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Abstract

Las Vergnas (European J. Combin. 22 (2001) 709) introduced several lattice structures on the
bases of an ordered matroidM by using their external and internal activities. He also noted (personal
communication) thatwhen computing theMöbius function of these lattices, it was often zero, although
he had no explanation for that fact. The purpose of this paper is to provide a topological reason for
this phenomenon. In particular, we show that the order complex of the external latticeL(M) is
homotopic to the independence complex of the restrictionM∗|T whereM∗ is the dual ofM andT
is the top element ofL(M). We then compute some examples showing that this latter complex is
often contractible which forces all its homology groups, and thus its Möbius function, to vanish. A
theorem of Björner (Matroid Applications, Encyclopedia of Mathematics and its Applications, vol.
40, Cambridge University Press, Cambridge, 1992, pp. 226.) also helps us to calculate the homology
of the matroid complex.
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1. The external and internal orders

In September of 2001, there was a conference onTutte Polynomials andRelatedTopics at
the Centre de RecercaMatemàtica in Barcelona, Spain.At themeeting, Michel LasVergnas
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gave a talk about three lattice structures which he had imposed on the bases of an ordered
matroid using external and internal activity[9]. During the question and answer period that
followed, one of us (Sagan), asked if LasVergnas knew anything about theMöbius function
of these lattices. Las Vergnas replied that he had computed some examples and noted that
the value was often zero, but did not have an explanation for that fact.
In this paper, we will give a topological reason for LasVergnas’observation. Our method

differs from that usedbyBlassandSagan[6] aswell asbyBlass[5] for obtaining information
about Möbius function and homology of lattices. The rest of this section will be devoted
to developing the definition and some basic properties of the external lattice,L(M), of an
ordered matroidM. Any definitions which we assume from matroid theory or topology can
be found in the texts of welsh[16] or Wallace[15], respectively. In the next section, we
derive some results about the structure ofL(M) which will be useful in working with its
order complex�(M). In particular, we give a simpler formula for the join operator than was
given by Las Vergnas. The third section contains our main theorem, showing that�(M) is
homotopic to the independence complexN of the restrictionM∗|T whereM∗ is the dual of
M andT is the top element ofL(M). In Section4, we compute some examples showing that
N is often contractible which forces all its homology groups, and thus its Möbius function,
to be zero. A characterization of the homology ofN due to Björner[3] is recalled in the
next section and used for the calculation of yet more examples. The final section contains
a couple of open problems.
LetM be a matroid on a finite setE. We denote the bases and independent sets ofM by

B = B(M) andI = I(M), respectively. We say thatM is orderedif E is linearly ordered.
From now on all matroids will be ordered.
Given a setF ⊆ E we say thate ∈ E is active with respect to Fif there is a circuit

C(F ; e) ⊆ F ∪ {e} in whiche is minimal with respect to the ordering onE. Let
ActM(F) = {e : e is active with respect toF }.

Note that we include the possibility thate ∈ F . Note also that we will often write one-
element sets without the set braces and dropM as a subscript if the matroid is clear from
context.
ForF ⊆ E we define

ExtM(F) = ActM(F) − F.

The elements of ExtM(F) are calledexternally active with respect to F. This coincides with
the usual notion of externally active elements with respect to an element ofB.
LasVergnas defined the external lattice ofM in a manner equivalent to the following. For

A,B ∈ B, define

A�ext
M B if and only ifA ⊆ B ∪ ExtM(B).

It was proven in[9] that, when augmented with a minimum element0̂, the resulting order
is in fact a graded lattice with rank function

�M(B) = |ExtM(B)| + 1. (1)
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Fig. 1. An example graph and its external lattice.

We will denote this lattice byL(M). It is important to remember that, even though our
notation does not show it, this lattice structure depends on the ordering of the base set of
M.
By way of illustration, let us construct an external lattice using the cycle matroidM =

M(G) of a graphG = (V ,E). LetGbe the graph in Fig.1with edges ordered as indicated.
ThenL(M(G)) has Hasse diagram as shown. So, for example, to compute the bases below
the baseB = {0,3,4} note that ExtM(B) = {1} since the edge 1 is the smallest element
in its fundamental circuit withB while 2 is not. It follows that any base contained in
B ∪ ExtM(B) = {0,1,3,4} will be less than or equal toB. These bases are exactly those
obtained by removing some element of the fundamental circuit of 1 from the union.
Returning to our general exposition, letM∗ be the dual matroid ofM. We turnM∗ into

an ordered matroid using the order already given onE. LasVergnas[9] also defined another
ordering� int

