell (i′, j′) that you have reached.

(d) Go back to step (a) with λ := λ−{(i′, j′)} and n := n− 1. Repeat this
outer loop until all cells of λ are labeled.

It should be clear that this procedure gives a standard labeling of λ . It is
less obvious (though not hard to prove) that all labelings are equally likely
and of the right probability. The interesed reader can consult [GNW 79] for
the details.

3. (combinatorial) Franzblau and Zeilberger [F-Z 82] were the first to come up
with a combinatorial proof of the hook formula. Rewriting the equation as
n! = fλ ·∏hi,j, we see that it suffices to find a bijection S←→(P,H) where
S is an arbitrary filling of λ with 1, 2, · · · , n (rows and columns need not
increase), P is a SYT of shape λ , and H is a pointer tableau of shape λ , i.e.,
a placement of (computer science-type) pointers in λ such that the pointer
in cell (i, j) points to some cell of Hi,j. Roughly, given a scrambled tableau
S we wish to rearrange its entries to form a SYT P with the pointer tableau
H keeping track of the unscrambling process. While this idea is simple, the
actual bijection is long and difficult. Subsequently Zeilberger [Zei 84] found a
way to turn the Greene-Nijenhuis-Wilf proof into a bijection, but the details
are still not as pleasant as one would like. 2

It is unfortunate that a simple combinatorial statement like the hook formula
has no simple combinatorial proof. (It seems as if all the simple proofs are not
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combinatorial and all the combinatorial proofs are not simple!) To find such a
proof is one of the tantalizing open problems in this area.

While the hook formula is relatively recent, the determinantal formula goes
back to Frobenius and Young. In what follows, 1/r! = 0 if r < 0.

Theorem 2.1.2 If λ = (λ1, λ2, · · · , λl) ` n then

fλ = n! · det[1/(λi − i+ j)!]

where the determinant is l × l.

The simplest way to remember the denominators in the determinant is to note
that the parts of λ are found along the main diagonal. The other entries in a given
row are computed by increasing or decreasing the number (inside the factorial) by
1 for each step taken to the right or left respectively. If we apply this formula to
our running example where λ = (2, 2, 1) we find

5! ·

∣∣∣∣∣∣∣
1/2! 1/3! 1/4!
1/1! 1/2! 1/3!

0 1/0! 1/1!

∣∣∣∣∣∣∣ = 5

which has not changed since our last computation.

Proof sketches (of the determinantal formula).

1. (inductive) If λ = (λ1, λ2, · · · , λl) then it is easy to see directly from the
definitions that λi − i = hi,1 − l. Hence it is enough to show that

fλ = n! · det[1/(hi,1 − l + j)!].

This can be done using induction and the hook formula.

2. (combinatorial) A SYT can be represented as a family of non-intersecting
lattice paths in the plane. Such families are also counted by determinants,
as shown by Gessel [unpublished manuscript]. Remmel [Rem 82] combined
these ideas with the Garsia-Milne involution principle [G-M 81] to give a
bijective proof of both the hook and determinantal formulae. Gessel and Vi-
ennot [G-V 85, G-V ip] have extended this idea to a multitude of interesting
applications. 2
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2.2 Shifted tableaux

A shifted hook is like a hook with an extra appendage. The shifted hook of
(i, j) ∈ λ∗ is

Hi,j
∗ = {(i, j)} ∪ {(i, j′) | j′ > j} ∪ {(i′, j) | i′ > i} ∪ {(j + 1, j′)|j′ > j}

with hooklength h∗i,j = |Hi,j
∗|. The diamonds below outline the hook H∗2,3 of the

partition λ∗ = (6, 5, 3, 2, 1) which has hooklength h∗2,3 = 7:

2 2 2 2 2 2

2 3 3 3 3

3 2 2

3 3

2

.

One way to motivate this definition is to note that if λ∗ is a shifted shape
then one can paste together λ∗ and λ∗ t (where t denotes the transpose) to form
a left justified shape λ. If (i, j) ∈ λ∗ then Hi,j

∗ ⊆ λ∗ is the same as Hi,j ⊆ λ
except that the bottom part of its leg has been twisted. For example, if we use
λ∗ = (6, 5, 3, 2, 1) as before and represent λ∗ t using circles, then the shifted hook
above corresponds to the normal hook in

◦ 2 2 2 2 2 2

◦ ◦ 2 3 3 3 3

◦ ◦ ◦ 3 2 2

◦ ◦ ◦ 3 2 2

◦ ◦ ◦ 3 ◦ 2

◦ ◦

.

The shifted analog of the hook formula is

Theorem 2.2.1 ([Thr 52]) If λ∗ |= n then

gλ =
n!∏

(i,j)∈λ∗ h
∗
i,j

. 2

As an example, λ∗ = (4, 2, 1) |= 7 has shifted hooklengths

6 5 4 1
3 2

1
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and so g(4,2,1) = 7!/6 · 5 · 4 · 3 · 2 · 12 = 7 as noted in Section 1.2.
It is easy to give an inductive proof of this result. A probabilistic analog of the

[GNW 79] proof was given by Sagan [Sag 80]. Surprisingly, although the algorithm
for producing a tableau at random is identical (merely use shifted hooks in place
of normal hooks), the proof that every tableau of a given shape is equally likely is
much more complicated. It would be nice to find a simple proof that the shifted
algorithm works. It is also an open problem to find analogs of the combinatorial
proofs of [F-Z 82] and [Zei 84].

The reader is probably wondering why Thrall’s [Thr 52] paper with the shifted
hook formula appeared two years earlier than his article with Frame and Robin-
son [FRT 54] containing the unshifted version. In fact the 1952 paper contains
an expression for gλ which is mid-way between the shifted versions of the hook
and determinantal formulae (although hooks are never mentioned explicitly) and
from which either can be derived by simple manipulations. This brings us to the
determinantal version.

Theorem 2.2.2 ([Thr 52]) If λ∗ = (λ1, λ2, · · · , λl) |= n then

gλ =
n!∏

i<j(λi + λj)
· det[1/(λi − l + j)!]

where the determinant is l × l. 2

Note that the parts of λ∗ are now found in the last column of the determinant.
Also the extra product in the denominator is precisely the set of hooklengths for
the cells (i, j) ∈ λ∗ such that i < j. Thrall proved this theorem by induction.
It seems probable that the techniques of Remmel [Rem 82] and Gessel-Viennot
[G-V 85, G-V ip] can also be used.

2.3 Oscillating tableaux

If λ ` n and f̃λk 6= 0 then we must take at least k steps to reach λ and so
k ≥ n. Furthermore, the number of extra additions and subtractions of cells must
cancel out, so k ≡ n (mod 2) and thus k − n = 2d for some d ∈ N. With these
preliminaries we can state a formula of Sundaram for the number of OYT of given
length and shape.

Theorem 2.3.1 ([Sun 86]) If λ ` n and k − n = 2d for some d ∈ N, then

f̃λk =

(
k

n

)
(2d)!! fλ
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where
(
k
n

)
is a binomial coefficient and (2d)!! = 1 · 3 · 5 · 7 · · · (2d− 1) , i.e., (2d)!!

is the number of fixedpoint-free involutions in the symmetric group S2d.

Proof sketch. It suffices to find a bijection

P̃ ←→ (P, π)

where P̃ is an OYT of shape λ and length k, P is an ‘SYT’ of shape λ , and
π is a fixedpoint-free involution in ‘S2d’. The reason for the quotes is that the
tableau need not contain the integers from 1 to n and the involution need not be
a permutation of 1 to 2d. Rather, the integers from 1 to k are to be partitioned
into 2 subsets of size n and k − n = 2d (accounting for the binomial coefficient),
with the elements of P taken from the first subset and those of π from the second.

The general idea is that P keeps track of those steps in the construction of
P̃ where a box of λ is added for the last time, while π stores information about
deletions. See [Sun 86] for details. 2

3 Representations of groups

Since one of Young’s original applications for his tableaux came from group
representation theory, it behoves us to look at the connection. In what follows,
let G be a group and let V be a finite dimensional vector space over the complex
numbers, C.

3.1 Ordinary representations

A representation of G is a homomorphism ρ : G→ GL(V ) where GL(V ) is the
general linear group of V , i.e., the group of all invertible linear transformations
from V to itself. Alternatively, a representation may be viewed as a vector space V
together with an action of G on V by invertible linear transformations. The space
V is called a G-module and if g ∈ G, v ∈ V then the action ρ(g)v is abbreviated
to g · v or just gv. We call dim V the degree of the representation.

As an example, consider any group G and let V = C. Then the map that sends
every g ∈ G to the identity linear transformation (i.e., gv = v for all g ∈ G and v ∈
V ) is a representation called the trivial representation. The trivial representation
has degree 1.

For a more substantive example, let G be the symmetric group Sn and let V
be the set of all formal linear combinations

V = {c1
~1 + c2

~2 + · · ·+ cn~n | ck ∈ C for all k}
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which is a vector space over C with basis B = {~1,~2, · · · , ~n} . If π ∈ Sn then we
define the action of π on a basis vector by letting

π(~k) =
−→
π(k) .

