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Correspondence 

The Twisted N-Cube with 
Application to Multiprocessing 

Abdol-Hossein Esfahanian, Lionel M. Ni, and Bruce E. Sagan 

Abstract-We show that by exchanging any two independent edges in 
any shortest cycle of the n-cube (n 2 3), its diameter decreases by one 
unit. This leads us to define a new class of n-regular graphs, denoted 
Ten, with Zn vertices and diameter n - 1, which has the (n - l)-cube as 
subgraph. Other properties of TQ,, such as connectivity and the lengths 
of the disjoints paths are also investigated. Moreover, we show that the 
complete binary tree on 2" - 1 vertices, which is not a subgraph of the 
n-cube, is a subgraph of TQ,,. Finally, we discuss how these results can 
be used to enhance existing hypercube multiprocessors. 

Index Terms-Binary tree, graph theory, hypercube multiprocessors, 
message routing, N-cube, pattern embedding. 

I. INTRODUCTION 
The possibility of interconnecting a number of processors together 

to solve very large problems in scientific computations has been 
extensively considered in the past [ 191. Distributed-memory multi- 
processor systems (or multicomputers) have proven to be one of 
the most straightforward and the least expensive methods to build 
such arrays with hundreds or even thousands of processors [28]. In 
such networks, each processor has its own memory, and message 
passing is the means of information exchange between processors. It 
is well known that the topology of the interconnection network plays 
a significant role in system performance [lo], [20], [24], [27]. 

The hypercube interconnection scheme is the most popular topol- 
ogy being used in distributed-memory multiprocessors. Since the 
successful design of the first working hypercube computer, the 
64-node Cosmic Cube, at Caltech [28], a number of hypercube 
multiprocessors have become commercially available. Among them, 
the NCUBE's NCUBE/10 can have up to 1024 processors, the 
Intel's iPSC series can have up to 128 processors, the Ametek's 
S-14 can have up to 256 processors, and the FPS's T series can 
have up to 212 processors [12], [18], [26]. All these first generation 
hypercube multiprocessors adopt a packet switched store-and-forward 
mechanism for handling information exchange. 

An n-dimensional hypercube multiprocessor consists of N = 2" 
processors interconnected as follows. Each processor is labeled by 
a different n-bit binary number ( b , - ~ b , - z  . blbo) .  Two processors 
are connected by a full duplex link if and only if their binary 
labels differ in exactly one bit position. The popularity of hypercube 
multiprocessors is due to their underlying topology which is known as 
the n-cube graph Qn. The n-cube graph has been the subject of many 
research projects in recent years, mainly because of the availability 
of hypercube multiprocessors [5], [9], [22], [27], [29]. As a result, 
many properties of the n-cube have been discovered [2], [4], [SI, 
[111, [161, [211, 1231. 

The rest of this paper is organized as follows. Our notation and 
terminology are given in the next section. A new interconnection 
topology, denoted TQ., which is based on a simple modification of 
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the n-cube is given in Section 111. We will show in Sections IV-VI1 
that Ten has certain topological advantages over Q,,. In particular, it 
is shown that the diameter of TQ,, is one less than that of Q., and 
its vertex-connectivity is the same as that of Q.. It is known that the 
complete binary tree on 2" - 1 vertices, T., is not a subgraph of Q n  
[27]. However, TnP1 is contained in Qn [4]. We prove that TQ. has 
the complete binary tree T. as subgraph. Other subgraphs of TQ,, are 
also identified. Routing in TQn is described in Section VIII. Finally, 
practical implications of our results are given in Section IX. 

11. NOTATION AND TERMINOLOGY 

We will closely follow the graph theoretical terminology and 
notation of [15]; terms not defined here can be found in that book. 
Let G(V, E) represent a graph with point or vertex set V ( G )  = V 
and edge set E(G)  = E .  If an edge e = uv E E, then vertices U 
and v are said to be adjacent, and the edge e is said to be incident to 
these vertices, and U and v are the endpoints of edge e. ' h o  edges are 
said to be independent if they do not share an endpoint. For a vertex 
v E V , I ( v )  represents the set of all edges incident to v in G, and 
its cardinality ( I ( v ) (  is the degree deg(v) of vertex v. We denote by 
S( G )  and A( G )  the minimum and maximum degrees, respectively, of 
vertices of G. If S(G) = A(G)  = k, then G is said to be k-regular. 
For a set X c E (or X C V), the notation G - X represents the 
graph obtained by removing the edges (vertices) in X from G. The 
vertex-connectivity, &(G), of a graph G is the least cardinality 1x1 of 
a set X C V ( G )  such that G - X is either disconnected or consists 
of a single vertex. Furthermore, a p-cycle is defined as a cycle on 
p vertices. 

