Available online at www.sciencedirect.com

Journal of
S(:IEN(}E@&DIRECT® Combinatorial
& Theory
ELSEVIER Journal of Combinatorial Theory, Series B 94 (2005) 101116 ——_S°tiesB

www.elsevier.com/locate/jctb

Topological properties of activity orders for matroid
bases

Rieuwert J. BloR, Bruce E. Sagah

aDepartment of Mathematics, Colorado State University, Fort Collins, CO 80523-1874, USA
bDepartment of Mathematics, Michigan State University, East Lansing, Ml 48824-1027, USA

Received 8 May 2003
Available online 18 January 2005

Abstract

Las Vergnas (European J. Combin. 22 (2001) 709) introduced several lattice structures on the
bases of an ordered matrdiiby using their external and internal activities. He also noted (personal
communication) that when computing the Mobius function of these lattices, it was often zero, although
he had no explanation for that fact. The purpose of this paper is to provide a topological reason for
this phenomenon. In particular, we show that the order complex of the external latti¢e is
homotopic to the independence complex of the restrichi6T where M* is the dual ofM andT
is the top element of.(M). We then compute some examples showing that this latter complex is
often contractible which forces all its homology groups, and thus its Mébius function, to vanish. A
theorem of Bjorner (Matroid Applications, Encyclopedia of Mathematics and its Applications, vol.
40, Cambridge University Press, Cambridge, 1992, pp. 226.) also helps us to calculate the homology
of the matroid complex.
© 2004 Elsevier Inc. All rights reserved.
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1. The external and internal orders

In September of 2001, there was a conference on Tutte Polynomials and Related Topics at
the Centre de Recerca Matematica in Barcelona, Spain. At the meeting, Michel Las Vergnas
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gave a talk about three lattice structures which he had imposed on the bases of an ordered
matroid using external and internal activj]. During the question and answer period that
followed, one of us (Sagan), asked if Las Vergnas knew anything about the Mdbius function
of these lattices. Las Vergnas replied that he had computed some examples and noted that
the value was often zero, but did not have an explanation for that fact.

In this paper, we will give a topological reason for Las Vergnas’ observation. Our method
differs from that used by Blass and Sad@las well as by Blag®] for obtaining information
about Mdbius function and homology of lattices. The rest of this section will be devoted
to developing the definition and some basic properties of the external Idtti¢g), of an
ordered matroid/. Any definitions which we assume from matroid theory or topology can
be found in the texts of welsii6] or Wallace[15], respectively. In the next section, we
derive some results about the structure.oM) which will be useful in working with its
order complexA(M). In particular, we give a simpler formula for the join operator than was
given by Las Vergnas. The third section contains our main theorem, showing(#atis
homotopic to the independence comphéxf the restrictionM*|T whereM* is the dual of
M andT is the top element af (M). In Sectiord, we compute some examples showing that
N is often contractible which forces all its homology groups, and thus its Mébius function,
to be zero. A characterization of the homologyMfdue to Bjornei3] is recalled in the
next section and used for the calculation of yet more examples. The final section contains
a couple of open problems.

Let M be a matroid on a finite s& We denote the bases and independent s lof
B = B(M) andZ = Z(M), respectively. We say th¥ is orderedif E is linearly ordered.
From now on all matroids will be ordered.

Given a setF C E we say thak € E is active with respect to K there is a circuit
C(F;e) C F U{e} in whicheis minimal with respect to the ordering & Let

Acty (F) = {e : e is active with respect té'}.

Note that we include the possibility thate F. Note also that we will often write one-
element sets without the set braces and dvioas a subscript if the matroid is clear from
context.

For F C E we define

Exty (F) = Acty (F) — F.

The elements of Exj (F) are callecexternally active with respect ta Fhis coincides with
the usual notion of externally active elements with respect to an eleméht of

Las Vergnas defined the external latticevbin a manner equivalent to the following. For
A, B € BB, define

A<S®Bifandonly if A € B U Exty (B).

It was proven if9] that, when augmented with a minimum elem@nthe resulting order
is in fact a graded lattice with rank function

py(B) = |Exty (B)| + 1. (1)
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Fig. 1. An example graph and its external lattice.