Thus the matrix of π in the canonical basis is just the usual permutation matrix
associated with π , e.g., if π = (1, 2)(3) ∈ S3 then π(~1) = ~2, π(~2) = ~1 and π(~3) = ~3
so that

ρ(π) =

 0 1 0
1 0 0
0 0 1


in the basis B. This representation is called the natural or defining representation
of Sn and is of degree n.

A G-module V is called irreducible if there is no proper subspace W of V
which is invariant under the set of linear transformations ρ(G) = {ρ(g) | g ∈ G}.
Equivalently, V is irreducible if it has no basis B that simultaneously brings all
the matrices to block form:

ρ(g) =

[
Ag Bg

0 Cg

]

for all g ∈ G.
Obviously the trivial representation is irreducible, as are all degree one repre-

sentations. On the other hand, the natural representation of Sn is not irreducible
for n ≥ 2 since the one-dimensional subspace generated by ~1 + ~2 + · · · + ~n is
invariant.

The irreducible representations of a group are important because they are the
building blocks of all other representations under certain conditions. A G-module
is said to be completely reducible if it is a direct sum of irreducible G-modules.
Mashke’s theorem gives us a large supply of completely reducible modules.

Theorem 3.1.1 If G is a finite group then every G-module V is completely re-
ducible. 2

Although we do not have room here to prove the results that we will need
from representation theory, the reader is encouraged to consult the excellent text
of Ledermann [Led 77] or the up-coming book of Sagan [Sag ip] .

The next question to ask is: given G, how many irreducible G-modules are
there? First, however, we must know when two modules are the same. We say
that G-modules V and W are equivalent, written V ∼= W , if there is a vector space
isomorphism φ : V → W that preserves the action of G, i.e.,

φ(gv) = gφ(v) for all v ∈ V, g ∈ G.
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Theorem 3.1.2 If G is finite then the number of inequivalent irreducible G-modules
is equal to the number of conjugacy classes of G. 2

If G = Sn then a conjugacy class consists of all permutations of a given cycle-
type. But a cycle-type is just a partition of n.

Corollary 3.1.3 The number of inequivalent irreducible Sn-modules is the number
of partitions of n. 2

So to find the number of irreducible S3-modules we merely list all partitions of
3:

(3) = 2 2 2 , (2, 1) =
2 2

2
, (1, 1, 1) =

2

2

2

.

Since there are 3 partitions, there are 3 irreducible modules for S3.
The irreducible Sn-module indexed by λ ` n is usually denoted Sλ and called

the Specht module corresponding to λ . It would be nice to know their dimensions.

Theorem 3.1.4 If λ ` n then dimSλ = fλ. 2

Returning to S3, we can compute the dimensions of each irreducible by listing
all the SYT of the appropriate shape (or by using the hook or determinantal
formulae):

(3) : 1 2 3 ;

(2, 1) : 1 2 , 1 3 ;
3 2

(1, 1, 1) : 1 ;
2
3

so dimS(3) = 1, dimS(2,1) = 2, and dimS(1,1,1) = 1. Now for any n we have

dimS(n) = dimS(1n) = 1 where (1n) =

n︷ ︸︸ ︷
(1, · · · , 1). It turns out that S(n) corre-

sponds to the trivial representation and S(1n) corresponds to the one-dimensional
sign representation that sends every π ∈ Sn to the matrix [sgn(π)].

For any finite group G = {g1, g2, · · · , gm}, the group algebra is the vector space

C(G) = {c1~g1 + c2~g2 + · · ·+ cm~gm | ck ∈ C for all k}.

Clearly C(G) is a G-module under the action h ·~g =
−→
hg for all g, h ∈ G. Hence we

can ask how C(G) decomposes into irreducibles.
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Theorem 3.1.5 Let G be finite and let S1, S2, · · · , Sc be a complete list of inequiv-
alent irreducible G-modules. Then

C(G) ∼=
c⊕
i=1

miS
i

where mi = dimSi, i.e., every irreducible module appears in C(G) with multiplicity
equal to its dimension. 2

Taking dimensions on both sides of the previous equation we obtain:

Corollary 3.1.6

|G| =
c∑
i=1

m2
i . 2

Finally, speciallizing to the symmetric group yields:

Corollary 3.1.7
n! =

∑
λ`n

(fλ)2. 2

3.2 Projective representations

A projective representation of a group G is a homomorphism ρ : G→ PGL(V )
where PGL(V ) is the projective general linear group, i.e., GL(V ) modulo the
scalar multiples of the identity transformation. Below we will list the projective
analogs of the results from the previous section. For a more complete discussion,
see the articles of Stembridge [Ste 87] and Józefiak [Józ pr].

The irreducible projective representations of Sn are indexed by strict partitions
λ∗ . Unfortunately the indexing is no longer a 1-to-1 correspondence as in the
ordinary case. Define the length of λ = (λ1, λ2, · · · , λl), denoted l = l(λ), to be the
number of parts of λ. This should not be confused with the length of an OYT.
Now if λ∗ |= n has length l, then when n − l is even there is a single irreducible
projective Sn-module Sλ0 corresponding to λ∗, but when n− l is odd there are two
such: Sλ1 and Sλ−1.

By way of illustration, consider S6. The corresponding strict partitions, λ∗, are

2 2 2 2 2 2 , 2 2 2 2 2 , 2 2 2 2 , 2 2 2

2 2 2 2 2

2
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with n− l being 6− 1 = 5, 6− 2 = 4, 6− 2 = 4, and 6− 3 = 3 respectively. Thus
the number of irreducible projective representations of S6 is 2 + 1 + 1 + 2 = 6.
(It is an accident that in all the examples we have seen, the number of irreducible
representations of the Sn in question is always n.)

As in the ordinary case, we can also compute the dimensions of the irreducibles
using tableaux. In the following theorem, b·c is the greatest integer function (also
called the floor or round-down function). The power of 2 enters because the Schur
multiplier for the symmetric group has order 2.

Theorem 3.2.1 If λ∗ |= n has length l then

dimSλi = 2b
n−l

2
c · gλ

where i = 0 if n− l is even and i = ±1 if n− l is odd. 2

To finish our computation for S6, we list the shifted tableaux with shapes given
by the shapes above:

(6) : 1 2 3 4 5 6 ;

(5, 1) : 1 2 3 4 5 , 1 2 3 4 6 ,
6 5

1 2 3 5 6 , 1 2 4 5 6 ;
4 3

(4, 2) : 1 2 3 4 , 1 2 3 5 , 1 2 3 6 ,
5 6 4 6 4 5

1 2 4 5 , 1 2 4 6 ;
3 6 3 5

(3, 2, 1) : 1 2 3 , 1 2 4 .
4 5 3 5

6 6

Hence dimS
(6)
1 = dimS

(6)
−1 = 2b5/2c · 1 = 4, dimS

(5,1)
0 = 2b4/2c · 4 = 16, dimS

(4,2)
0 =

2b4/2c · 5 = 20, and dimS
(3,2,1)
1 = dimS

(3,2,1)
−1 = 2b3/2c · 1 = 4.

Because Corollary 3.1.6 continues to hold for projective representations we have
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n! =
∑
λ∗|=n

n−l even

(dimSλ0 )2 +
∑
λ∗|=n
n−l odd

(dimSλ1 )2 + (dimSλ−1)2

=
∑
λ∗|=n

n−l even

(2
n−l

2 · gλ)2 +
∑
λ∗|=n
n−l odd

2 · (2
n−l−1

2 · gλ)2.

Conveniently, the powers of two in both summations turn out to be the same, and
so

Corollary 3.2.2
n! =

∑
λ∗|=n

2n−l(gλ)2.

To bring oscillating tableaux into the act, we need to talk about representations
of the symplectic group (rather than the symmetric group). This discussion will
be postponed until Section 7.

4 The Robinson-Schensted correspondence

Corollaries 3.1.7 and 3.2.2 were obtained from general theorems about group
representations. However, the equations themselves can be viewed as purely com-
binatorial statements about tableaux. Hence it would be nice to have purely
combinatorial (i.e., bijective) proofs of these results. The celebrated Robinson-
Schensted correspondence [Rob 38, Sch 61] does exactly that. Although Robinson
was the first to discover this algorithm, Schensted’s form of the correspondence
(discovered independently) is easier to understand. For that reason we will follow
the latter’s presentation.

4.1 Left-justified tableaux

We restate Corollary 3.1.7 for ease of reference.

Theorem 4.1.1
n! =

∑
λ`n

(fλ)2.

Combinatorial Proof. It suffices to find a bijection

π
R−S←→ (P,Q) (1)

between permutations π ∈ Sn and pairs of SYT P,Q of the same shape λ ` n. We
first exhibit a map which, given a permutation, produces a tableaux pair.

14



π
R−S→ (P,Q). Suppose π is given in two-line form as

π =
1 2 · · · n
x1 x2 · · · xn

.