The distance d ( u , v )  between two distinct vertices U and v is 
the length (in number of edges) of a shortest path between these 
vertices. The diameter d(G) of graph G is then defined to be 
d(G)  = max{d(u,v)Ju,v E V } .  If H and G are graphs, then H 
is isomorphic to a subgraph of G if there is a one-to-one function 
f : V ( H )  -+ V ( G )  such that each edge uv E E ( H )  is carried to 
an edge f (u ) f (v )  E E(G). By an abuse of language we will often 
merely say that H is a subgraph of G (where in reality it is f ( H )  
which is a subgraph of G)  and will write H c G. 

Two specific graphs with which we will be concerned are complete 
binary trees and n-cubes. As indicated before, T, will represent 
the complete binary tree on 2"-' vertices. The roof of T. is the 
unique vertex whose degree is 2. For an n-cube, Q., we have 
S(Qn) = A(Qn) = n, d ( Q n )  = n and &E(&") = n. In other 
words, Q. is n-regular. The binary label of a vertex v E V(Qn) will 
be referred to by an n-bit binary number b(v). Also, O(b(v) )  and 
Z(b(u) )  will denote the number of ones and zeros, respectively, in 
the binary number b(v) .  

111. THE TWISTED N-cUBE 
Let C be any shortest cycle (i.e., a 4-cycle) in Q,,. Also, let ux and 

vy be any two independent edges in C. The twisted n-cube graph TQn 
is then constructed as follows. Delete edges ux and vy from Q,,. Then, 
connect, via an edge, vertex U to vertex y ,  and vertex v to vertex x. 
That is, TQn = Qn - {uz,  vy} + {uy, wz} Fig. 1 shows a Q 3  and a 
corresponding TQ3. Note that by construction, TQn is n-regular just 
as Qn is. Also, observe that TQ,, has two disjoint Qn-l as subgraphs. 

Although the cube can be twisted around any 4-cycle, we will 
usually use the canonically twisted Q. where vertices U ,  U, x, and y 
have the labels b(u) = 000.. . 0, b(v)  = 010.. 0, b(z) = 100..  e o ,  

and b(y) = 110.. . 0. In the subsequent sections, we describe some 
of the properties of the twisted cube TQ.. 
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Q 3  TQ 3 

Fig. 1. A 3-cube (Q3) and a corresponding twisted 3-cube (TQ3). 

IV. DIAMETER OF Ten  
It is well known that the diameter of Q,, d(&,), is n. Also, 

between any pair of vertices U and v in Q,, there are n disjoint paths, 
of which d ( u , v )  are of length d(u,w) and the rest are of length 
d(u, U )  + 2 [21], [27]. As a result, if d(u, w )  5 n - 1 then there are 
at least n - 2 disjoint paths between U and v, each of which is of 
length at most n - 1. This property of Q. will be used shortly. 

Theorem 1: d ( T Q n )  = n - 1 for n 2 3. 
Prm$ Let TQ. be the canonically twisted cube. The theorem 

can easily be verified when n equals 3 and 4. Here we consider the 
case in which n 2 5. Now, let s and t be any two vertices in TQ,,. 
We will show that in TQ,, we have d(s, t) 5 n - 1 for all s, t with 
equality for at least one pair. Depending on the value of d ( s ,  t) in 
Q., the following two cases are considered. 

Case 1: In Q,, we have d ( s ,  t) 5 n - 1. Then there are at least 
n - 2 2 3 disjoint paths between s and t in Q,,, each of which is 
of length at most n - 1. Thus, removal of edges WT and vy from Q. 
can destroy at most two of such paths. This implies that in TQ,, we 
have d ( s , t )  5 n - 1. 

Case 2: In Q,, we have d ( s , t )  = n. Let b(s)  = 
(bn-1bn-zbn-3.. blbo) so that b ( t )  = (bn-lbn-2bn-3...6160) 

where 6, is the binary complement of b,. A shortest S-t path in 
TQ,, can be constructed as follows. 

First let us concentrate on the ones of b(s)  in positions n - 3, 
n - 4 , . . . , 0  . We can change these ones to zeros by traveling 
over a single edge for each exchange. Thus, after traveling 
O(bn-3bn--4.-.b0) edges we will arrive at one of the vertices 
U, U, 2, or y (which one is determined, of course, by the_two_leading 
bits b,-lb,-z of s.) Next, we can change b,- lb , -z  to bn-1b,-2 by 
using a single edge of Ten .  That edge will be uy or vx depending 
upon which of the four vertices we were led to by the first part of 
the path. Finally, all the zeros in (bn-3bn-4.. . bo) must be turned to 
ones. Again a single edge is used for each of the Z(bn-3bn--4. bo) 
bits involved. Hence, the total number of edges in our s-t  path is 

_ _ _  

= n - 1 .  