M onB(M) by

A� int
MB ⇐⇒ (E − B)�ext

M∗(E − A). (2)

We should note that one can also define� int
M using the internal activity of bases ofM (which

also eliminates the need to pass toM∗), but (2) will be more convenient for our purpose.
Whenaugmentedwith amaximumelement1̂, the resulting order is called theinternal order.
Directly from the definitions, we see that this structure is just the order-theoretic dual of
L(M∗). Since the dual of a lattice has the same homology as the original lattice, we will
restrict ourselves to external orders. For that reason, we will also drop the ext superscript.
It will be useful in the sequel to have the following characterization, due to Las Vergnas

[9, Proposition 3.1]of the external order.
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Proposition 1.1(Las Vergnas). LetA,Bbe two bases of an orderedmatroidM.ThenA�B

if and only if B is the lexicographically maximum base of M contained inA ∪ B (where
elements of a base are listed in increasing order).

In the aforementioned paper it was shown that the number of elements at a given rank in
L(M) does not depend on the particular order onE, but that the lattice itself does.We wish
to give some measure of howL(M) depends on the order onE.

Proposition 1.2. Let� and�′ be linear orders on E.Given a matroid on E, let M andM ′
be the corresponding ordered matroids. Suppose thatAct(M) = Act(M ′) and that�, �′
when restricted to this set are same. Then

L(M)�L(M ′).

Proof. We prove that the identity map fromB(M) toB(M ′) induces a lattice isomorphism
of L(M) with L(M ′). So we need to show that forA,B ∈ B(M) = B(M ′) we have
A ⊆ B∪ExtM(B) if and only ifA ⊆ B∪ExtM ′(B). Clearly it suffices to have ExtM(B) =
ExtM ′(B). We will show ExtM(B) ⊆ ExtM ′(B) and then the reverse inclusion follows by
symmetry. Now takea ∈ ExtM(B) and letC be the unique cycle inB ∪ a. Soa is the
�-minimum inC and it suffices to show that it is also the�′-minimum. Leta′ be this�′-
minimum. Thena, a′ ∈ Act(M) = Act(M ′)with a�a′ anda′�′a. Since the two orderings
agree on this set,a = a′ and we are done.�

2. Sublattices and the join operator

Fix a subsetF ⊆ E and letK = M|F be the restriction ofM to F. Note that it is
an ordered matroid with respect to the ordering induced onF by E. We will say thatK is
spanningif F is a spanning set ofM, that is,F contains a base ofM. We will show that the
lattice for a spanning matroid is closely related to that of the parent matroid. But first we
need a lemma.

Lemma 2.1. Suppose thatF ⊆ E andK = M|F . Then for anyJ ⊆ F we have

(a) ActK(J ) = ActM(J ) ∩ F , and as a consequence,
(b) ExtK(J ) = ExtM(J ) ∩ F .

Proof. (a) The fact that ActK(J ) ⊆ ActM(J ) ∩ F is clear from the definitions. For the
opposite inclusion, supposee ∈ ActM(J ) ∩ F . Then there is a circuitC ⊆ J ∪ e in which
e is minimal. But thenC ⊆ F ande is minimal with respect to the ordering induced onF
so thate ∈ ActK(J ).
Part (b) follows immediately from part (a).�

Corollary 2.2. Suppose thatK = M|F is spanning. Then the inclusionB(K) ⊆ B(M)

induces an inclusion

L(K) ⊆ L(M).
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Proof. SupposeA,B ∈ B(K).We prove thatA�MB if and only ifA�KB. By definition,
A�MB if and only if A ⊆ B ∪ ExtM(B). SinceA,B ⊆ F this happens if and only if
A ⊆ B ∪ (ExtM(B) ∩ F). By the previous lemma,B ∪ (ExtM(B) ∩ F) = B ∪ ExtK(B).
So we are done.�

Following Las Vergnas[9], for a spanning subsetA ⊆ E we define

MaxBasA = A − Act(A).

Alternatively, one can define this as the lexicographically maximum base ofM contained in
A, using the convention of Proposition1.1.We obtain the maximum element ofL = L(M)

as

T = MaxBasE

and reserve the notationT for this top element. Las Vergnas gave a formula for the join
operator∨ for two elements ofL using the MaxBas operator. Using Corollary2.2we give
a slight but useful simplification of his result, at the same time extending it to the join of an
arbitrary number of elements inL.