We will construct a sequence of tableaux

(P0, Q0) = (φ, φ); (P1, Q1); (P2, Q2); · · · ; (Pn, Qn) = (P,Q) (2)

where x1, x2, · · · , xn will be inserted into the P ’s and 1, 2, · · · , n will be placed in
the Q’s so that Pk and Qk will have the same shape for all k. The operations of
insertion and placement can be described as follows.

Suppose P is a partial tableau of shape µ, i.e., a filling of µ with a subset of
the integers from 1 to n so that rows and columns increase. Let x be an element
not in P . To row insert x in P , we use the following sequence of steps.

1. If x is bigger than every element of the first row of P , then put x at the end
of that row (p1,µ1+1←x) and stop.

2. Otherwise, find the left-most element of the first row of P such that p1,j1 > x
and replace this element by x (after storing its value for future use). We say
that x bumps p1,j1 from the first row.

3. Now iterate the first two steps. If p1,j1 is bigger than every element in row
2 then put it at the end of the row and stop. Otherwise p1,j1 replaces the
left-most p2,j2 larger than itself and this element is inserted into the third
row, etc.

4. Since the pi,ji form an increasing sequence, at some point the algorithm must
terminate with an element coming to rest at the end of some row.

As an example, suppose x = 3 and

P =
1 2 5 8
4 7
6

.

To follow the path of the insertion of x into P , we will put elements that are
bumped during the insertion in boldface type.

1 2 5 8 ←3 1 2 3 8 1 2 3 8 1 2 3 8
4 7 , 4 7 ←5 , 4 5 , 4 5
6 6 6 ←7 6 7

.
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If row insertion of x into P yields partial tableau P ′ then we write Rx(P ) = P ′. It
is easy to verify that P ′ will still have increasing rows and columns.

Placement of an element in a tableaux is an easy construction. Suppose that
Q is a partial tableau of shape µ and that (i, j) is an outer corner of µ, meaning
that (i, j) ∈/ µ but µ∪ (i, j) is the shape of a partition. If k is an integer, then the
placement of k in Q at cell (i, j) is the tableau obtained by merely putting k in
cell (i, j), i.e., qi,j := k.

If we let

Q =

1 2 5
4 7
6
8

,

then placing k = 9 in cell (i, j) = (2, 3) yields

1 2 5
4 7 9
6
8

.

Clearly, if k is bigger than every element of Q then the array will remain a partial
tableau.

We can finally describe how to build the sequence (2) from the permutation

π =
1 2 · · · n
x1 x2 · · · xn

.

Start with a pair of empty tableaux (P0, Q0). Assuming that (Pk−1, Qk−1) have
been constructed, define (Pk, Qk) by

Pk = Rxk(Pk−1), and

Qk = the placement of k into Qk−1 at the cell (i, j)

where the row insertion terminates.

Note that the definition of Qk insures that the shapes of Pk and Qk are equal for
all k. We call P = Pn and Q = Qn the P -tableau and Q-tableau of π respectively.

We now give an example of the complete algorithm. Boldface numbers will
be used to distinguish the elements of the upper line of π and hence also for the
elements of the Qk. Let

π =
1 2 3 4 5 6
2 4 3 6 5 1

, (3)
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then the tableaux constructed by the algorithm are:

φ , 2 , 2 4 , 2 3 , 2 3 6 , 2 3 5 , 1 3 5
Pk : 4 4 4 6 2 6 = P

4

φ , 1 , 1 2 , 1 2 , 1 2 4 , 1 2 4 , 1 2 4
Qk : 3 3 3 5 3 5 = Q.

6

Thus

1 2 3 4 5 6
2 4 3 6 5 1

R−S→

 1 3 5 1 2 4
2 6 , 3 5
4 6

 .
To show that this map is a bijection, we create its inverse.

(P,Q)
R−S→ π. We merely reverse the above procedure step by step. Define

(Pn, Qn) = (P,Q). Assuming that the pair (Pk, Qk) has been constructed, we
obtain xk (the kth element of π) and (Pk−1, Qk−1) as follows.

Find the cell (i, j) containing the k in Qk. Since this is the largest element
in Qk, pi,j must have been the last element to be bumped in the construction of
Pk. Furthermore, the element that bumped it must be the right-most entry in row
i− 1 such that pi−1,ji−1

< pi,j. So replace pi−1,ji−1
by pi,j and find the entry of row

i− 2 that diplaced pi−1,ji−1
, etc. Working back up the rows in this manner, we will

finally remove an element p1,j1 from the first row. Thus xk = p1,j1 , Pk−1 is Pk
after the deletion process described above is complete, and Qk−1 is Qk with the
k errased. Continuing in this way, we will eventually recover all the elements of π
in reverse order. 2

The Robinson-Schensted algorithm has many beautiful and surprising proper-
ties. The literature on this subject is so vast that we can only present a sampling
of results here. The interested reader can consult the extensive bibliography in
[Vie 84] for other sources.

4.1.1 Column insertion

One can obviously define column insertion of x into P by reversing the roles of
rows and columns in the definition of insertion: x displaces the highest element of
the first column of P larger than x, this element is bumped into the second column,
etc. If the result of column inserting x into P is P ′ we write Cx(P ) = P ′. It turns
out that the row and column insertion operators commute (operators should be
read right to left).
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Proposition 4.1.2 ([Sch 61]) For any partial tableau P and positive integers
x, y ∈/ P

CyRx(P ) = RxCy(P ).

Proof. This proposition follows from the definitions of the two operators by an
easy case-by-case argument. 2

In the next result, πr stands for the reversal of π, i.e., if π = x1x2 · · ·xn then
πr = xnxn−1 · · ·x1.

Corollary 4.1.3 If π
R−S→ (P,Q). then πr

R−S→ (P t, ·) where t denotes transpose.

Proof . By definition, the P -tableau of πr is

Rx1 · · ·Rxn−1Rxn(φ) = Rx1 · · ·Rxn−1Cxn(φ) (initial tableau is empty)
= CxnRx1 · · ·Rxn−1(φ) (commutivity)
...
= CxnCxn−1 · · ·Cx1(φ) (induction)
= P t (def. of column insertion). 2

4.1.2 The jeu de taquin

It would be nice to describe the Q-tableau for πr. In order to do so, we must
introduce a powerful operation of Schützenberger [Scü 63].

Suppose λ and µ are shapes such that λ ⊆ µ. Then they form the skew partition

λ/µ
def
= {(i, j) ∈ λ | (i, j) ∈/ µ}. For example if

λ =
2 2 2 2

2 2 2

2 2 2

and

µ =
2 2

2

then

λ/µ =
• • 2 2

• 2 2

2 2 2

where the missing boxes have been replaced by dots (black holes). Skew tableaux
of both the standard and partial varieties are defined in the obvious way, filling
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the skew shape with an appropriate subset of the integers so that the rows and
columns increase.

Now let Q be a skew tableau of shape λ/µ and let (i, j) be a corner cell of
µ (called an inner corner of the skew shape). An (i, j)-slide is accomplished by
performing the following sequence of operations.

1. If neither (i, j + 1) nor (i+ 1, j) are in λ/µ then (i, j) is eliminated from the
shape of Q and the algorithm terminates.

2. Otherwise, let qi1,j1 = min{qi,j+1, qi+1,j}. (If one of the arguments of the
min doesn’t exist, then define it’s value to be the element of Q which does
appear.) Slide qi1,j1 into cell (i, j), creating a hole in position (i1, j1).

3. Now repeat the first two steps with (i, j) and (i1, j1) replaced by (i1, j1) and
(i2, j2) respectively, etc. After a finite number of iterations, the hole will slide
to the boundary of Q and be eliminated, at which point we stop.

If applying an (i, j)-slide to Q yields Q′ then we write ∆i,jQ = Q′

To illustrate this procedure, let

Q =
• • 3 7
• 1 4
2 5 6

.

As usual boldface numbers are used to indicate the moving objects as we apply a
(1,2)-slide:

• • 3 7 , • 1 3 7 , • 1 3 7 , • 1 3 7
• 1 4 • • 4 • 4 • • 4 6
2 5 6 2 5 6 2 5 6 2 5

= ∆1,2Q.

Given an SYT Q we will build another SYT S(Q) in the following manner.
First construct a sequence of partial tableaux Q = Qn, Qn−1, · · · , Q0 = φ . To get
Qk−1 from Qk, we first erase the element in cell (1, 1) of Qk to form a tableau of
shape µ/(1) for some µ . We let Qk−1 be the tableau obtained by applying ∆1,1

to this skew tableau. Finally, we put a k in cell (i, j) of S(Q) if that was the box
eliminated from the boundary when passing from Qk to Qk−1.