It is easy to see that there is no shorter s-t path: traveling over any 
edge of TQ,, changes only one bit with the exception of uy and vx 
which change two. It can be easily seen that edges uy and vx cannot 
both appear in any shortest path. Since b(s)  and b ( t )  differ in all n 
positions, at least n - 1 edges are needed to transform all bits. It 
follows that d(s, t) = n - 1 by the construction above. Combining 
this fact with Case 1, we see that d(T&,) = n - 1 as desired. 0 

V. VERTEX-CONNECTIVITY OF TQ,, 
It is known that K ( & , )  = n [l], [21]. We next prove that 

K(TQ,) = n. In fact, we prove a more general connectivity 
theorem. Let G1 and Gz be two connected graphs with the same 
number p of vertices. Furthermore, let V(G1) = {UI, uz, . . . , up} 
and V(G2) = { U I , V ~ , . . . , V ~ }  . Then H = G1 @ Gz represents the 
graph obtained by taking G1 and Gz and connecting, via a new edge, 
vertex U, to vertex v,, for 1 5 i 5 p. That is, 

V ( H )  = V(Gi) U V(G2) 

and 

E ( H )  = E(G1) U E(Gz) 

U {u,v,Iu, E E ( G ~ ) , v ,  E E(G2), 1 5 i 5 p } .  

The U , V ,  edges will be referred to as cross edges. Note that operation 
@ may generate different H graphs depending on how the vertices in 
graphs G1 and Gz are labeled [17]. 

Theorem 2: Let G1 and G2 be connected graphs defined as above, 
and let H = GI 0 G2. Then K ( H )  2 1 + min(K(G1), K(Gz)). 

Let k = min(K(Gl), ~ ( G z ) ) ,  and let X be an arbitrary 
subset of V(H)  such that 1x1 = k. We prove the theorem by showing 
that H - X is connected. Observe that H contains at least k + 1 
cross edges since k must be smaller than the number of vertices in 
each of the graphs G1 and G2. Therefore, removal of k vertices from 
H cannot cause deletion of all cross edges. Now if X fl V(G1) = 0 
(respectively, X n V(G2) = 0 then GI (respectively, Gz) is a 
connected subgraph of H - X .  Furthermore, every remaining vertex 
of Gz (respectively, GI) is connected to this connected subgraph. 
Hence, H - X is connected. 

Now suppose X n V(G1) = XI # 0 and X rl V(G2) = X Z  # 
0. Wemust then have 15 1x11 5 k - 1  and 15 1x21 5 k-1.This 
implies that both GI - X1 and G2 - X Z  are connected by definition 
of k. Since there is at least one cross edge, say e, in H - X ,  the 
endpoints of e lie in GI - X1 and Gz - X Z ,  and therefore H - X 
must be connected. 0 

Prm$ Clearly it is possible to take two copies of &,,-I and la- 
bel their vertices such that TQn = &,,-I @&,-I.  Since .(&,-1) = 
n - 1, Theorem 2 implies that tc(TQn) 2 n. Also for any n-regular 

0 

Prmfi 

Theorem 3: K(T&,) = n. 

graph G, K(G) 5 n, hence the desired result. 

VI. LENGTHS OF DISJOINT PATHS IN TQ,, 
It is well known that if G is a graph with K(G) = n, then given 

any two distinct vertices s, t E V(G) we can find n disjoint S--t paths 
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TABLE I 
LENGTHS OF DISJOINT PATHS IN TQ,,, THE EXCEPTIONAL CASES 

Exception 

1. There is one fixed 1 in suf (s) and 
(a) bn-lbn-p = cn-1c,-2, or 
(b) either s, f are adjacent to U, x or 

- -  

s, fare adjacent to v, y 

2. There is no fixed 1 in suf (s) and 
(a) bn-lbn-z = cn-1c,-2.or 

- -  

(b) bn-lbn-2 = ~"-1cn-2  

with exactly one of s, f equal to U, v, x ,  y, or 

with exactly one of s, f equal to U, v, x ,  y, or 

with s or f equal to U, v, x, y 

- 
(c) bn-~bn-2 = cn-1cn-2 

- 
(d) bn-lbn-z = c n - ~ c a - ~  

in G [15]. Below we will give an explicit description of such paths in 
TQ,,, but first it will be convenient to review the construction in Q,,. 