We will denote this lattice by.(M). It is important to remember that, even though our
notation does not show it, this lattice structure depends on the ordering of the base set of
M.
By way of illustration, let us construct an external lattice using the cycle matfoid
M (G) ofagraphG = (V, E). LetG be the graph in Figl with edges ordered as indicated.
ThenL (M (G)) has Hasse diagram as shown. So, for example, to compute the bases below
the baseB = {0, 3, 4} note that Exj; (B) = {1} since the edge 1 is the smallest element
in its fundamental circuit wittB while 2 is not. It follows that any base contained in
B U Exty (B) = {0, 1, 3, 4} will be less than or equal tB. These bases are exactly those
obtained by removing some element of the fundamental circuit of 1 from the union.
Returning to our general exposition, l&t* be the dual matroid d¥1. We turnM* into
an ordered matroid using the order already giveidnas Vergna$9] also defined another
ordering<™ on B(M) by

A<SMB «— (E - B)<SY(E - A). )

We should note that one can also defi@'ﬁ} using the internal activity of basesdf(which
also eliminates the need to passMd), but (2) will be more convenient for our purpose.
When augmented with a maximum elemérthe resulting order is called theeernal order
Directly from the definitions, we see that this structure is just the order-theoretic dual of
L(M*). Since the dual of a lattice has the same homology as the original lattice, we will
restrict ourselves to external orders. For that reason, we will also drop the ext superscript.
It will be useful in the sequel to have the following characterization, due to Las Vergnas
[9, Proposition 3.1bf the external order.
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Proposition 1.1(Las Vergnas LetA B be two bases of an ordered matroid MhenA < B
if and only if B is the lexicographically maximum base of M contained ia B (where
elements of a base are listed in increasing ojder

In the aforementioned paper it was shown that the number of elements at a given rank in
L(M) does not depend on the particular ordeiEibut that the lattice itself does. We wish
to give some measure of hal( M) depends on the order @&h

Proposition 1.2. Let < and <’ be linear orders on EGiven a matroid on Het M and M’
be the corresponding ordered matroi®uppose thafct(M) = Act(M’) and that<d, <’
when restricted to this set are saniden

L(M)=~L(M').

Proof. We prove that the identity map froff\ M) to B(M’) induces a lattice isomorphism
of L(M) with L(M’). So we need to show that fot, B € B(M) = B(M') we have
A C BUExXty (B) ifandonly if A € BUEXt,; (B). Clearly it suffices to have Ext(B) =
Exty (B). We will show Exty (B) C Extyy(B) and then the reverse inclusion follows by
symmetry. Now taker € Exty(B) and letC be the unique cycle iB U a. Soa is the
<-minimum inC and it suffices to show that it is also th&-minimum. Leta’ be this<'-
minimum. Theru, @’ € Act(M) = Act(M’) with a<la’ anda’<'a. Since the two orderings
agree on this set, = «’ and we are done. ]

2. Sublattices and the join operator

Fix a subsetr’ C E and letKk = M|F be the restriction oM to F. Note that it is
an ordered matroid with respect to the ordering induceé oy E. We will say thatK is
spanningf F is a spanning set dfl, that is,F contains a base &fl. We will show that the
lattice for a spanning matroid is closely related to that of the parent matroid. But first we
need a lemma.

Lemma 2.1. Suppose thaF C E andK = M|F. Then for any/ C F we have

() Actx(J) = Acty(J) N F, and as a consequence
(b) Extg(J) = Exty(J)NF.

Proof. (a) The fact that Agt(J) C Acty(J) N F is clear from the definitions. For the
opposite inclusion, supposges Acty,(J) N F. Then there is a circuif C J U e in which
eis minimal. But thenC C F andeis minimal with respect to the ordering inducedfen
so thate € Actg (J).