If we apply this algorithm to theQ-tableaux of the Robinson-Schensted example
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above, we obtain

Qk : 1 2 4 , 2 4 , 3 4 , 4 , 5 , 6 , φ
3 5 3 5 5 5 6
6 6 6 6

S(Q) : • • • , • • 6 , • • 6 , • 4 6 , • 4 6 , • 4 6 , 1 4 6 .
• • • • • 5 • 5 • 5 2 5 2 5
• • • • 3 3 3

Furthermore, the reader can verify that the Q-tableau of πr = 1 5 6 3 4 2 is just
the transpose of S(Q). This is not an accident.

Theorem 4.1.4 ([Scü 63]) If π
R−S→ (P,Q) then πr

R−S→ (P t, S(Q)t). 2

Slides can also be used to prove another surprising theorem of Schützenberger.

Theorem 4.1.5 ([Scü 63]) If π
R−S→ (P,Q) then π−1 R−S→ (Q,P ).

Proof sketch. This result can also be demonstrated using a geometric form
of the Robinson-Schensted correspondence due to Viennot [Vie 76]. Imagine π
represented as a permutation matrix in the plane, i.e., the kth element of π is
represented by a point with cartesian coordinates (k, xk). Suppose that the plane is
illuminated from the origin so that each point of π casts a shadow whose boundaries
are half-lines parallel to the coordinate axes. By reading this diagram from left to
right, one obtains a picture of the Robinson-Schensted algorithm as if on a time
line (the kth insertion takes place as we pass the line x = k). One can read off
the entries of the P - and Q-tableaux as certain coordinates on the y- and x-axes
respectively. Once this is established, the theorem is immediate since passing from
π to π−1 merely interchanges the two axes. 2

Two more definitions are needed before we will be able to define the ‘jeu de
taquin’ (or ‘teasing game’). An anti-diagonal strip is the skew shape consisting of
the cells (n+1, 1); (n, 2); · · · ; (1, n+1). If π = x1x2 · · ·xn then the corresponding
anti-diagonal strip tableau has xj in column j. For example, π = 1 4 3 2 corresponds
to the tableau

• • • 2
• • 3
• 4
1

.

Now given an anti-diagonal strip tableaux, we can play jeu de taquin. Start by
choosing any inner corner (i, j) and applying ∆i,j. Now choose any inner corner
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(i′, j′) of the new skew shape and apply ∆i′,j′ , etc., until we get a left-justified
(non-skew) SYT. One possible game that could be played on the tableau above is

• • • 2
• • 3
• 4
1

∆3,1→

• • • 2
• • 3
1 4

∆1,3→

• • 2
• • 3
1 4

∆2,2→

• • 2
• 3
1 4

∆2,1→

• • 2
1 3
4

∆1,2→

• 2
1 3
4

∆1,1→

1 2
3
4

.

If applying jeu de taquin to the anti-diagonal strip of π yields a SYT P we
write J(π) = P . It is not clear that the operation J is well-defined. However,

Theorem 4.1.6 ([Scü 76]) The tableau J(π) is independent of the choice of in-
ner corners made while playing the game. Furthermore, if P is the P -tableau of π
then J(π) = P .

Proof sketch. This proof is due to Thomas [Tho 77] .Showing that J(π) does
not depend on the order in which the inner corners are filled is a delicate case-by-
case argument. Once this is established, a beautiful connection between the jeu
de taquin and the Robinson-Schensted map appears. Let’s choose to fill all the
corners in a given row from right to left, starting with the lowest row and working
up. After k−1 rows have been filled, the portion of the array in these rows will be
the partial tableau Pk of the sequence (2). From this, it is easy to see that filling
the kth row from the bottom is equivalent to the row insertion of xk+1 into Pk.
Hence the lower portion of the array must now contain Pk+1 and induction yields
the fact that J(π) = P . 2

4.1.3 Increasing and decreasing subsequences

One of Schensted’s original motivations for constructing his map was to in-
vestigate lengths of increasing and decreasing subsequences of a permutation π =
x1x2 · · ·xn. An increasing subsequence of π is a subsequence xi1xi2 · · ·xik such
that xi1 < xi2 < · · · < xik . Decreasing subsequences are similarly defined. For
example, 2 3 6 and 4 3 1 are respectively increasing and decreasing subsequences
of the permutaion listed as equation (3).

Theorem 4.1.7 ([Sch 61]) The length of a longest increasing subsequence of π
is the length of the first row of it’s P -tableau. The length of a longest decreasing
subsequence of π is the length of the first column.

Proof sketch. For increasing subsequences, one can inductively prove a stronger
result, viz., if k enters Pk−1 in column j then the length of the longest increasing
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subsequence ending in xk must be j. The statement for decreasing subsequences
now follows from Corollary 4.1.3. 2

The reader should note that while the length of P ’s first row is the length of
a longest increasing subsequence of π, the elements themselves do not form an
increasing subsequence. This can be verified using our running example. It is
possible, with a little more care, to recover an increasing subsequence of maximum
length from the Robinson-Schensted algorithm.

Greene [Gre 74] has generalized this theorem to other types of subsequences.
A subsequence of π is called k-increasing (respectively k-decreasing) if it is the
union of k increasing (respectively decreasing) subsequences. Thus a 1-increasing
subsequence is merely an increasing one. The subsequence 2 4 3 6 5 = 2 3 6 ∪ 4 5
of the permutation in (3) is 2-increasing but not 1-increasing, while π itself is 3-
increasing.

Theorem 4.1.8 ([Gre 74]) The length of a longest k-increasing (respectively
k-decreasing) subsequence of π is the sum of the lengths of the first k rows
(respectively columns) of it’s P -tableau.

Proof sketch. Given a tableau P , we define the row word of P to be the permu-
tation obtained by reading of the rows of P from left to right, starting with the
last row and moving up. Our running example has row word 4 2 6 1 3 5 . It is
easy to see that if P has row word π then

1. the P -tableau of π is P itself, and

2. the first k rows of P form a k-increasing subsequence of π of maximum length.

Hence the theorem is true for permutations that are row words. To show that
it holds in general, Greene proves that any permutation with P -tableau P can
be transformed into P ’s row word by a sequence of adjacent transpositions (the
so-called Knuth transpositions [Knu 70]) which leave both the P -tableau and the
maximum length of a k-increasing subsequence invariant. 2

4.2 Shifted tableaux

Suppose λ∗ is a strict partition of n having length l. The main diagonal of
the shape of λ∗ consists of the cells (i, i) where 1 ≤ i ≤ l. All other cells are
off-diagonal, so the number of off-diagonal cells is n− l. This fact will be useful in
the combinatorial proof of Corollary 3.2.2 which we restate here.
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Theorem 4.2.1
n! =

∑
λ∗|=n

2n−l(gλ)2.

Combinatorial proof. It suffices to find a bijection

π ←→ (P ∗, Q∗) (4)

between permutations π ∈ Sn and pairs of SST P ∗, Q∗ of the same shape λ∗ |= n
where Q∗ has a subset of it’s off-diagonal elements distinguished in some manner.
We will distinguish an element k by writing k′. Sagan [Sag 79] was the first to find
such a map, but his correspondence did not have many of the properties of the
original Robinson-Schensted algorithm. Later Sagan [Sag 87] and Worley [Wor 84]
independently found a better bijection that does enjoy most of these properties.
It is this version that we present.

To construct the map from permutations to tableau pairs, we create a sequence
of shifted partial tableau pairs analogous to the sequence (2). Thus we need only
discuss the analogs of insertion and placement for shifted tableaux.

To insert xk into a partial tableau P ∗k−1, we start row inserting xk as usual. If a
diagonal element is never displaced, then insertion stops with an element coming
to rest at the end of some row. This is called a Schensted insertion. If, on the
other hand, some p∗i,i is bumped, then insert it in column i+ 1 . Continue column
inserting until an element comes to rest at the end of some column. This type of
insertion is called non-Schensted. In either case, let (i, j) be the cell filled by the
last bump.

Q∗k is obtained by placing an element in cell (i, j) of Q∗k−1. This element will be
either a k if the insertion was Schensted, or a k′ if the insertion was non-Schensted.
Since a non-Schensted insertion can never terminate on the main diagonal, all
primed elements will be off-diagonal.

It is an easy matter to construct the inverse map, since the distinguished ele-
ments in Q∗ indicate whether to start the deletion process by rows or columns.
The details are left to the reader. 2

If we compute the shifted tableaux associated with the permutation π =
2 1 6 5 4 3 , we get the sequence

P ∗k : φ , 2 , 1 2 , 1 2 6 , 1 2 5 , 1 2 4 , 1 2 3 6 = P ∗

6 5 6 4 5

Q∗k : φ , 1 , 1 2′ , 1 2′ 3 , 1 2′ 3 , 1 2′ 3 , 1 2′ 3 6′ = Q∗.
4 4 5′ 4 5′
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We should mention that MacLarnan [MaL 86] has found a way to construct
other bijections between permutations and tableaux pairs using recursions satis-
fied by fλ gλ, and f̃λk . All of these maps have the property that inverting the
permutation interchanges the tableaux, which is not true for the algorithm above.
However, Haiman [Hai pr] has developed a procedure called mixed insertion which
does interchange the outputs of the Sagan-Worely algorithm when applied to π−1.