If s , t  E V(Qn) with b(s) = b,-lb,-z...bo and b ( t )  = 
cn-lcn-2. . . Q, then position i will be called fixed (respectively, 
variable) with respect to s and t if b, = ct (respectively, b, # c,). 
A fixed one is a fixed position, i, with b, = c, = 1. A fixed zero is 
similarly defined. 

Now if d ( s ,  t) = d then s and t determine a d-dimensional subcube 
Qo = Qo(s,t) c Qn where V(Qo) = {v E V(Qn)  (b(v) agrees 
with b(s )  and b ( t )  in all n-d fixed positions}. The vertices s and 
t are called diametrically opposite points of this subcube. In fact, 
there are Zd-' pairs of points that are diametrically opposite in the 
same Qo. 

We can construct d disjoint s-t  paths of length d inside Qo 
as follows. Let io, i l ,  + e . ,  id-l be any permutation of the variable 
positions. Then the jth path is obtained by changing the bit in 
positions i,, i,+l,. . . , zd-l,zo,. . . , i,-1 in that order. The permuta- 
tion io, i l , .  . . , id-1 will be called a changing order. Although the 
changing order can be arbitrary in Q,, the asymmetry of TQ. will 
make certain changing orders more efficient. 

To construct the n - d disjoint s-t paths of length d + 2 in Qn, 
we travel to n - d parallel d-subcubes Q', Q', . . . , QnPd  where 
V(Q3) = {U E. V(Qn) I b(v) agrees with b(s)  and b ( t )  in all but 
the jth fixed position where b(v) has the complementary bit}. These 
paths through Q' start by changing the jth fixed position bit of s to 
its complement so that we are now at a vertex SI E V(Q3).  Next 
travel from SI to its diametrically opposite point tl E V ( Q3). Finally 
change the jth fixed position back to its original value to reach t. 

To carry over our discussion to the canonically twisted n-cube 
we will again be concerned with the last n - 2 bits. Define the 
s u m  of vertex U E V(Qn) with b(v) = b,-lb,-Z...bo to be 
suflv) = bn--3bn--4.. . bo .  We will first start with the special case 
where s and t are diametrically opposite (since the definition of such 
points only depends on the bit vector, it still makes sense in TQ.). 
The proof will be a refinement of the argument used for Theorem 1. 

Theorem 4: For n 2 3 let TQ,, be the canonical twisted n-cube and 
consider s, t E V(TQn) that are diametrically opposite. Then there 
are n disjoint s-t paths in TQn consisting of one path of length n - 1 
and n - 1 paths of length n. 

Proof: Since n 2 3 and b ( s ) , b ( t )  are complements we can 
assume (without loss of generality) that suf(s) contains a 1 bit. Use 
thechangingorderio,il,...,ik,...,i,-~ = 71-2, in-l = n-lwith 
k chosen so that io, il,. . . , ik -1  are the positions of suf(s) containing 
zeros and i k , .  . . , i n - 3  are the positions of suf(s) containing ones. 
Now attempt to construct the jth path as done in Q.. 

Since TQ,, is canonical, there will be no difficulties until we reach 
a vertex w where the leading bit must be altered. But by the order 
in which the bits are changed we see that if j # k then suf(w) still 

. .  

Possible Path Lengths 

n-d-1 

contains a 1 and the (n  - 1)st bit can be complemented as usual. 
Thus, for n - 1 value of J we have paths of length n as before. 

When j = k the order that we have chosen guarantees that we 
still travel to w such that b(w)  = b,-lb,-~00...0 E !u,v,z,y} 
and can change both the leading bits using one edge. Ending the path 
by altering positions io,. . , i k - 1  gets us from s to t in only n - 1 

Another theorem characterizing disjoint paths in the n-cube graph 
with an edge deleted will be useful. 

Theorem 5: Let s and t be diametrically opposite in Q,, where 
n 2 2. Consider G = Qn - {e} where e E E(&,) is arbitrary. 
Then there are still n disjoint s-t paths of length n unless s or t is 
an endpoint of e. In the latter case, there are only n - 1 disjoint s-t 
paths (but still there is at least one path since n 2 2). 

Proof: Suppose for the sake of definiteness that e = uz where 
b(u) = OO...O, and b(z) = 1 0 . . . 0  . If s , t  $! {u,z} then some 
nonleading digit of s must be a 1 (since s # U, z) and  so^ other 
nonleading digit of s must be a 0 (since t # U, z and b(s) = b( t ) ) .  Use 
the changing order io, i l , .  . . , i k ,  = n - 1 with k chosen so 
that io, i l , .  . . , i k - l  are the nonleading positions of s containing ones 
and ik, i k + l , .  . . , i , - ~  are then nonleading positions of s containing 
zeros. 