Part (b) follows immediately from part (a).C]

Corollary 2.2. Suppose thak = M|F is spanning Then the inclusiolB(K) € B(M)
induces an inclusion

L(K) € L(M).
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Proof. Supposet, B € B(K).We prove thatd <y, B ifand only if A < g B. By definition,
A< yB ifand only if A € B U Exty(B). SinceA, B C F this happens if and only if
A C B U (Exty (B) N F). By the previous lemmaB U (Exty,(B) N F) = B U Extkg (B).
So we are done. [

Following Las Vergna$9], for a spanning subset C E we define
MaxBasA = A — Act(A).

Alternatively, one can define this as the lexicographically maximum bagecohtained in
A, using the convention of Propositidnl. We obtain the maximum element bf= L (M)
as

T = MaxBasE

and reserve the notatiohfor this top element. Las Vergnas gave a formula for the join
operatorv for two elements of using the MaxBas operator. Using Coroll&y we give

a slight but useful simplification of his result, at the same time extending it to the join of an
arbitrary number of elements In

Corollary 2.3. The join of element8; € B(M) (i = 1,2, ..., m)in L(M) is given by

m m
\/ B; = MaxBas(U Bi> .

i=1 i=1

Proof. Let K = M|F whereF = [ J/_, B; and letS = MaxBagF). We must prove that
S = \//L, B;. First of all, for alli we haveB; < x S because&Sis the maximal element of
L(K). By Corollary2.2this meansB; < S for all i.

Now suppose’ € B(M) satisfiesB; < T for all i. ThenB; € T U Exty(T) so that
F =J/L1Bi €T UExty(T).ButS C F € T UExty(T) and so by we hav < T
ThusS =\//L, B;. O

We denote the set of atoms b{M) by A(M). By (1), these are precisely the bades
for M with Ext(B) = @.

Corollary 2.4. Let A" € A(M). Then\/z. 4 B = T if and only if every element of T is
contained in some elemefte A’.

Proof. This follows from Corollary2.3 and the following observation which is needed
for the “if” direction. Supposel’ C F for someF C E. Then sincel N Act(F) C

T NAct(E) = ¢ we haveT C MaxBagF). Also, if F is spanning, then MaxBég) is a
base foM. SinceT is also a base for the matraid, we find7 = MaxBagF). [

The inclusion in Corollar®.2does not preserve the rank function in general. But it does
under certain circumstances.
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Lemma 2.5. If K = M|F is spanning and € B(K) € B(M), then the following hold

(a) We havep (B) = p,,(B) if and only if Exty (B) C F.

(b) If F > E — T, then the inclusiorL.(K) C L(M) preserves rank

(c) If f <eforall f € Fande € E — F, then the inclusion.(K) € L(M) preserves
rank.

Proof. (a) We haveyg (B) = | Extx (B)| + 1 andp,,(B) = | Exty(B)| + 1. Now Lemma
2.1completes the proof.

(b) This follows from part (a) since for any € E we have Ext;(A) € Acty (E) =
E—-T.

(c) This also follows from part (a) since the assumption implies that no eleméht-af
can be externally active with respect to any subsét.of ]

Given a subseF C E and an ordering off we can always define an ordering &n
such that the condition in (c) of Lemnfa5 holds. Thus we have proved the following
observation.

Corollary 2.6. Let K be an ordered matroid on a set FM is an unordered matroid on
asetE O F such thatk = M|F and K is spanningthen we can find an ordering on E
inducing a rank-preserving inclusioh(K) € L(M).

In particular ifK is the cycle matroid of a connected graphwvith edge seF, then forM
we can take the cycle matroid of the complete graph on the vertex ket of

3. The homotopy equivalence

In this section, we study the reduced homology of the order complex of the |atiM¢.
We will show that there is a homotopy equivalence between the order comple¢dbf
and the independence complexif restricted tol. This will we used in the next section
to explain Las Vergnas’ observation about the Mébius functioh@f) [10].

Let L be a finite lattice with minimum and maximum elemefitandi, respectively.
Note thatL will be used when discussing an arbitrary lattice, whereas the symiid)
will always be used when we wish to refer to the external lattice of a matroid. We denote by
A(L) theorder complexof L, that is, the abstract simplicial complex on the ket {0, 1}
whose faces are the nonempty chaing in {0, 1} ordered by inclusion. IL. = L(M) for
some matroid, then we will also use the notatioid/) = A(L(M)).