Corollary 2.3. The join of elementsBi ∈ B(M) (i = 1,2, . . . , m) in L(M) is given by

m∨
i=1

Bi = MaxBas

(
m⋃
i=1

Bi

)
.

Proof. LetK = M|F whereF = ⋃m
i=1Bi and letS = MaxBas(F ). We must prove that

S = ∨m
i=1Bi . First of all, for all i we haveBi �KS becauseS is the maximal element of

L(K). By Corollary2.2this meansBi �MS for all i.
Now supposeT ∈ B(M) satisfiesBi �MT for all i. ThenBi ⊆ T ∪ ExtM(T ) so that

F = ⋃m
i=1Bi ⊆ T ∪ ExtM(T ). But S ⊆ F ⊆ T ∪ ExtM(T ) and so by we haveS�MT .

ThusS = ∨m
i=1Bi . �

We denote the set of atoms ofL(M) byA(M). By (1), these are precisely the basesB
forM with Ext(B) = ∅.

Corollary 2.4. LetA′ ⊆ A(M). Then
∨

B∈A′ B = T if and only if every element of T is
contained in some elementB ∈ A′.

Proof. This follows from Corollary2.3 and the following observation which is needed
for the “if” direction. SupposeT ⊆ F for someF ⊆ E. Then sinceT ∩ Act(F ) ⊆
T ∩ Act(E) = ∅ we haveT ⊆ MaxBas(F ). Also, if F is spanning, then MaxBas(F ) is a
base forM. SinceT is also a base for the matroidM, we findT = MaxBas(F ). �

The inclusion in Corollary2.2does not preserve the rank function in general. But it does
under certain circumstances.
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Lemma 2.5. If K = M|F is spanning andB ∈ B(K) ⊆ B(M), then the following hold.

(a) We have�K(B) = �M(B) if and only if ExtM(B) ⊆ F .
(b) If F ⊇ E − T , then the inclusionL(K) ⊆ L(M) preserves rank.
(c) If f < e for all f ∈ F ande ∈ E − F , then the inclusionL(K) ⊆ L(M) preserves

rank.

Proof. (a)We have�K(B) = |ExtK(B)| + 1 and�M(B) = |ExtM(B)| + 1. Now Lemma
2.1completes the proof.
(b) This follows from part (a) since for anyA ⊆ E we have ExtM(A) ⊆ ActM(E) =

E − T .
(c) This also follows from part (a) since the assumption implies that no element ofE−F

can be externally active with respect to any subset ofF. �

Given a subsetF ⊆ E and an ordering onF we can always define an ordering onE
such that the condition in (c) of Lemma2.5 holds. Thus we have proved the following
observation.

Corollary 2.6. Let K be an ordered matroid on a set F. If M is an unordered matroid on
a setE ⊇ F such thatK = M|F and K is spanning, then we can find an ordering on E
inducing a rank-preserving inclusionL(K) ⊆ L(M).

In particular ifK is the cycle matroid of a connected graphH with edge setF, then forM
we can take the cycle matroid of the complete graph on the vertex set ofH.

3. The homotopy equivalence

In this section, we study the reduced homology of the order complex of the latticeL(M).
We will show that there is a homotopy equivalence between the order complex ofL(M)

and the independence complex ofM∗ restricted toT. This will we used in the next section
to explain Las Vergnas’ observation about the Möbius function ofL(M) [10].
Let L be a finite lattice with minimum and maximum elements0̂ and1̂, respectively.

Note thatL will be used when discussing an arbitrary lattice, whereas the symbolL(M)

will always be used when we wish to refer to the external lattice of a matroid.We denote by
�(L) theorder complexof L, that is, the abstract simplicial complex on the setL − {0̂, 1̂}
whose faces are the nonempty chains inL − {0̂, 1̂} ordered by inclusion. IfL = L(M) for
some matroid, then we will also use the notation�(M) = �(L(M)).
There is another abstract simplicial complex associatedwith amatroid. Theindependence

complexofM, denotedN(M), is the simplicial complex of nonempty independent subsets
ofM. Our main theorem relates the two complexes we have defined. In it,H̃i (�)will denote
the reducedi-dimensional homology group of a complex� with coefficients inZ (see e.g.
[14, Chapter 3]).