We must check that any path in Q,, which contains U or x is still 
intact in G. But by the changing order and the fact that the segment 
ik,. . . , i , -2  is nonempty, we see that the only such path is the one 
starting with i , -1 = n - 1. Thus, the leading bit is complemented 
in the very first step (which is still possible since io,...,ik-l is 
nonempty). Hence, when we reach U or x, a bit other than the leading 
one is to be altered and no complications ensue. 

If, on the other hand, s is an endpoint of e (the case where t is an 
endpoint is similar) then deg(s) = n - 1 in G. It follows that there 
can be at most n - 1 disjoint s-t paths in G. But removal of an edge 
of Q. destroys at most one of the n disjoint s-t paths in the cube. 

0 
Finally we are in a position to prove the main result of this section. 
Theorem 6: Let TQ,, be the canonically twisted n-cube and con- 

sider s , t  E V(TQn) with b(s)  = b,-lb,-z,. - .  , bo and b ( t )  = 
c,-Ic,-z, . ,ca. If d ( s ,  t) = d in Qn then a set of n disjoint paths 
consisting of d of length d and n - d of length d +2 continues to exist 
in TQ. with the exception of the case noted in Table I. If the entry 
in row i and column d + j is k this means that there are k disjoint 
s-t paths of length d + j for exception i. A blank indicates no such 
paths. All paths for a given row can be taken to be disjoint. 

Proof: First consider the case where the number of fixed 1's in 
suf(s) is at least two. Then all of the cubes Qo, Q', , QnPd  remain 
intact in TQ,, since every w E V(Q3) has at least one 1 in suf(w). 
Hence, the canonically s-t  paths in Qn can still be used and those 
pairs are not exceptional. 

steps. 0 

Hence, exactly n - 1 disjoint s-t paths are left in G. 
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s 4  

Fig. 2. An S4 is formed by connecting two trees, T3's. with their roots being three hops apart. 

Now suppose that there is exactly one fixed 1 in suf(s), say 
in position i,. Then Qo,  Q' ,  . . . , Q3-' ,  &'+I ,  . . . , QnPd are still 
subgraphs of Ten. Thus, the d paths of length d along with n - d - 1 
paths of length d + 2 are still usable. To determine how to modify 
the path through Q3 let S I ,  tl be the vertices of Q' adjacent to s, t, 
respectively, and consider the first two bits of b(s)  and b(t) .  

If b,- l  = cn-l then Q' is once again contained in TQn so this 
does not qualify as an exceptional case. 

If bn-1bn-2 = E n - l c n - 2  then Q' becomes a subgraph isomorphic 
to Ted in TQ.. Thus, by Theorem 4 there is an s-tl path of length 
d - 1. It follows that there is an s-t path of length (d - 1) + 2 = 
d + 1 through Q'. This completes case l(a). 

If bn-lbn-z = En-lcn--:! then Q' is missing an edge in Ten. But 
Theorem 5 assures us that there is still at least one sl-tl path of 
length d, and hence an s-t path of length d + 2, unless d = 1. 
This implies that we are in case l(b) with { s l , t l }  = {u,z} or 
{ s l , t l }  = {v,y}. In either case, we can get from SI to tl in two 
steps via one of the four vertices U, v, x, y. Hence, this s-t path has 
length 1 + 2 + 1 = d + 3. 

The time has come to see what happens when suf(s) contains no 
fixed 1's. As usual, the initial pairs of bits play a critical role. 

If bn-1bn-2 = Z n - l E n - z  then Qo becomes a modified Ted inside 
TQ.. Theorem 4 applies immediately to yield one path of length 
d - 1 and d - 1 paths of length d. Furthermore, Q', . . . , Q n P d  are 
all normal d-cubes so the n-d paths of length d + 2 are undisturbed. 
Case 2(a) follows. 

Now suppose bn-1bn-2 = cn--lcn-z so that Q 0 , Q 1 , - . . , Q n - '  
all remain intact in Ten. The only difficulty that could arise is that it 
may not be possible to travel from s (or t) to Q', j 2 1 via a single 
edge. This situation only occurs if s (or t) is one of u,v,z,y and 
Q' is the subgraph determined by changing the leading bit. For the 
sake of definiteness, let s E {U, v, z, y} (in which case t is not one 
of these four vertices since bn-1bn-2 = cn-lcn-2). Every path of 
length d + 2 is !sable except the one through-Q'. But we can pass 
from s to s2 = b n - l b n - z b n - ~ . . . b o  to s1 = b n - l b n - 2 . - . b o  using 
two edges, then go from S I  to its diametrically opposite point tl using 
d edges, and finally travel from t l  to t using a single edge. Note that 
since sz $! V ( Q 3 )  for all j ,  this path is disjoint from all the others 
and has length 2 + d + 1 = d + 3. Case 2( b) is now completed. 