There is another abstract simplicial complex associated with a matroi¢hdéggendence
complexof M, denotedV (M), is the simplicial complex of nonempty independent subsets
of M. Our main theorem relates the two complexes we have definedHsiit) will denote
the reduced-dimensional homology group of a compl&xwith coefficients inZ (see e.g.
[14, Chapter 3]

Theorem 3.1. We have a homotopy equivalence

AM) ~ N(M*|T).
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Sq for all i > — 1, we have an isomorphism in homology
Hi (A(M)) =H; (N (M*|T)).

Note that this result implies that the homotopy type of the order complex depends only
on the maximum basg We will prove Theoren8.1using the next two propositions.

LetL be an arbitrary lattice with atom segt. Let 7 = J (L) be the abstract simplicial
complex of all subsets oft whose join is nofl.. The following is a theorem of Laksg8]
later generalized by Bj6rng2] and Segey13].

Proposition 3.2. For any lattice L
A(L) ~ J(L).

LetF be an abstract simplicial complex on afinitelSeA facet coveringf F is a multiset
of facetsC = {Fy, F1, ..., F,}suchthatevery face ¢f is contained in some;. Thenerve
Nerv(C) of the covering is the simplicial complex on the vertex set {0, 1,2, ..., n}
where a subset < [ is a face if and only if ), , F; is a face ofF. As will be seen, the
nerve of a certain covering @f (L) is isomorphic taV (M*|T).

But first we must show that and Ner(C) are the same up to homotopy. Note that every
nonempty intersection of facets &fis again a face af. Thus the intersectiorfs) ;. , F;
are contractible as subspacesfond hence are acyclic. Thus the hypotheses of the Nerve
Theorem of Borsuk and Folkman are satisfied (see (10.B8)])rand we obtain our second
proposition.

Proposition 3.3. Let F be a simplicial complex on a set F and &be a facet covering
Then

F >~ Nerv(C).

The last link in our chain of homotopy equivalences will be provided'bythe set of
elements of which are independent as singleton set®ih ThenN (M*|T) = N(M*|T").
Note that the elementse E which are not independent i1 * are precisely those which
are contained in every base fidr We can now prove our main result.

Proof of Theorem 3.1 Combining Proposition8.2 and 3.3 for any facet covering (L)
of J(L) we have

A(L) >~ J(L) ~ Nerv(C(L)).

So it suffices to show that we can find a facet coveting C(L(M)) such that Ner(C)
andN (M*|T) are isomorphic as simplicial complexes.

We haveN (M*|T) = N(M*|T’") and suppos&’ = {rg, 11, . .., t,}. For 0<i <n, define
FF={AeA : ACE—{}}. Then it follows from Corollary2.4 that these are the
facets of 7 (L(M)), possibly with repetitions. L&t be the corresponding facet covering of
J(L(M)). We can now define a bijectiah: N(M*|T") = Nerv(C) as follows. IfS € T’
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then let
HS)=J={j:1tjeS)

Clearly ¢ is a bijection between subsets®fand subsets df We claim thatp restricts to
a well-defined isomorphism between the respective complexes, tI@}é@m F; #0if
and only ifSis independent i/ *|T’. This is becaus8is independent id/*|T" if and only
if E — S contains a base fovl which, by Lemma2.5b), is equivalent t&€ — S containing
an atom forL (M). This completes the proof of the isomorphism and of Theddein [

4. Applications

We are now ready to explain the empirical observation of Las Vergnas that the Mobius
functionyu of the external latticd. (M) often satisfieg(L(M)) = 0. It is known that, given
any finite latticel. with minimum elemen6, maximum elemerit, and Mébius function,
one has

u(L) = p (0, 1) = 7(A) = ) (=1) dim H; (A), 3

i=—

whereA is the order complex df andy is the reduced Euler characteristic. This equation
together with Theorer3.1 can be used to show that a number of external activity lattices
have Mébius function zero. We will use the notatilp(M) andu(M) for H; (A(M)) and
w(L(M)), respectively. We will also use ¢k?) for the rank of the matroi®l. This should

not be confused with the rank functigrfor the latticeL (M).