5 Tableaux with repetitions

Many of the results of the first four sections can be generalized to tableaux with
repeated entries. First we must define such arrays precisely.

5.1 Generalized Young tableaux

A generalized Young tableau (GYT), T , of shape λ is a filling of the shape
with positive integers such that the rows weakly increase and the columns strictly
increase. These arrays are also called semi-standard tableaux or column strict
reverse plane partitions (the term ‘reverse’ is an historical accident coming from
the fact that partitions were usually listed with parts in decreasing order). One
possible GYT of shape (4, 4, 1) is

1 1 2 2
2 3 4 4
4

Note that if µ = (µ1, µ2, · · · , µl) is a partition of n then we can also write
µ = (1m1 , 2m2 , · · · , nmn) where mk is the number of parts of µ equal to k. The
same notation applies if the parts of µ are arranged in a GYT, T . In this case, µ is
called the content of T. For example, the tableau above has content (12, 23, 31, 43).
Using the set of variables x = {x1, x2, · · · , xn} we can associate with T a monomial
m(T ) = xm1

1 xm2
2 · · ·xmnn . The monomial of the tableau above is m(T ) = x2

1x
3
2x

1
3x

3
4.

Finally, if λ is a partition of length at most n, we define the corresponding
Schur function to be

sλ(x) =
∑

T∈Tλ(n)

m(T )

where Tλ(n) is the set of all GYT of shape λ and entries of size at most n. If we
let λ = (2, 1) and n = 3, then the tableaux in T(2,1)(3) are

1 1 , 1 2 , 1 1 , 1 3 , 2 2 , 2 3 , 1 2 , 1 3
2 2 3 3 3 3 3 2

24



and so

s(2,1)(x1, x2, x3) = x1
2x2 + x1x2

2 + x1
2x3 + x1x3

2 + x2
2x3 + x2x3

2 + 2x1x2x3 .

Clearly if λ is a partition of n, then the coefficient of the monomial x1x2 · · ·xn
in sλ(x1, x2, · · · , xn) is just fλ. It is also true (although it is not obvious from our
definition) that sλ(x) is a symmetric function, i.e., permuting the variables in x
does not change the polynomial sλ. We will have more to say about symmetric
functions shortly.

5.2 Generalized shifted tableaux

Let λ∗ be a strict partition. A generalized shifted tableau (GST), T ∗ , of shape
λ∗ is obtained by filling the shifted shape with elements from the totally ordered
alphabet A′ = {1′ < 1 < 2′ < 2 < 3′ < 3 < · · ·} so that

1. T ∗ is weakly increasing along rows and columns and strictly increasing along
diagonals, and

2. for every integer k, there is at most one k′ in each row and at most one k in
each column of T ∗ .

An example of such a tableau is

T ∗ =

1′ 1 1 2′ 3′ 3 3 4′

2 2 2 3′ 4′ 4 4
3′ 3 3

4 4

.

Note that conditions 1 and 2 imply that, for fixed k, the cells occupied by all
the elements of the form k or k′ form a union of skew hooks. A skew hook is a skew
shape that is connected (i.e., one can travel from one cell to any other by passing
through cells adjacent by an edge) and contains at most one cell on every diagonal.
The elements 4 and 4′ in T ∗ above lie in the union of two skew hooks while all
other fixed integers and their primes lie in only one. Furthermore, condition 2
determines the character (primed or not) of each element in a skew hook, except
at the lower left-hand end. This observation will be important when we discuss
the analog of Knuth’s algorithm for generalized shifted tableaux.

If T ∗ is a GST with t∗i,j ≤ n for all (i, j) ∈ λ∗ then it’s associated monomial is
m(T ∗) = xm1

1 xm2
2 · · ·xmnn where mk is the number of entries of T ∗ equal to k or k′.
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Our example tableau has monomial m(T ∗) = x1
3x2

4x3
7x4

6. Associated with each
strict partition λ∗ , l(λ∗) ≤ n, is a Schur Q-function defined by

Qλ(x) =
∑

T ∗∈T ∗λ (n)

m(T ∗),

T ∗λ (n) being the set of all GST with shape λ∗ and entries of size at most n. Like
sλ(x), Qλ(x) is a symmetric function. However, because of the presence of primed
elements, the coefficient of x1x2 · · ·xn in Qλ(x) for λ∗ |= n turns out to be 2ngλ.

5.3 Symplectic tableaux

Consider the alphabet Ā = {1 < 1̄ < 2 < 2̄ < 3 < 3̄ < · · ·}. A symplectic
tableau (SPT), T̃ , of shape λ ` n is a GYT with entries from Ā satisfying the
extra constraint

for all i ≤ l(λ), the elements in row i are all of size at least i. (5)

Equation (5) is called the symplectic condition. An example of such an array is

T̃ =
1 1̄ 2 2 2 3̄
2 2 2̄ 2̄ 2̄
3̄ 3̄

.

For SPT we use the set of variables x±1 = {x1, x1
−1, x2, x2

−1, · · · , xn, xn−1}.
The monomial of T̃ is given by

m(T̃ ) = x1
m1x1

−m̄1x2
m2x2

−m̄2 · · ·xmnn xn
−m̄n

where mk (respectively m̄k) is the number of k’s (respectively k̄’s) in T̃ . The SPT
above has m(T̃ ) = x1

1x1
−1x2

5x2
−3x3

−3. The symplectic Schur function associated
with a partition λ of length at most n is

spλ(x
±1) =

∑
T̃∈T̃λ(n)

m(T̃ )

where the reader will already have guessed that T̃λ(n) is the set of all SPT of shape
λ with entries of size at most n. The symplectic Schur function is symmetric in
the variables x±1.

6 Enumeration of generalized tableaux

We will now present analogs of the hook and determinantal formulae for gen-
eralized tableaux.
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6.1 The ordinary case

Let T be a GYT of shape λ , then we say T partitions m if
∑

(i,j)∈λ ti,j = m.
Letting pλ(m) be the number of such tableaux, we have the following generating
function analog of the hook formula.

Theorem 6.1.1 ∑
m≥0

pλ(m)xm = xN(λ)
∏

(i,j)∈λ

1

1− xhi,j

where N(λ) =
∑
i≥1 iλi.

Proof. Stanley [Sta 72] was the first to prove this using his theory of poset parti-
tions. We will present a beautiful bijective proof of Hillman and Grassl [H-G 76].

A reverse plane partition is like a GYT except that the columns need only
weakly increase and 0 is allowed as an array entry. Let rλ(m) be the number of
reverse plane partitions of m. There is a simple bijection between GYT and reverse
plane partitions of the same shape λ . Merely take the GYT and subtract 1 from
every element of the first row, 2 from every element of the second, etc. Since this
takes away a total of N(λ) from each GYT, it suffices to prove that

∑
m≥0

rλ(m)xm =
∏

(i,j)∈λ

1

1− xhi,j
. (6)

The right hand side of this equation counts (linear) partitions ν all of whose
parts come from the multiset (i.e., a set with repeated elements) {hi,j|(i, j) ∈ λ}.
Thus we need a bijection

T ←→ ν

between GYT’s T and partitions ν = (ν1, · · · , νl) whose parts are all of the form
hi,j such that

∑
(i,j)∈λ ti,j =

∑
k≥1 νk .

T → ν . Given T , we will produce a sequence of reverse plane partitions

T = T0, T1, T2, · · · , Tf = tableau of 0’s

where Tk will be obtained from Tk−1 by subtracting one from all the elements of a
skew hook H of Tk such that |H| = ha,c for some (a, c) ∈ λ. The cells of the skew
hook are defined recursively as follows.

Let (a, b) be the right-most highest cell of T containing a non-zero element.
Then

(a, b) ∈ H and if (i, j) ∈ H then

{
(i, j − 1) ∈ H if ti,j−1 = ti,j
(i+ 1, j) ∈ H otherwise
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i.e., move down unless forced to move left so as not to violate the weakly increasing
condition along the rows (once the ones are subtracted). Continue this process until
the induction rule fails. At this point we must have stopped at the end of some
column, say column c. It is easy to see that after subtracting one from the elements
in H, the array remains a reverse plane partition and the amount subtracted is
ha,c.

As an example, let

T =
1 2 2 2
3 3 3
3

.

Then the skew hook H consists of the diamonds in the shape

2 3 3 3

3 3 2

3

.

After subtraction, we have

T1 =
1 1 1 1
2 2 3
2

.

To obtain the rest of the Tk, we iterate this process. The complete list for our
example array, together with the corresponding hi,j, is

Tk : 1 2 2 2 , 1 1 1 1 , 0 0 0 0 , 0 0 0 0 , 0 0 0 0 , 0 0 0 0 .
3 3 3 2 2 3 1 2 3 1 2 2 1 1 1 0 0 0
3 2 1 1 1 0

hi,j : h1,1 h1,1 h2,3 h2,2 h2,1 .