If bn-lbn-z  = cn-1En-2 then the reasoning of the previous 
paragraph shows again that the only problems which can occur are 
when s or t E {U, v, z, y} and Q' is the subcube for changing the 
leading bit. Here we cannot exclude the possibility that both s and t 
are in the set of special vertices. But in that case {s, t} U V ( Q J )  = 
{U, v, z, y}  so there is an s-t  path through Q' of length 3 = d + 2 
which is not exceptional. 

Thus, we are reduced to case 2(c). Assume,-with_out loss of gener- 
ality, that s E {U, v, z, y} and travel to sz = bn--lbn--2bn--3 .. . bo E 
V ( Q 3 )  using a single edge. But sz is one step closer to tl = 
En-ICn-2 . CO than is si. Hence, we can reach t in only (d + 2) - 
1 = d + 1 steps. 

Finally, consider the case where bn-1bn-2 = 'Zin-icn-2. Thus, Qo 
is either a d-cube or a d-cube missing an edge e. Assume for the 
moment that neither s nor t is among U, v, 2, y. Then even if Qo has 
e deleted, the edge does not contain s or t. Thus, (by Theorem 5 if 

necessary) Qo will have d disjoint s-t paths of length d. The n - d - 1 
parallel subcubes obtained by changing a 0 bit in .ut(.) are all full 
subcubes in TQ,, and so we always have n - d - 1 disjoint s-t paths 
of length d + 2. Now let Q3 be the graph obtained by complementing 
the second leading bit with SI, tl the diametrically opposite vertices 
corresponding to s, t. Q3 may be full or missing an edge el,  but in 
any event neither s1 nor tl are endpoints of el (since the same is 
true of s, t, and e). Thus, an s-t path of length d + 2 still exists 
through Qj. Hence, if {s, t} n {U, v, 2, y} = 0 we do not have an 
exceptional case. 

The only other possibility is that 2(d) holds, so assume s E 
{u,v,z,y} (the case t E {u,v,z,y} being similar). Now Qo is 
missing an edge containing s, so we are guaranteed only d - 1 
paths of length d in Theorem 5. Also %path of length d + 1 can be 
constructed bytraveling to s2 = bn-l bn-200. . * 0 using one edge, 
then to SI = bn-lbn-200.. . O  E V ( Q o )  using another, and finally 
continuing through Qo to t using d - 1 edges. As in the preceding 
paragraph, there are still n - d - 1 disjoint s-t paths of length d + 2 
corresponding to the fixed zeros in sufls). F e  final path through Q' 
is started by moving from s to s3 = b n - l b n - z O O .  . . 0. This is one 
step closer to t than usual, so only d + 1 edges are needed for 
the trip. Thus, we have a second s-t path of length d + 1. This 

0 
Note that in all exceptional cases but two [specifically 1( b) and 

2(a)] the average length of the n paths in Table I is at least as short 
as the average length between the same two points in Qn. In fact, for 
some of the cases above the paths from Qn still exist in TQn but the 
listed set of the paths will be shorter. 

completes the last case and hence the proof of theorem. 

VII. SOME SUBGRAPHS OF TQn 
In this section, we will identify some of the subgraphs of Ten. By 

construction, Qn-l is a subgraph of TQn and thus all its subgraphs 
are contained in Ten. In fact, given any subgraph H of Qn, if there 
exists some 4-cycle, say C, in Q,,, such that E ( H )  n E(C) is either 
empty or a set containing two independent edges, then H is also a 
subgraph of Ten. This implies that TQ,, contains a 2" cycle and any 
two-dimensional mesh which is a subgraph of Qn. While Qn contains 
only even cycles, TQn contains odd cycles as well. 

In what follows, we will show that the complete binary tree 
on 2" - 1 vertices, T,,, is a subgraph of Ten. It is known that 
T,, is not a subgraph of Qn [27]. However, T,-I is contained in 
Q,, [4]. To present our result, we need to show that two disjoint 
copies of Tn-l can be found in Q.. This was first demonstrated 
by Praha, rediscovered independently by Bhatt and Ipsen, and then 
rerediscovered by us [W],  [3]. We include the proof for the sake of 
completeness. 

Let S, denote the graph obtained by taking two disjoint complete 
binary tree Tn-l and connecting their roots by a path of length 3. A 
picture of S4 is given in Fig. 2. 