Theorem 3.1.We have a homotopy equivalence

�(M) � N(M∗|T ).
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So, for all i� − 1,we have an isomorphism in homology

H̃i (�(M))�H̃i (N(M∗|T )).

Note that this result implies that the homotopy type of the order complex depends only
on the maximum baseT. We will prove Theorem3.1using the next two propositions.
Let L be an arbitrary lattice with atom setA. LetJ = J (L) be the abstract simplicial

complex of all subsets ofA whose join is not̂1. The following is a theorem of Lakser[8]
later generalized by Björner[2] and Segev[13].

Proposition 3.2. For any lattice L

�(L) � J (L).

LetF beanabstract simplicial complexonafinite setF.A facet coveringofF is amultiset
of facetsC = {F0, F1, . . . , Fn} such that every face ofF is contained in someFi . Thenerve
Nerv(C) of the covering is the simplicial complex on the vertex setI = {0,1,2, . . . , n}
where a subsetJ ⊆ I is a face if and only if

⋂
j∈J Fj is a face ofF . As will be seen, the

nerve of a certain covering ofJ (L) is isomorphic toN(M∗|T ).
But first we must show thatF and Nerv(C) are the same up to homotopy. Note that every

nonempty intersection of facets ofF is again a face ofF . Thus the intersections⋂j∈J Fj

are contractible as subspaces ofF and hence are acyclic. Thus the hypotheses of the Nerve
Theorem of Borsuk and Folkman are satisfied (see (10.6) in[4]) and we obtain our second
proposition.

Proposition 3.3. LetF be a simplicial complex on a set F and letC be a facet covering.
Then

F � Nerv(C).

The last link in our chain of homotopy equivalences will be provided byT ′, the set of
elements ofTwhich are independent as singleton sets inM∗. ThenN(M∗|T ) = N(M∗|T ′).
Note that the elementse ∈ E which are not independent inM∗ are precisely those which
are contained in every base forM. We can now prove our main result.

Proof of Theorem 3.1. Combining Propositions3.2and3.3 for any facet coveringC(L)
of J (L) we have

�(L) � J (L) � Nerv(C(L)).

So it suffices to show that we can find a facet coveringC = C(L(M)) such that Nerv(C)
andN(M∗|T ) are isomorphic as simplicial complexes.
We haveN(M∗|T ) = N(M∗|T ′) and supposeT ′ = {t0, t1, . . . , tn}. For 0� i�n, define

Fi = {A ∈ A : A ⊆ E − {ti}}. Then it follows from Corollary2.4 that these are the
facets ofJ (L(M)), possibly with repetitions. LetC be the corresponding facet covering of
J (L(M)). We can now define a bijection� : N(M∗|T ′) ⇒ Nerv(C) as follows. IfS ⊆ T ′
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then let

�(S) = J = {j : tj ∈ S}.
Clearly� is a bijection between subsets ofT ′ and subsets ofI. We claim that� restricts to
a well-defined isomorphism between the respective complexes, that is,

⋂
j∈�(S) Fj �= ∅ if

and only ifSis independent inM∗|T ′. This is becauseSis independent inM∗|T ′ if and only
if E − S contains a base forM which, by Lemma2.5(b), is equivalent toE − S containing
an atom forL(M). This completes the proof of the isomorphism and of Theorem3.1. �

4. Applications

We are now ready to explain the empirical observation of Las Vergnas that the Möbius
function� of the external latticeL(M) often satisfies�(L(M)) = 0. It is known that, given
any finite latticeL with minimum element̂0, maximum element̂1, and Möbius function�,
one has

�(L) := �L(0̂, 1̂) = �̃(�) =
∞∑

i=−1
(−1)i dim H̃i (�), (3)

where� is the order complex ofL and�̃ is the reduced Euler characteristic. This equation
together with Theorem3.1can be used to show that a number of external activity lattices
have Möbius function zero. We will use the notationH̃i(M) and�(M) for H̃i(�(M)) and
�(L(M)), respectively. We will also use rk(M) for the rank of the matroidM. This should
not be confused with the rank function� for the latticeL(M).

Proposition 4.1. LetMbeanorderedmatroidwithmaximumbaseTand rankr = rk(M)�1.

(a) Suppose thatM|(E − T ) is spanning. Then

H̃i(M) = {0} for all i� − 1 and �(M) = 0.