Hence ν = (h1,1, h1,1, h2,3, h2,2, h2,1).
ν → T . Now given a partition of hooklengths ν we must rebuild T . First,

however, we must know in what order the hooklengths were removed. It is easy
to see that if hi,j, hi′,j′ ∈ ν then hi,j was removed before hi′,j′ if an only if i < i′,
or i = i′ and j ≥ j′. Once this is established reversing the subtraction process is
straight-forward. For details the reader can consult [H-G 76] . 2

We can use Theorem 6.1.1 to derive the hook formula. It follows from general
facts about poset partitions that if λ is a partition of n then

∑
m≥0

rλ(m)xm =
p(x)∏n

k=1(1− xk)
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where p(x) is a polynomial in x such that p(1) = fλ. Combining this with equa-
tion (6) we obtain

p(x) =

∏n
k=1(1− xk)∏

(i,j)∈λ(1− xhi,j)
.

Now taking the limit as x approaches 1 yields fλ = n!/
∏

(i,j)∈λ hi,j.
We saw in Section 4.1.2 that the Robinson-Schensted map and the jeu de taquin

are equivalent (Theorems 4.1.5 and 4.1.6). Kadell [Kad pr] has shown that the
Hillman-Grassl algorithm is just another form of the jeu de taquin. Hence all
three constructs are really the same. (Gansner [Gan 78] also noted this for the
special case of rectangular arrays in his thesis.)

Before discussing the analog of the determinantal formula, we must talk briefly
about the theory of symmetric functions. A symmetric function in the variables
x = (x1, x2, · · · , xn) is a polynomial f(x) with coefficients in C which is invariant
under permutation of variables, i.e., for all π ∈ Sn we must have f(xπ(1), xπ(2), · · · , xπ(n)) =
f(x1, x2, · · · , xn). The set of all symmetric functions in n variables forms an algebra
denoted Λn.

There are several well-known bases for Λn. The obvious one consists of the
polynomials obtained by symmetrizing a given monomial. Specifically the mono-
mial symmetric function corresponding to a partition λ = (λ1, λ2, · · · , λn) (where
we permit λ to have parts equal to 0) is the polynomial

mλ(x) =
∑
π∈Sn

xλ1

π(1)x
λ2

π(2) · · ·x
λn
π(n).

For example

m(2,1)(x1, x2, x3) = x1
2x2 + x1x2

2 + x1
2x3 + x1x3

2 + x2
2x3 + x2x3

2.

The three other important families of symmetric functions are as follows.

1. The kth elementary symmetric function defined by

ek(x) = m(1k)(x) =
∑

i1<···<ik
xi1 · · ·xik .

2. The kth power sum symmetric function defined by

pk(x) = m(k)(x) =
∑
i≥1

xki .

3. The kth complete homogeneous symmetric function defined by

hk(x) =
∑
λ`k

mλ(x) =
∑

i1≤···≤ik
xi1 · · ·xik .
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By way of illustration, when k = 2 and n = 3:

e2(x1, x2, x3) = x1x2 + x1x3 + x2x3,

p2(x1, x2, x3) = x1
2 + x2

2 + x3
2,

h2(x1, x2, x3) = x1
2 + x2

2 + x3
2 + x1x2 + x1x3 + x2x3.

We can extend these definitions to partitions λ by letting

eλ(x) = eλ1(x)eλ2(x) · · · eλn(x),

pλ(x) = pλ1(x)pλ2(x) · · · pλn(x), and

hλ(x) = hλ1(x)hλ2(x) · · ·hλn(x).

In the next result, the length of a partition will be the number of non-zero parts.

Theorem 6.1.2 The following sets are all bases for Λn

1. {mλ | l(λ) ≤ n} ,

2. {eλ | l(λ) ≤ n} ,

3. {pλ | l(λ) ≤ n} , and

4. {hλ | l(λ) ≤ n}. 2

The proof of Theorem 6.1.2 can be found in any book on symmetric functions,
e.g., [Mad 79]

The Jacobi-Trudi identity is the Schur function analog of the determinantal
formula.

Theorem 6.1.3 If λ = (λ1, λ2, · · · , λn) then

sλ(x) = det[hλi−i+j(x)]

where the determinant is n × n. 2

Both the proofs that we gave of the determinantal formula can be generalized
to prove this Theorem. In particular, weighting the lattice paths of Gessel and
Viennot appropriately results in a combinatorial proof.

The Jacobi-Trudi formula also has a dual version using elementary symmetric
functions.

Theorem 6.1.4 If λ = (λ1, λ2, · · · , λn) then

sλt(x) = det[eλi−i+j(x)]n×n

where λt is the transpose of the shape λ (also called the conjugate) 2
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6.2 The shifted case

A shifted reverse plane partition is defined in exactly the same way as an ordi-
nary one, only using a shifted shape. Let qλ(m) be the number of shifted reverse
plane partitions of m having shape λ∗. Then we have the following analog of
Theorem 6.1.1

Theorem 6.2.1 ∑
m≥0

qλ(m)xm =
∏

(i,j)∈λ∗

1

1− xh∗i,j
. 2

Gansner [Gan 78] was the first to prove Theorem 6.2.1. He used generating
function manipulations to obtain the shifted result from facts about symmetric
(left-justified) reverse plane partitions. Later, Sagan [Sag 82] gave a bijective proof
based on the Hillman-Grassl algorithm. He also showed that similar techniques
yield many other product generating function identities.

6.3 The symplectic case

A symplectic analog of the Jacobi-Trudi identity can be derived from the Weyl
character formula, a deep result in the representation theory of Lie groups. In

what follows, h̃k(x
±1)

def
= hk(x1, x1

−1, x2, x2
−1, · · · , xn, xn−1).

Theorem 6.3.1 If λ = (λ1, λ2, · · · , λn) then

spλ(x
±1) =

1

2
det[h̃λi−i+j(x

±1) + h̃λi−i−j+2(x±1)]. 2

7 Characters of representations

7.1 Ordinary characters

Let V be an n-dimensional G-module. By picking a basis for V we can view the
corresponding representation ρ as a homomorphism from G to GLn, the group of
all n×n matrices over C. This viewpoint will be useful in our discussion of group
characters.

If ρ : G → GLn is a representation then its character is the map χ : G → C
defined by χ(g) = trρ(g) for all g ∈ G. If V is a G-module for ρ we say that V
affords χ. Since the trace function is invariant under change of basis, χ(g) is well-
defined. Furthermore, if g1 and g2 are conjugate in G, then g1 = hg2h

−1 for some
h ∈ G and so ρ(g1) = ρ(h)ρ(g2)ρ(h)−1. Thus χ(g1) = χ(g2) since similar matrices
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have the same trace. This means that χ is a class function, i.e., a function constant
on conjugacy classes of G.

Let us look at a some examples. If ρ : Sn → GLn is the defining representation,
then ρ(π) is the permutation matrix of π ∈ Sn. Thus χ(π) is just the number of
fixed-points of π. Now let G = {g1, g2, · · · , gn} be any group and let ρ be the
regular representation which has the group algebra C(G) as module. Thus for any
g ∈ G, χ(g) is the number of fixed-points of g acting on the basis ~g1, ~g2, · · · , ~gn. It
follows that

χ(g) =

{
n if g = e
0 if g 6= e

where e is the identity element of G. Finally note that for any G-module V , ρ(e)
is the identity matrix so χ(e) = dimV .

Recall that the irreducible representations of Sn are given by the Specht mod-
ules Sλ for λ ` n. If χλ is the corresponding character, then we know that
χλ(e) = fλ. To describe the rest of the character values, we will use the nota-
tion χλµ for the value of χλ on the class of permutations of cycle-type µ ` n.

Theorem 7.1.1 If λ ` n then

sλ(x) =
1

n!

∑
µ`n

cµ χ
λ
µ pλ(x)

where cµ is the number of elements of Sn in the class µ. 2

Hence the Schur function sλ(x) is just the cycle index generating function (in the
sense of Pólya theory) for the character of the corresponding Specht module.

Now let us consider representations of matrix groups. If G is a group of
matrices, then ρ : G → GLn is called a polynomial representation if, for ev-
ery X ∈ G, the entries of the matrix ρ(X) are polynomials in the entries of X.
As examples, the trivial representation is clearly polynomial. The identity map
id : GLn → GLn is a polynomial representation, called the defining representation.
Also the determinant det : GLn → GL1 is a representation which is polynomial. It
follows from the work of Schur [Scu 01] that polynomial representations are very
nice.

Theorem 7.1.2 Polynomial representations of GLn are completely reducible. 2

Lest the reader get the idea that every representation is completely reducible,
consider the representation of GLn defined by

ρ(X) =

[
1 log | detX|
0 1

]
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for all X ∈ GLn. The x-axis is an invariant subspace, so if ρ were completely
reducible it would have two decompose as the direct sum of two invariant one-
dimensional subspaces. But this would mean that there would exist a fixed matrix
Y such that

Y ρ(X)Y −1 =

[
1 0
0 1

]
for every X ∈ GLn (since both eigenvalues of ρ(X) equal 1) which is absurd.