Proposition 4.1. Let M be an ordered matroid with maximum base T and ragkrk (M) > 1.

(a) Suppose thatf|(E — T) is spanningThen
Hi(M)={0O}foralli>—1 and pM)=

(b) Suppose tha#/|(E — S) is spanning for all proper subsefsC T but is not spanning
for S = T.Then

7 fi=r-—2,

{0} elsg and ,u(M):(_l)r72'

Hi(M) = {
Proof. Under the first (respectively, second) hypothesais)}*|T) is homologically an

(r — 1)-ball (respectively(r — 2)-sphere). The conclusions now follow from Theorarh
and equation3). [

As an example, consider the cycle matroid of a gr&where, as usual, the edge set
E = E(G) has been linearly ordered. In this case we will Gda our notation everywhere
we usedM before. In the following result staris the complete bipartite grapi; ,—1.
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Corollary 4.2. Let K, be an ordered complete graph on n vertice® 2, and let T be its
lexicographically maximal spanning tree

(a) If T is not a star then
Hi(K,) ={0}foralli>—1 and wK,) =0.
(b) If Tis a star

Z ifi=n-3

{0} else and w(Ky,) = (=1)"3.

Hi(Ky) = {
Proof. If T is not a star, thelk,, — E(T) is connected and the hypotheses of Proposition

4.1 (a) are satisfied. IT is a star, therK,, — E(S) is connected for alb C T, except for
S = T. Thus the hypotheses of Propositii (b) are fulfilled. O

Note that this corollary lends support to Las Vergnas’ remark cited in the introduction. In
particular, almost all orderings @& (K ) give rise to & which is not a star. To see this, note
that T must always contain the two largest edges in the ordering since otherwise a larger
base could be constructed by exchanging an elemehtwith one of these edges. So if
the two largest edges are not adjacenkinthenT cannot be a star. But the ratio of such
orderings to the total number of orderings, counting edge choices from largest to smallest
in the order, is

QB -2 _ (39

(2)! (G-t
asn = o0.

Also as a result of this corollary, we can see that/) is not, in general, shellable (even
thoughN (M*|T) always is, see Bjorngs, Theorem 7.3.3] If A is any simplicial complex
which is shellable and pure of dimensidrthenA is topologically a wedge af-spheres and
so only has homology in dimensia@h So if a finite latticeL graded of rank is shellable,
then it only has homology in dimensign— 2 (since we remov8 andi). ButinL(M) we
have

=1

p(LM) =p(T) = |EX(T)|+1=|E-T|+1

In particular

P(L(K,)) = (’;) —-D+1= <” ) 1) +1.

But from the previous corollary, i' = K1,-1 thenL(K,) has homology in dimension
n—3< (") —1forn>a.
Here is another family of matroids which have zero Mdbius function.

Corollary 4.3. Let M be an ordered matroid with maximum base T and suppose there is
t € T suchthatk(E — T) =rk((E — T) Ut). Then

Hi(M)=1{0O}foralli>—1 and wM)=0.
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0

Fy

Fig. 2. The fanF, and triangle grapfis.

Proof. Suppose that € T satisfies rtkE — T) = rk((E — T) U t). This means that if a
baseB € B(M) intersectsl minimally, thens ¢ B. That is,t is not contained in any base
of the contraction.T and hence is contained in every bas@6f|T. ThusN (M*|T) is a
cone with vertex. The result follows. [J

For application in our examples, note that for the cycle matroid of a g&apghe hy-
pothesis of Corollary.3just says that the edgee T connects two vertices in the same
component ofG — E(T). We first consider the-fan, F,,, which is obtained from a path
with n vertices by adding an additional vertex adjacent to every vertex of the path. More
explicitly, F,, = (V, E) whereV = {0, 1, ...,n}and

E={0102...,0n} W {1223, ..., (n — Dn},

wherew denotes disjoint union. We always write our edges with the smaller vertex first and
order them lexicographically. Then

E(T)=1{0n,12,23 ..., (n — Dn}.