Theorem 7: For n 2 2, S, is a subgraph of Q,,. Furthermore, for 
n 2 3 the roots r and U of the two copies of Tn-l can be labeled so 
that b(r)  and b(u) differ in exactly three positions. 

Proof: Fig. 3 gives labelings which embed S, in Qn for n = 2,3. 
Note that in the latter case the labels along the path r-s-t-u of 

1 
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r S t U r S t U 

n = 3  

Fig. 3. A labeling scheme to embed S,, in Q. for n = 2,3.  

length 3 are 001, 011, 111, and 110, respectively. By induction 
we may assume that S n - l  is isomorphic to a subgraph of &,-I 

with b ( ~ )  = O O l . . .  l ,b(s) = Oil... l ,b( t )  = 111... 1, and 

Now we can find two disjoint subgraphs isomorphic to Sn-l, 
call them S:-l and in Q,, as follows. S:-l is obtained by 
prefixing every label of Sn-l with a 0. Thus, the labels of the 
corresponding path of length 3 are b(r0)  = 0001 . . . l ,  b(so)  = 
0011...1, b ( t o )  = 0111.-.1 and b(uo) = 011.. .10 . If v E S,-I 
is labeled b(v) = ( b , - z b , - 3 " ' b o )  in Qn-l then in we 

= 11...100, 
b(s') = 11...110, b ( t l )  = 11...111, and b(u ) = 101.. .11 . 
A schematic drawing of these subgraphs if displayed in Fig. 4(a). 
Now, the graph S,, is created by letting 

b(u) = 11.e.10. 

let b(v') = (1bob1..-bn-2). In particular, b(r' 

as in Fig. 4(b). Finally the new roots are so and s1 with labels 
001 . . . l  and 11 . . . 10, respectively, which differ in exactly three 
positions. 0 

Theorem 8: T. is subgraph of Ten.  
Pro08 Find a subgraph of Q,, which is isomorphic to S. with 

the path r-s-t-u labeled as in Theorem 7, that is b(r)  = 001.. el ,  
b(s)  = 011...1, b ( t )  = 111 1, and b(u) = 11.. . l o .  Let 
v E V(Qn) be the vertex that b(v) = 101 - e  1. Note that the vertices 
r, s, t, and v induce a 4-cycle. Since TQ,, can be constructed by 
exchanging any two independent edges in any 4-cycle of Q,,, we will 
use the above 4-cycle and construct Ten.  In particular, 

TQn = Qn - { T S , ~ V }  + { T t ,  SV}. 

Clearly, T, = S, + { ~ t }  - {s} is a subgraph of TQ,, (note that 
tu  E(&)  so that the removal of this edge from Q,, causes no 
difficulties). 0 

VIII. ROUTING IN TWISTED N-CUBE 
A hypercube can be converted to TQ. by exchanging two of 

its physical links. Or two extra physical links can be added to a 
hypercube multiprocessor to obtain a topology which has both Q. 
and TQ,, as subgraphs. Note that in the latter case, the graph is 
no longer n-regular, and four nodes will have degree n + 1. In 
both cases, other components of the system should be modified 
accordingly. One major component is the router at each processing 
node. In what follows, we address this issue for both cases. 

Each processor (vertex) in the hypercube multiprocessor has a 
router to handle the interprocessor communication [22]. The function 
of the router may be performed by the processor or by a dedicated 
router chip. In a hypercube multiprocessor, upon receiving a mes- 
sage, a routing tag ( T n - I T n - Z T n - 3  a a .  T O )  is obtained by taking a 
bit-wise Exclusive-oR operation between the router's local address 
(c,-Ic,-z.. cg) and the destination address (d,-ld,-z.. . do) of 
the message. The message can then be forwarded to one of the neigh- 
boring processors through the jth link if r j  = 1 for 0 < j < n - 1. 

To support the TQn topology, the function of the routers should 
be slightly modified. For these routers, the routing tag is computed 
as above. Suppose TQ,, is the canonically twisted n-cube. Let us 
first consider the four routers at vertices U, v, x, and y; we will 
refer to these routers as misted routers. If T , - ~ T , - ~  = 01 then 
the message is forwarded through the (n  - 2)nd link, that is, either 

( b) 
Fig. 4. S,, is constructed using two copies of S, -1. (a) Two copies of S, - I .  