Now let ρ : GLn → GL(V ) be a polynomial representation with character
χ. Let X ∈ GLn be diagonalizable with eigenvalues x = {x1, x2, · · · , xn} and let
corresponding diagonal matrix be diag(x1, x2, · · · , xn). Since χ is a class function,
χ(X) = χ(diag(x1, x2, · · · , xn)) which is a polynomial in x1, x2, · · · , xn. Since the
diagonalizable matrices are dense in GLn and ρ is continuous (being polynomial)
it follows that χ(X) is a polynomial in the eigenvalues of X for any X ∈ GLn.
Furthermore this polynomial must be a symmetric function of x1, x2, · · · , xn (since
permuting the elements in a diagonal matrix leaves one in the same conjugacy
class). As an example, note that if ρ is the defining representation then its character
is χ(X) = x1 + x2 + · · ·+ xn.

It is natural to ask which symmetric functions give the characters of the irre-
ducible polynomial GLn-modules. Again, the Schur functions play a role.

Theorem 7.1.3 ([Scu 01]) The irreducible polynomial representations of GLn
are indexed by partitions λ of length at most n. If λ is such a partition with
corresponding module V λ then the character afforded by V λ is

φλ(X) = sλ(x)

where x = {x1, x2, · · · , xn} is the set of eigenvalues of X. 2

If V is any GLn-module, then so is the kth tensor power V ⊗k since we have the
natural action

X(~v1 ⊗ ~v2 ⊗ · · · ⊗ ~vk) def
= X~v1 ⊗X~v2 ⊗ · · · ⊗X~vk.

If V affords the character χ and we denote the character of V ⊗k by χ⊗k, then it
is easy to see that χ⊗k(X) = (χ(X))k for all X ∈ GLn. In particular, if V is
the module for the defining representation then χ⊗k(X) = (x1 + x2 + · · · + xn)k

where the xi are the eigenvalues of X. Clearly if V corresponds to a polynomial
representation then so does V ⊗k.

Suppose that V is a module for the defining representation of GLn. Decom-
posing V ⊗k into irreducibles produces the following beautiful theorem.
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Theorem 7.1.4 ([Scu 01]) If V is the defining module for GLn then

V ⊗k ∼=
⊕
λ`k

l(λ)≤n

mλV
λ

where mλ = fλ. 2

Taking characters on both sides of Theorem 7.1.4, we immediately obtain

Corollary 7.1.5

(x1 + x2 + · · ·+ xn)k =
∑
λ`k

l(λ)≤n

fλsλ(x).2

7.2 Projective characters

The Schur Q-functions give information about the characters of projective rep-
resentations of Sn. Recall that given a strict partition λ∗ |= n of length l, there
is a single irreducible projective Sn-module Sλ0 when n − l is even and two, Sλ1
and Sλ−1, when n− l is odd. Let ζλi for i = 0,±1 be the corresponding characters.
It turns out that these characters are only non-zero on two families of partitions
µ = (µ1, µ2, · · · , µm): those where the µi are all odd, and those where µ is a strict
partition with an odd number of even parts.

The Schur Q-functions only give information about the values of ζλi on parti-
tions from the first family, but there is an explicit formula, rather than a generating
function, for their values on the second (see [Mor 77] for details). If µ has only
odd parts, the values of all three characters are the same and we will denote this
common value by ζλµ .

Theorem 7.2.1 ([Scu 11]) If λ∗ |= n then

Qλ(x) =
1

n!

∑
µ`n

2d
l(λ)+l(µ)

2
e cµ ζ

λ
µ pµ(x)

where the sum is over all partitions µ with only odd parts, and d·e is the round-up
or ceiling function. 2

Corollary 7.1.5 also has a projective analog.

Theorem 7.2.2

(x1 + x2 + · · ·xn)k =
∑
λ∗|=k
l(λ∗)≤n

2−l(λ
∗) gλ Qλ(x). 2
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7.3 Symplectic characters

Let V be a 2n-dimensional vector space over C equipped with a non-degenerate
skew-symmetric bilinear form 〈·, ·〉. The symplectic group, Sp2n = Sp(V ), is the
subgroup of GL2n that preserves the bilinear form, i.e.,

Sp2n = {X ∈ GL(V ) | 〈X~v,X ~w〉 = 〈~v, ~w〉 for all ~v, ~w ∈ V }.

Polynomial representations and characters are defined as for GLn. Furthermore,
all polynomial representations of Sp2n are completely reducible. Since X ∈ Sp2n

stabilizes a skew-symmetric form, its set of eigenvalues must be of the form x±1 =
{x1, x1

−1, x2, x2
−1, · · · , xn, xn−1}. This motivates the symplectic analog of Theo-

rem 7.1.3.

Theorem 7.3.1 The irreducible polynomial representations of Sp2n are indexed
by partitions λ of length at most n. If λ is such a partition with corresponding
module Ṽ λ then the character afforded by Ṽ λ is

φ̃λ(X) = spλ(x
±1),

where x±1 = {x1, x1
−1, x2, x2

−1, · · · , xn, xn−1} is the set of eigenvalues of X. 2

Now consider Sp(V ) and it’s defining module V . We can take tensor powers
as before and study the decomposition into irreducibles. In what follows, f̃λk (n) is
the number of OYT (φ = λ0, λ1, · · · , λk) such that l(λi) ≤ n for all i = 1, 2, · · · , k.

Theorem 7.3.2 If V is the defining module for Sp2n then

V ⊗k ∼=
⊕
λ`k

l(λ)≤n

mλṼ
λ

where mλ = f̃λk (n). 2

Taking characters on both sides above, we obtain:

Corollary 7.3.3

(x1 + x1
−1 + x2 + x2

−1 + · · ·+ xn + xn
−1)k =

∑
λ`k

l(λ)≤n

f̃λk (n)spλ(x
±1). 2

Our discussion of symplectic representations has been rather cursory. For more
details, see the paper of Sundaram, Tableaux in representation theory of the clas-
sical Lie groups, elsewhere in this volume.
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8 The Knuth correspondence

We will now generalize the Robinson-Schensted map to give combinatorial
proofs of Corollary 7.1.5, Theorem 7.2.2, and Corollary 7.3.3. These proofs are
due to Knuth [Knu 70], Sagan-Worley [Sag 87, Wor 84], and Berele [Ber 86] re-
spectively.

8.1 Left-justified tableaux

The Robinson-Schensted correspondence is a map between permutations and
SYT. To obtain the analog for GYT (which have repeated entries), we will have to
introduce permutations with repetitions. A generalized permutation is a two line
array

π =
k1 k2 · · · km
l1 l2 · · · lm

which is in lexicographic order where the top line takes precedence. For example,

π =
1 1 1 2 2 3
2 3 3 1 2 1

.

We say that π is a generalized permutation of n if every element in π is less
than or equal to n. We let GPn stand for the set of all generalized permutations
of n. Associated with each π ∈ GPn is a pair of contents (1b1 , 2b2 , · · · , nbn) and
(1t1 , 2t2 , · · · , ntn) where bi (respectively ti) is the number of occurences of i in the
bottom (respectively top) line of π. The example above has contents (12, 22, 32)
and (13, 22, 31). Introducing a new set of variables y = {y1, y2, · · · , yn} we can
define the monomial of π to be

m(π) = x1
b1x2

b2 · · ·xnbny1
t1y2

t2 · · · yntn .

Our example has monomial m(π) = x1
2x2

2x3
2y1

3y2
2y3

1.
We claim that the generating function for generalized permutations of n is

∑
π∈GPn

m(π) =
n∏

i,j=1

1

1− xiyj
.

To see this, note that

1

1− xiyj
= 1 + xiyj + xi

2yj
2 + · · ·+ xi

kyj
k + · · · .

Thus the term xi
kyj

k corresponds to having the column
(
i
j

)
repeated k times in π.
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We should note that there is a bijection between generalized permutations of n
and n× n matrices with non-negative integral entries. This is because having

(
i
j

)
repeated k times in π is equivalent to having the (i, j) entry of the matrix equal to
k. Knuth’s original proof of Theorem 8.1.1 below was stated in terms of matrices
and generalized Young tableaux.

In Schensted’s paper [Sch 61], he gave what amounts to a combinatorial proof
of Corollary 7.1.5 (although Schur functions were never mentioned explicitly). If
remained for Knuth [Knu 70] to give a combinatorial proof of Cauchy’s identity,
which is a generalization of this corollary, and to make the connection with sλ(x).

Theorem 8.1.1
n∏

i,j=1

1

1− xiyj
=

∑
l(λ)≤n

sλ(x)sλ(y) .

Proof. We wish to find a bijection

π ←→ (T, U)

between generalized permutations π ∈ GPn and pairs of GYT T, U of the same
shape such that the content of T (respectively U) equals the content of the lower
(respectively upper) line of π. For the forward direction we form, as before, a
sequence of tableaux pairs

(T0, U0) = (φ, φ); (T1, U1); (T2, U2); · · · ; (Tm, Um) = (T, U)

where the elements of the bottom line of π are inserted into the T ’s and the
elements of the top line are placed in the U ’s. Furtermore the rules of insertion
and placement are exactly the same.