(b) Suppose thatM|(E − S) is spanning for all proper subsetsS ⊂ T but is not spanning
for S = T . Then

H̃i(M) =
{

Z if i = r − 2,
{0} else,

and �(M) = (−1)r−2.

Proof. Under the first (respectively, second) hypothesis,N(M∗|T ) is homologically an
(r − 1)-ball (respectively,(r − 2)-sphere). The conclusions now follow from Theorem3.1
and equation (3). �

As an example, consider the cycle matroid of a graphG where, as usual, the edge set
E = E(G) has been linearly ordered. In this case we will useG in our notation everywhere
we usedM before. In the following result astar is the complete bipartite graphK1,n−1.
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Corollary 4.2. LetKn be an ordered complete graph on n vertices, n�2, and let T be its
lexicographically maximal spanning tree.

(a) If T is not a star then

H̃i(Kn) = {0} for all i� − 1 and �(Kn) = 0.

(b) If T is a star

H̃i(Kn) =
{

Z if i = n − 3,
{0} else,

and �(Kn) = (−1)n−3.

Proof. If T is not a star, thenKn − E(T ) is connected and the hypotheses of Proposition
4.1 (a) are satisfied. IfT is a star, thenKn − E(S) is connected for allS ⊆ T , except for
S = T . Thus the hypotheses of Proposition4.1(b) are fulfilled. �

Note that this corollary lends support to LasVergnas’ remark cited in the introduction. In
particular, almost all orderings ofE(Kn) give rise to aTwhich is not a star. To see this, note
thatT must always contain the two largest edges in the ordering since otherwise a larger
base could be constructed by exchanging an element ofT with one of these edges. So if
the two largest edges are not adjacent inKn thenT cannot be a star. But the ratio of such
orderings to the total number of orderings, counting edge choices from largest to smallest
in the order, is(

n
2

)(
n−2
2

) [(
n
2

)− 2
]!(

n
2

)! =
(
n−2
2

)
(
n
2

)− 1
⇒ 1

asn ⇒ ∞.
Also as a result of this corollary, we can see that�(M) is not, in general, shellable (even

thoughN(M∗|T ) always is, see Björner[3, Theorem 7.3.3]). If � is any simplicial complex
which is shellable and pure of dimensiond, then� is topologically awedge ofd-spheres and
so only has homology in dimensiond. So if a finite latticeL graded of rank� is shellable,
then it only has homology in dimension� − 2 (since we removê0 and1̂). But inL(M) we
have

�(L(M)) = �(T ) = |Ext(T )| + 1= |E − T | + 1.

In particular

�(L(Kn)) =
(
n

2

)
− (n − 1) + 1=

(
n − 1

2

)
+ 1.

But from the previous corollary, ifT = K1,n−1 thenL(Kn) has homology in dimension
n − 3<

(
n−1
2

)− 1 for n�4.
Here is another family of matroids which have zero Möbius function.

Corollary 4.3. Let M be an ordered matroid with maximum base T and suppose there is
t ∈ T such thatrk(E − T ) = rk((E − T ) ∪ t). Then

H̃i(M) = {0} for all i� − 1 and �(M) = 0.
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Fig. 2. The fanF4 and triangle graphT3.

Proof. Suppose thatt ∈ T satisfies rk(E − T ) = rk((E − T ) ∪ t). This means that if a
baseB ∈ B(M) intersectsTminimally, thent /∈ B. That is,t is not contained in any base
of the contractionM.T and hence is contained in every base ofM∗|T . ThusN(M∗|T ) is a
cone with vertext. The result follows. �

For application in our examples, note that for the cycle matroid of a graphG, the hy-
pothesis of Corollary4.3 just says that the edget ∈ T connects two vertices in the same
component ofG − E(T ). We first consider then-fan, Fn, which is obtained from a path
with n vertices by adding an additional vertex adjacent to every vertex of the path. More
explicitly, Fn = (V ,E) whereV = {0,1, . . . , n} and

E = {01,02, . . . ,0n} � {12,23, . . . , (n − 1)n},
where� denotes disjoint union.We always write our edges with the smaller vertex first and
order them lexicographically. Then

E(T ) = {0n,12,23, . . . , (n − 1)n}.
Fig.2 contains a drawing ofF4 with the edges ofT in gray. It is easy to see that ifn�3 then
the edget = 12 satisfies the component criterion of the first sentence in this paragraph.
Next consider then-triangle graph, Tn, gotten by gluing togethern copies ofK3 along a

common edge. To set notation, let

E = {e0, e1, . . . , e2n},
where theith triangle has edges{e0, ei, en+i} and edges are ordered by their subscripts.
Now

T = {en, en+1, . . . , e2n}.
The graphT3 is depicted in Fig.2. So if n�3 then the edget = en+1 will satisfy the
component criterion. By Corollary4.3, we have proved the following.