Fig. 2 contains a drawing aof; with the edges of in gray. It is easy to see thatif> 3 then
the edge = 12 satisfies the component criterion of the first sentence in this paragraph.
Next consider the-triangle graph T, gotten by gluing togetharcopies ofK3 along a

common edge. To set notation, let

E ={eog, e1,...,e2,},

where theith triangle has edgeleo, ¢;, e,+;} and edges are ordered by their subscripts.
Now

T = {en, €nt+ls .- e}

The graphTs is depicted in Fig2. So if n >3 then the edge = ¢,1 will satisfy the
component criterion. By Corollar4.3, we have proved the following.

Proposition 4.4. For the given orderings and > 3 we have

Hi(F,) = Hi(T,) = {0} forall i> —1 and u(F,) = u(T,) = 0.
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5. A theorem of Bjorner

A theorem of Bjornef3, Theorem 7.8.1¢tharacterizes the reduced homology\afM)
for any matroidVl and can be used in conjunction with Theor8rhfor computations. To
state it, we will need the lattice of flats df which will be denoted. (M) to distinguish
it from the external activity lattice. Also, define theduced Mdbius functioaf M to be

- | I(Lr(M))| if Mis loopless,
M) = { 0 else.

Theorem 5.1(Bjorner). If r = rk(M) then

ZEMD i = 1,

Hi(N (M) = { {0} else

Now if F C E, considerM.F, the contraction oM to F. Our interest stems from the
fact that(M*|F)* = M.F.An immediate corollary of the previous theorem and Theorem
3.1is as follows.

Theorem 5.2. If r* = rk(M*|T) then

oo | ZEMD i = -1,
Hi(M) = { {0} else

Corollary 5.3. If r = rk(M), then

(M) = { é—l)”lu(LF(M.T)) i;sztg.T is loopless

Proof. Letr* = rk(M*|T).Viewing u(M) as the reduced Euler characteristia\gi/) and
using Theorens.2we findu(M) = (—1)" ~1i(M.T). Soif M.T has loops thep(M) = 0
by definition of i. Otherwise, sinceM.T = (M*|T)* and|T| = r, the rank ofM.T and
hence ofL p(M.T) isr —r*. As Lp(M.T) is a geometric lattice, the sign pfL p(M.T))
is (—1)"~"" and cancelling appropriate powers-ef gives the desired conclusion]

Let us apply these results to some examples.

5.1. The uniform matroid

Consider theuniform matroidU,, ; on then-setE whose collection of bases is
BUnx) ={1 CE : |I| =k}

The lattice of flate r (U, ) consists of the subsets Bfof cardinality strictly less than
k together withE itself, ordered by inclusion. Thusr (U, ) is obtained from the Boolean
lattice B,, on E by deleting all elements of rarlk> k, except the top element. We will call
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this poset théruncated Boolean algebr@gee[17]). Using the fact that, for any two subsets
A C B C E, the Mdbius function oBB,, satisfies

(A, B) = (=D)IB~A1,

we find that
Lr(U, 3 (" A
WL FUnp)) = g()Q)—()@_J.

Now letM = U, ; for somen > 0, and ordeE linearly. The top elemenmitof L is somek-
subset oE. One verifies that/*| T is the uniform matroid/y =, wherer* = min{k, n —k},
and thatM.T is the uniform matroidJy .

Supposek <n/2. Thenr* = k and only the empty set is independentMh7. Hence
M.T has loopsji(M.T) = 0, and we havél; (A) = {0} for all i, andu(L) = 0.

Suppose instead that> n/2 so that* = n — k. ThenM.T has no loops and combining
our computation ofu(L r (U, x)) with Theorenb.2and Corollarys.3we have the following
result. In it, we assume théj) =0ifi <O.

Proposition 5.4. For any ordering of the uniform matroidf,, , we have
dim Hi(Up ) = (5 ) ifi=n—k—1 and uU,p) = (1" 2, 0.

Note that sincd.(U, k) has rank: — k + 1, the compleXA(U,, ) is pure of dimension
n —k — 1. ApparentlyA(U,, ;) only has homology in the top dimension.