Applying this algorithm to the permuation above, we obtain

φ , 2 , 2 3 , 2 3 3 , 1 3 3 , 1 2 3 , 1 1 3
Ti : 2 2 3 2 2 = T

3

φ , 1 , 1 1 , 1 1 1 , 1 1 1 , 1 1 1 , 1 1 1
Ui : 2 2 2 2 2 = U.

3

It is easy to verify that the insertion rules make sure that T is a GYT and that
U always has weakly increasing rows. To verify the column condition for U , we
must make sure that no two equal elements of the top row of π can end up in the
same column. But if ki = ki+1 = k in the upper row, then by the lexicographic
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condition on π we must have li ≤ li+1. This implies that the insertion path of li+1

will always lie strictly to the right of the path for li which gives the desired result.
Note that we have shown that all elements equal to k are placed in U from left to
right as the algorithm proceeds.

For the inverse map, the only problem is deciding which of the maximum
elements of U corresponds to the last insertion. But from the observation just
made, the right-most of these maxima is the correct choice to start the deletion
process. 2

Many of the properties of the Robinson-Schensted algorithm also hold for
Knuth’s generalization. For details, the reader can consult [Gan 78].

8.2 Shifted tableaux

The analog of Cauchy’s identity that corresponds to Theorem 7.2.2 is:

Theorem 8.2.1

n∏
i,j=1

1 + xiyj
1− xiyj

=
∑

l(λ∗)≤n
2−l(λ

∗)Qλ(x)Qλ(y) .

Proof sketch. The left-hand side of this equation counts generalized permutations
π where, if a column

(
i
j

)
appears in π, then it’s first occurence can be distinguished

by being putting a prime on the j. (Picking the ‘1’ or the ‘xiyi’ in the numerator’s
1 + xiyj corresponds respectively to not distinguishing or distinguishing the j).

To see what the right side counts, remember that primed and unprimed versions
of the same integer lie in skew hooks and that the nature of every element of a
given hook is completely determined except at it’s lower-left end. But l(λ∗) skew
hooks have their lower-left end on the main diagonal, so 2−l(λ

∗)Qλ(y) counts GST
with primes only on off-diagonal elements.

Thus it suffices to find a bijection

π∗ ←→ (T ∗, U∗)

where π∗ is a primed generalized permutation of n and T ∗, U∗ are GST of the
same shape such that U only has off-diagonal primes and the content of the lower
(respectively upper) line of π∗ equals the content of T ∗ (respectively U∗). Primes
are ignored when taking contents. Details of the bijection can be found in [Sag 87]
or [Wor 84]. 2
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8.3 Symplectic tableaux

Berele’s algorithm [Ber 86] was constructed to give a combinatorial proof of
Corollary 7.3.3, which we restate here.

Theorem 8.3.1

(x1 + x1
−1 + x2 + x2

−1 + · · ·+ xn + xn
−1)k =

∑
λ`k

l(λ)≤n

f̃λk (n)spλ(x
±1).

Proof. The left-hand side counts permutations π̃ of length k over the alphabet
{1 < 1̄ < 2 < 2̄ < · · · < n < n̄} (possibly with repetitions in the lower line, but
none in the upper). As expected, π̃ has monomial

m(π̃) = x1
m1x1

−m̄1x2
m2x2

−m̄2 · · ·xmnn xn
−m̄n

with mk (respectively m̄k) being the number of k’s (respectively k̄’s) in π̃. Thus
we want to give a bijection

π̃ ←→ (T̃ , P̃
λ

k)

where π̃ is as described above; T̃ , P̃
λ

k are an SPT and an OYT respectively having
the same shape λ; and m(π̃) = m(T̃ ).

In the forward direction, we create a sequence

(T̃0, λ
0) = (φ, φ); (T̃1, λ

1); (T̃2, λ
2); · · · ; (T̃k, λ

k)

so that at the end we can let T̃ = T̃k and P̃
λ

k = (λ0, λ1, λ2, · · · , λk). We will also
build the pairs so that the shapes of T̃i and λi are the same for all i = 0, 1, 2, · · · , k.

Suppose that (T̃r−1, λ
r−1) has been constructed and that π̃ = l1 l2 · · · lk. We

start row inserting lr into T̃r−1 as usual. If the symplectic condition (equation (5))
is never violated during the insertion, then we let T̃r = Rlr(T̃r−1) and add a box
to λr−1 to mark the location of termination.

Suppose, on the other hand, that a violation of equation (5) is about to occur
at some point of the insertion. It is easy to see that this could only happen if an i
added to row i is trying to bump an ı̄ into row i + 1. In this case the i and the ı̄
anihalate eachother, creating a (black) hole in cell (i, j) for some j. But now the
hole can be filled using an (i, j)-slide, resulting in the new tableau T̃r which has
one less box. In this case we delete the corresponding box of λr−1 to form λr. Note
that this cancelation of an i and an ı̄ corresponds to the cancelation of an xi with
an xi

−1.
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By way of illustration, we consider the insertion of ı̄ into the SPT below:

1 1̄ 2 2̄ ←1̄,
2 2̄ 3
3 3 3̄

1 1̄ 1̄ 2̄ ,
2 2̄ 3 ← 2
3 3 3̄

1 1̄ 1̄ 2̄,
2 • 3
3 3 3̄

1 1̄ 1̄ 2̄,
2 3 3
3 • 3̄

1 1̄ 1̄ 2̄ .
2 3 3
3 3̄

For a look at the whole algorithm, let’s compute the image of π̃ = 22̄1̄211:

T̃r : φ , 2 , 2 2̄ , 1̄ 2̄ , 1̄ 2 , 2 2 , 1 2
2 2 2̄ 2̄

λr : φ , 2 , 2 2 , 2 2 , 2 2 , 2 2 , 2 2 .
2 2 2 2

Thus T̃ = 1 2 and

P̃
λ

k =
φ , 2 , 2 2 , 2 2 , 2 2 , 2 2 , 2 2 .

2 2 2 2

We leave it as an exercise to the reader to construct the inverse map. 2

9 Open questions

Now that the reader has gained some familiarity with tableaux and their relation
with representations and symmetric functions, it seems appropriate to propose
some outstanding problems using these ideas.

1. Shifted analogs. We have seen (Theorem 4.1.4) that reversing a permutation
transposes its P -tableau. What effect does this have on the P ∗ tableau of the
shifted Robinson-Schensted map? More generally, what does it mean to ‘transpose’
a shifted tableau? There are a host of other problems concerning shifted analogs of
known results in the left-justified case. The reader can consult [Sag 87] for further
information.

2. Restricted partitions. There are many beautiful product generating functions
for various families of tableaux. For example, we have the following theorem of
MacMahon:

Theorem 9.0.2 ([MaM 15]) Fix postitive integers k, l and m and let λ be the
rectangular partition (kl) . Then the generating function for reverse plane parti-
tions with at most k rows, at most l columns (i.e., having shape contained in λ),
and with largest part at most m is

∏
(i,j)∈λ

1− xhi,j+m

1− xhi,j
.2
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It would be nice to have a combinatorial proof of this theorem, perhaps using
a Hillman-Grassl type bijection. The paper [Sta 86] of Stanley is a good source for
problems of this type. His survey article [Sta 71] is also very informative.

3. Projective modules. Since the dimension of the Specht module Sλ is just
the number of SYT of shape λ, it is desirable to have a basis constructed out of
these tableaux. This can be done using tabloids which are equivalence classes of
tableaux (two tableaux are equivalent if corresponding rows contain the same set
of elements; here, rows and columns need not increase). The symmetric group
acts on tabloids in a natural way, and from these permutation modules one can
construct the irreducibles. See [Jam 78] for details.

Only recently have the matrices for the irreducible projective representations
been constructed by Nazarov [Naz 88]. Can one find a way to use an Sn action on
shifted tableaux to accomplish the same task?

4. Hall-Littlewood polynomials. Both the normal Schur functions and the Schur
Q-functions are special cases of the Hall-Littlewood polynomials, Qλ(x; t). These
polynomials are symmetric in the variables x with an additional paramenter, t.
When t = 0 or -1 they specialize to sλ(x) or Qλ(x) respectively. More information
about these functions can be found in Macdonald’s book [Mad 79] or in the survey
article of Morris [Mor 77].

The Qλ(x; t) satisfy the identity

n∏
i,j=1

1− txiyj
1− xiyj

=
∑

l(λ∗)≤n

1

bλ(t)
Qλ(x; t)Qλ(y; t)

where bλ(t) is a polynomaial in t. This generalizes both Cauchy’s identity (Theorem
8.1.1) and Theorem 8.2.1. Perhaps it is possible to find a Robinson-Schensted-
Knuth type map to give a combinatorial proof of this result. Thus the left-justified
and shifted correspondences would be combined into one.
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