Proposition 4.4. For the given orderings andn�3we have

H̃i(Fn) = H̃i(Tn) = {0} for all i� − 1 and �(Fn) = �(Tn) = 0.
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5. A theorem of Björner

A theorem of Björner[3, Theorem 7.8.1]characterizes the reduced homology ofN(M)

for any matroidM and can be used in conjunction with Theorem3.1 for computations. To
state it, we will need the lattice of flats ofM which will be denotedLF (M) to distinguish
it from the external activity lattice. Also, define thereduced Möbius functionofM to be

�̃(M) =
{ |�(LF (M))| if M is loopless,
0 else.

Theorem 5.1(Björner). If r = rk(M) then

H̃i(N(M))�
{

Z�̃(M∗) if i = r − 1,
{0} else.

Now if F ⊆ E, considerM.F , the contraction ofM to F. Our interest stems from the
fact that(M∗|F)∗ = M.F . An immediate corollary of the previous theorem and Theorem
3.1 is as follows.

Theorem 5.2. If r∗ = rk(M∗|T ) then

H̃i(M)�
{

Z�̃(M.T ) if i = r∗ − 1,
{0} else.

Corollary 5.3. If r = rk(M), then

�(M) =
{
(−1)r−1�(LF (M.T )) if M.T is loopless,
0 else.

Proof. Let r∗ = rk(M∗|T ).Viewing�(M) as the reducedEuler characteristic of�(M) and
using Theorem5.2we find�(M) = (−1)r∗−1�̃(M.T ). So ifM.T has loops then�(M) = 0
by definition of�̃. Otherwise, sinceM.T = (M∗|T )∗ and|T | = r, the rank ofM.T and
hence ofLF (M.T ) is r − r∗. AsLF (M.T ) is a geometric lattice, the sign of�(LF (M.T ))

is (−1)r−r∗
and cancelling appropriate powers of−1 gives the desired conclusion.�

Let us apply these results to some examples.

5.1. The uniform matroid

Consider theuniform matroidUn,k on then-setEwhose collection of bases is

B(Un,k) = {I ⊆ E : |I | = k}.
The lattice of flatsLF (Un,k) consists of the subsets ofE of cardinality strictly less than

k together withE itself, ordered by inclusion. ThusLF (Un,k) is obtained from the Boolean
latticeBn onE by deleting all elements of rankl�k, except the top element. We will call
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this poset thetruncated Boolean algebra(see[17]). Using the fact that, for any two subsets
A ⊆ B ⊆ E, the Möbius function ofBn satisfies

�(A,B) = (−1)|B−A|,

we find that

�(LF (Un,k)) = −
k−1∑
i=0

(−1)i
(
n

i

)
= (−1)k

(
n − 1

k − 1

)
.

Now letM = Un,k for somen > 0, and orderE linearly. The top elementTof L is somek-
subset ofE. One verifies thatM∗|T is the uniformmatroidUk,r∗ , wherer∗ = min{k, n−k},
and thatM.T is the uniform matroidUk,k−r∗ .
Supposek�n/2. Thenr∗ = k and only the empty set is independent inM.T . Hence

M.T has loops,̃�(M.T ) = 0, and we havẽHi (�) = {0} for all i, and�(L) = 0.
Suppose instead thatk > n/2 so thatr∗ = n−k. ThenM.T has no loops and combining

our computation of�(LF (Un,k))with Theorem5.2andCorollary5.3we have the following
result. In it, we assume that

(
j
i

) = 0 if i < 0.

Proposition 5.4. For any ordering of the uniform matroidUn,k we have

dim H̃i(Un,k) = (
k−1

2k−n−1
)
if i = n − k − 1 and �(Un,k) = (−1)n−k−1( k−1

2k−n−1
)
.

Note that sinceL(Un,k) has rankn − k + 1, the complex�(Un,k) is pure of dimension
n − k − 1. Apparently�(Un,k) only has homology in the top dimension.