5.2. The wheel grapW,

Consider then-wheel graph W,,, obtained from am-circuit C by adding a vertexg
adjacent to all vertices of the circuit. Let the edge set be ordered linearly andbéethe
top element of.(W,,).

Suppose first that some edge T satisfies Propositiod.3, i.e.,t connects two vertices
in the same component &, — E(T). ThenH; (W,,) = {0} forall i > — 1, andu(W,,) = 0.

If there is no such edge, théi,, — E(T) is partitioned into connected components
Co, C1, ..., Cy as follows:

1. k=1,Co={vg} andC1=C, or
2. Cq is the union of triangles intersecting only ig, the component€’1, C»,..., C; are
paths, possibly of length 0, and every edgd ofieetsCo andC; for somei > 1.

The graphWg, a gray spanning treg and the corresponding components are shown in
Fig. 3.

Let T; be the set of edges froih joining Co to C;. Then by the above we haveé =
L+J{.‘:lTl-. Now M.T is the cycle matroid of the graph with vertex q&ty, C1, ..., Ci},
whereT; represents a set of parallel edges joining the central vélgds C;. ThusM.T is
the matroid of partial transversals Divith respect to the famil)‘(]}}f.‘zl.

We now determind. (M .T). The closed sets dff.T are the unions of the sefs. Thus
Lp(M.T) is the Boolean algebrg; on the sei{Ti}le. Hence we have(Lp(M.T)) =
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Co

Fig. 3. The wheelWg a spanning tree, and components.

(—Dk. ClearlyM*|T = (M.T)* has rank: — k and so, using Theorefm2and its corollary,
we obtain the following result.

Proposition 5.5. Let T be the top element 6{ W,,) for some ordering of the edges &f,.
(i) If there is an edge € T satisfying Propositiod.3then

H;(W,) = {O}foralli>—1 and u(W,)=0.
(i) If there is no such edgéhen

1 ifi=n—k—-1,

_ (_1\yn—k=1
0 else and (W, = (=1) .

dim I:Ii(Wn) = {

Note that sincd.(W,,) has rank: + 1, the complexA(W,,) is pure of dimensiom — 1.
We have just shown that in case (N W,,) has homology in dimension— k — 1 and, since
k cannot be zero, this complex is not shellable.

6. Comments and open problems

There are several comments and questions raised by our work which we address now.
I. We observed that the order complex for the uniform matroid has homology in the
correct dimension for it to be shellable. We will now give an explicit shelling. This gives a
way of rederiving Theorerh.4.
First we recall some basic definitions. Given a finite pdsate letC(P) be the set of
all pairs(a, b) € P2 such thata is covered byb, i.e.,a < b and there is n@ € P with
a < ¢ < b. A saturatedag-a; chainis C = (ag, a1, az, ..., a;) where(a;_1, a;) € C(P)
for 1<i <k. Given atotally ordered s& then a labelling (function): C(P) = S induces
a labelling of each saturated chdifC) = (i1, [, ..., k) wherel; = l(a;—1, a;). Any
properties of the sequen¢el), e.q., strictly increasing, will also be said to applyGo
itself. We say that is an EL{abelling and thatP is EL-shellableif, for any a <6 in P
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we have

1. There is a unique strictly increasing saturaek chainC.
2. ChainC is lexicographically smallest among all saturated chains.

The fundamental theorem about this property is due to Bjdtdjer

Theorem 6.1(Bj6rner). LetP be afinitegraded posetwith @and ail. If P is EL-shellable
thenA(P) is homotopic to a wedge of spheres of dimensiiom A(P)AandAthe number of
spheres is just the number of weakly decreasing saturated chain®firom

Now consider the uniform matroid,  onthe set = {1, 2, ..., n}.If B € B(U, ) then
Act(B) = {1, 2, ..., min(B) — 1} and sdB's rank in the latticeL (U, ) is p(B) = min(B).
It follows that if B coversA € B(U, x) then we must have

B = A — {min(A)} W {b} 4)

for someb > min(A) (whereb = min(A) + 1 iff min(A) + 1 ¢ A). So we can define a
labelling of the covering pairs by

the unique element® — A if A, B € B(Upx),

max(B) if A=0andB € B(U,). ()