(b)  Constructing S,, using two copies of S, -1. 

uv or xy .  If = 11 then the message is forwarded through 
the (n  - 1)st link, that is, either uy or vx. Note that in this case one 
routing step is saved compared to that in Q.. If T , - I T , , - ~  = 10 then 
the message is forwarded through the (n  - 2)nd link if T~ = 0 for 
all 0 < j 5 n - 3; otherwise, the message is forwarded through 
some jth link with r3 = 1 where 0 5 j < n - 3. Note that in the 
former case, it will take two routing steps rather than one as required 
in Q.. However, this additional routing step may not be necessary if 
the message is forwarded through other links first as in the latter case. 

The function of the remaining 2" - 4 routers will also have to be 
slightly modified in order to take advantage of a possible saving of 
one routing step. If T , - ~ T , - z  = 11 then one routing step can be saved 
by first forwarding the message to the node d , - l d , - z O O .  . . 0, one of 
the four twisted routers, and then the message is forwarded to the final 
destination. If T , - I T , - Z  = 10, then the message has to be forwarded 
through the (n  - 1)th link if there exists only one j (0 5 j 5 n - 3) 
such that rJ = 1. This is to avoid having an additional routing step. 
For all other cases, the message can be forwarded to any jth link so 
long as T~ = 1. 

For the case where two edges (i.e., uy and vx) are added to Q.. 
the routers are modified as follows. For the four twisted routers, 
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now each with n + 1 links, if T ” - I T % - ~  = 11 then the message 
should be forwarded through the added link. Thus, one routing step 
is saved. For all other cases, the normal routing procedure should be 
followed. For the remaining 2” - 4 routers, if T ~ - I T , , - Z  = 11, then 
one routing step can be saved by first forwarding the message to the 
node d,-ld,-200. a 0 ,  one of the four twisted routers, and then the 
message is forwarded to the final destination. 

Although hypercube multiprocessors have been commercially avail- 
able for several years and some routing algorithms have been pro- 
posed, the study of routing algorithms to the global performance of 
communication networks has not been investigated until the recent 
work by [13] and [6]. Performance evaluation of communication 
networks is difficult because there are many parameters involved. 
Among them, the communication patterns, which are dependent on 
the parallel applications, and the communication technologies are 
two major parameters. Further study is needed to evaluate the global 
network performance of the twisted n-cube. 

Ix. CONCLUDING REMARKS 

The hypercube interconnection topology, due to its powerful topo- 
logical properties, has been widely adopted in the construction of 
distributed-memory multiprocessors. In this paper, we have shown 
that by exchanging any two independent edges in any shortest cycle 
of the hypercube, an interconnection topology, namely TQ., can be 
achieved that has some nice properties. 

In summary, the twisted n-cube, T e n ,  has the following properties 
as the n-cube Q.. TQ,, consists of two disjoint Qn-1 subgraphs. Even 
rings and two-dimensional meshes are subgraphs of TQ,,. TQ. is 
n-regular and its vertex connectivity remains n. In addition, TQ. has 
the following unique properties not possessed by Q,,. Any odd length 
ring with 2“ - 1 or fewer vertices is contained in TQ,,. A complete 
binary tree with 2” - 1 vertices, which is a highly demanded topology 
by many applications, is a subgraph of TQ. [7]. The worst case 
number of routing steps is reduced from n to n - 1. Furthermore, 
the average number of routing steps is also ieduced. This implies 
improvement on communication delay which is critical to system 
performance. 

Existing hypercube multiprocessors can be modified to take advan- 
tage of this new topology in two ways. A hypercube can be converted 
to TQ. by exchanging two of its physical links. Second, two extra 
physical links can be added to a hypercube multiprocessor to obtain 
a topology which has both Qn and TQ,, as subgraphs. For example, 
the FPS T-series can be easily twisted [14]. 

The results presented in this paper can naturally give rise to the 
following two graph theoretic questions. 

1) What is the minimum number of edge twistings (that is, 
exchanging two independent edges in any 4-cycle) that can 
be done to Q,, to obtain a graph whose diameter is k less than 
that of Q,,? 

2) What is the minimum number of new edges which can be added 
to Q,, to obtain a graph whose diameter is k less than that of Q,,? 

We have solved problem 1) for k = 1. It is not difficult to prove that, 
for k = 1, the answer to problem 2) is 2 (we have already shown that 
it is at most 2). However, for k > 1, no elegant solution is known 
for either problem. 

Finally, an interesting generalization of our work was proposed 
by Prof. Weigeng Shi of the Department of Electrical Engineering at 
Worcester Polytechnic Institute, which is stated as a conjecture. 

-’ independent edges 
in any ( n  - 1)-cube of an n-cube, n 2 3, so as to obtain a graph 
whose diameter is [log, n1 - 1 less than that of Q,,. 

Conjecture: It is possible to exchange 2 r’og2 
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