5.2. The wheel graphWn

Consider then-wheel graph, Wn, obtained from ann-circuit C by adding a vertexv0
adjacent to all vertices of the circuit. Let the edge set be ordered linearly and letT be the
top element ofL(Wn).
Suppose first that some edget ∈ T satisfies Proposition4.3, i.e.,t connects two vertices

in the same component ofWn−E(T ). ThenH̃i (Wn) = {0} for all i� −1, and�(Wn) = 0.
If there is no such edge, thenWn − E(T ) is partitioned into connected components

C0, C1, . . . , Ck as follows:

1. k = 1,C0 = {v0} andC1 = C, or
2. C0 is the union of triangles intersecting only inv0, the componentsC1, C2,…, Cl are
paths, possibly of length 0, and every edge ofTmeetsC0 andCi for somei�1.
The graphW8, a gray spanning treeT, and the corresponding components are shown in

Fig. 3.
Let Ti be the set of edges fromT joining C0 to Ci . Then by the above we haveT =

�k
i=1Ti . Now M.T is the cycle matroid of the graph with vertex set{C0, C1, . . . , Ck},
whereTi represents a set of parallel edges joining the central vertexC0 toCi . ThusM.T is
the matroid of partial transversals ofTwith respect to the family{Ti}ki=1.
We now determineLF (M.T ). The closed sets ofM.T are the unions of the setsTi . Thus

LF (M.T ) is the Boolean algebraBk on the set{Ti}ki=1. Hence we have�(LF (M.T )) =
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Fig. 3. The wheelW8 a spanning tree, and components.

(−1)k. ClearlyM∗|T = (M.T )∗ has rankn−k and so, using Theorem5.2and its corollary,
we obtain the following result.

Proposition 5.5. Let T be the top element ofL(Wn) for some ordering of the edges ofWn.

(i) If there is an edget ∈ T satisfying Proposition4.3 then

H̃i (Wn) = {0} for all i� − 1 and �(Wn) = 0.

(ii) If there is no such edge, then

dim H̃i(Wn) =
{
1 if i = n − k − 1,
0 else,

and �(Wn) = (−1)n−k−1.

Note that sinceL(Wn) has rankn + 1, the complex�(Wn) is pure of dimensionn − 1.
We have just shown that in case (ii)�(Wn) has homology in dimensionn−k−1 and, since
k cannot be zero, this complex is not shellable.

6. Comments and open problems

There are several comments and questions raised by our work which we address now.
I. We observed that the order complex for the uniform matroid has homology in the

correct dimension for it to be shellable. We will now give an explicit shelling. This gives a
way of rederiving Theorem5.4.
First we recall some basic definitions. Given a finite posetP we letC(P ) be the set of

all pairs(a, b) ∈ P 2 such thata is covered byb, i.e.,a < b and there is noc ∈ P with
a < c < b. A saturateda0-ak chain is C = (a0, a1, a2, . . . , ak) where(ai−1, ai) ∈ C(P )

for 1� i�k. Given a totally ordered setS, then a labelling (function)l : C(P ) ⇒ S induces
a labelling of each saturated chainl(C) = (l1, l2, . . . , lk) where li = l(ai−1, ai). Any
properties of the sequencel(C), e.g., strictly increasing, will also be said to apply toC
itself. We say thatl is an EL-labelling and thatP is EL-shellableif, for any a�b in P
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we have

1. There is a unique strictly increasing saturateda–b chainC.
2. ChainC is lexicographically smallest among all saturateda–b chains.

The fundamental theorem about this property is due to Björner[1].

Theorem 6.1(Björner). Let P be a finite,graded poset with â0and a1̂. If P isEL-shellable
then�(P ) is homotopic to a wedge of spheres of dimensiondim �(P ) and the number of
spheres is just the number of weakly decreasing saturated chains from0̂ to 1̂.

Nowconsider the uniformmatroidUn,k on the setE = {1,2, . . . , n}. If B ∈ B(Un,k) then
Act(B) = {1,2, . . . ,min(B)−1} and soB’s rank in the latticeL(Un,k) is�(B) = min(B).
It follows that ifB coversA ∈ B(Un,k) then we must have

B = A − {min(A)} � {b} (4)

for someb > min(A) (whereb = min(A) + 1 iff min(A) + 1 /∈ A). So we can define a
labelling of the covering pairs by

l(A, B) =
{
the unique element ofB − A if A,B ∈ B(Un,k),

max(B) if A = 0̂ andB ∈ B(Un,k).
(5)

Theorem 6.2. The labelling(5) is anEL-labelling ofL(Un,k) where the labels on any
saturated chain are all distinct. Furthermore, the number of strictly decreasinĝ0-1̂ chains
is
(
k−1
n−k

)
.