I(A, B) = {

Theorem 6.2. The labelling(5) is an EL-labelling of L(U, x) where the labels on any
saturated chain are all distincEurthermore the number of strictly decreasiril chains

is (3 7p)-

Proof. First considerd < B whereA # 0. Note that any saturate®-B chain has distinct
labels. This is because in order for a label to be used twice it would have to be subtracted
from one of the sets of the chain. But eleméan only be subtracted when moving up
from a set at rank and at higher rankisis not permitted as an element. Furthermore, Egs.
(4) and 6) show that a label sequence completely determines a corresponding chain, if
one exists, since the element to be subtracted is predetermined by the rank. In addition, the
restrictionA # 0 and Eq. 4) ensure that any two saturatdeB chains use the same set of
labels. So if a strictly increasing chain exists, then it is unique.

To show existence of a strictly increasing chain, we use the notion fvansionin a
sequencely, Ip, ..., I) which is a pair(/;, /;) such that < j andl; > I;. LetC be a
saturated\—B chain that has the fewest number of inversion§& i increasing then we are
done. Otherwis€ must have a descent, i.e., an inversion of the f@fni; ;1). Suppose that
the portion ofC corresponding to this descentds 1, A;, A; 1. Thenl; > ;11> p(A;41).
DefineA! = A; — {l;} W {l;1+1}. From the inequalities just given it follows thatA!) =
min(A;) = min(A;) = p(A;). So replacing4; by A’ in C gives a chairC’ whose label
sequence i$(C) with ; and/; 1 switched. Thug(C’) has fewer inversions thariC), a
contradiction. It is interesting to note that we have actually proved the stronger statement
thatif A # 0 then the interval from to B has anS, EL-labeling in the sense of McNamara
[11] and McNamara and Thomé§E2].
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Now consider the case where = 0. Much of what we have already proved goes
through in this case. In particular, the labels on any satu@®dhain are distinct and a
given sequence of labels determines a chain uniquely if it exists at all. (The latter is most
easily seen by working down froB) This time we explicitly construct the strictly increasing
saturate@-B chain. Consider the m{i®) largestlabelsinthe s&w{l, 2, ..., min(B)—1}.
Arranging these labels in increasing order shows that the desired chain exists since they are
all sufficiently large to be added at the necessary point in the chain (or subtracted if one
moves down).

To compute the number of decreasidd. chains, note that must be a label on any
saturated)-1 chain since it must be added at some point, and if it is added in the first cover
then it is also the maximum. So for the chain to be decreasing the first label maost be
Similarly, the last label must be an elementiot {n —k +1,n —k+2,...,n}. Sowe
need to picko(i) —1=n—klabelsfromi—{n}| = k—1 possible. As usual, each of these
choices will produce a unique decreasing chain if it exists. But since all of the elements
which could be chosen are at least as big@ds they do indeed correspond to a chain. Thus
there are(*~}) such chains and we are done]

Il. Forman[7] has introduced a discrete analogue of Morse theory as a way of studying
CW complexes by collapsing them onto smaller, more tractable, complexes of critical cells.
These techniques can be used to compute the homology of a complex even when it is not
shellable. We have asked the following question. Are the nonshellable complexes which
we have considered amenable to Forman'’s technique? In work to be published elsewhere,
the first author exhibits the nature of the homotopy equivalén@é) ~ N(M*|T). It is
shown using discrete Morse theory that the homology@¥) can be read off directly
from L(M).

lll. Las Vergnas defined a third ordering on the bases of an ordered matroid. Let the
pseudo-heightf a baseB € B(M) be

hy(B) = | Exty (B)| — | Intp (B)] + rk(M),
where Inti; (B) is the set of internally active elementsi®in M. Then from[9, Proposition
6.3] we obtainiy (A) < hy(B) whenever either <§ B or A <! B. So there is a
well-definedexternal-internal order< ;" on B(M) given by

A& if and only if A<SB or A<!N'B

with corresponding latticé exin(M). We have been unable to find an analogue of Theorem
3.1for this lattice. It would be very interesting to do so.
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