Proof. First considerA�B whereA �= 0̂. Note that any saturatedA–B chain has distinct
labels. This is because in order for a label to be used twice it would have to be subtracted
from one of the sets of the chain. But elementl can only be subtracted when moving up
from a set at rankl, and at higher ranksl is not permitted as an element. Furthermore, Eqs.
(4) and (5) show that a label sequence completely determines a corresponding chain, if
one exists, since the element to be subtracted is predetermined by the rank. In addition, the
restrictionA �= 0̂ and Eq. (4) ensure that any two saturatedA–B chains use the same set of
labels. So if a strictly increasing chain exists, then it is unique.
To show existence of a strictly increasing chain, we use the notion of aninversionin a

sequence(l1, l2, . . . , lk) which is a pair(li , lj ) such thati < j and li > lj . Let C be a
saturatedA–B chain that has the fewest number of inversions. IfC is increasing then we are
done. OtherwiseCmust have a descent, i.e., an inversion of the form(li , li+1). Suppose that
the portion ofCcorresponding to this descent isAi−1, Ai, Ai+1. Thenli > li+1��(Ai+1).
DefineA′

i = Ai − {li} � {li+1}. From the inequalities just given it follows that�(A′
i ) =

min(A′
i ) = min(Ai) = �(Ai). So replacingAi by A′

i in C gives a chainC
′ whose label

sequence isl(C) with li and li+1 switched. Thusl(C′) has fewer inversions thanl(C), a
contradiction. It is interesting to note that we have actually proved the stronger statement
that ifA �= 0̂ then the interval fromA toBhas anSn EL-labeling in the sense of McNamara
[11] and McNamara and Thomas[12].
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Now consider the case whereA = 0̂. Much of what we have already proved goes
through in this case. In particular, the labels on any saturated0̂-B chain are distinct and a
given sequence of labels determines a chain uniquely if it exists at all. (The latter is most
easily seenbyworkingdown fromB.)This timeweexplicitly construct thestrictly increasing
saturated̂0-Bchain.Consider themin(B) largest labels in the setB�{1,2, . . . ,min(B)−1}.
Arranging these labels in increasing order shows that the desired chain exists since they are
all sufficiently large to be added at the necessary point in the chain (or subtracted if one
moves down).
To compute the number of decreasing0̂-1̂ chains, note thatn must be a label on any

saturated̂0-1̂ chain since it must be added at some point, and if it is added in the first cover
then it is also the maximum. So for the chain to be decreasing the first label must ben.
Similarly, the last label must be an element of1̂ = {n − k + 1, n − k + 2, . . . , n}. So we
need to pick�(1̂)−1= n−k labels from|1̂−{n}| = k−1 possible.As usual, each of these
choices will produce a unique decreasing chain if it exists. But since all of the elements
which could be chosen are at least as big as�(1̂) they do indeed correspond to a chain. Thus
there are

(
k−1
n−k

)
such chains and we are done.�

II. Forman[7] has introduced a discrete analogue of Morse theory as a way of studying
CW complexes by collapsing them onto smaller, more tractable, complexes of critical cells.
These techniques can be used to compute the homology of a complex even when it is not
shellable. We have asked the following question. Are the nonshellable complexes which
we have considered amenable to Forman’s technique? In work to be published elsewhere,
the first author exhibits the nature of the homotopy equivalence�(M) � N(M∗|T ). It is
shown using discrete Morse theory that the homology of�(M) can be read off directly
fromL(M).
III. Las Vergnas defined a third ordering on the bases of an ordered matroid. Let the

pseudo-heightof a baseB ∈ B(M) be

hM(B) = |ExtM(B)| − | IntM(B)| + rk(M),

where IntM(B) is the set of internally active elements ofB inM. Then from[9, Proposition
6.3] we obtainhM(A) < hM(B) whenever eitherA <extM B or A <intM B. So there is a
well-definedexternal-internal order�exin

M onB(M) given by

A�exin
M B if and only ifA�ext

M B orA� int
MB

with corresponding latticeLexin(M). We have been unable to find an analogue of Theorem
3.1for this lattice. It would be very interesting to do so.
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