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Abstract

Consider lattice paths in Z
2 taking unit steps north (N) and

east (E). Fix positive integers r, s and put an equivalence relation
on points of Z

2 by letting v, w be equivalent if v − w = `(r, s)
for some ` ∈ Z. Call a lattice path valid if whenever it enters a
point v with an E-step, then any further points of the path in the
equivalence class of v are also entered with an E-step. Loehr and
Warrington conjectured that the number of valid paths from (0, 0)
to (nr, ns) is

`

r+s

r

´

n

. We prove this conjecture when s = 2.

1 Introduction

A lattice path is a directed graph whose vertices are elements of Z
2 where

Z denotes the integers. All our lattice paths will have edges which are
unit steps north (N -steps) or east (E-steps). It is well-known and easy
to prove that the number of such paths from (0, 0) to (r, s) is

(

r+s

r

)

.
Given r, s we put an equivalence relation on Z

2 by saying that points
v, w are equivalent if v − w = `(r, s) for some ` ∈ Z. As usual, addition
and scalar multiplication of points are done componentwise. Denote the
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Figure 1: An invalid path for r = 3, s = 2

equivalence class of v = (x, y) by [v] = [x, y]. Call a lattice path P valid
if it satisfies the following condition: Whenever P enters a point v with
an E-step then any future points of P in [v] must be entered by an E-
step. Otherwise P is said to be invalid. Figure 1 shows an invalid path
for r = 3, s = 2. In particular, we can take [v] = [2, 1] and then two
points where the validity condition is violated are shown as circles. Loehr
and Warrington made the following conjecture. (Actually, their original
conjecture was only for the case when r and s are relatively prime. But
it was realized later that the result is true for all r and s.)

Conjecture 1.1 The number of valid paths from (0, 0) to (nr, ns) is

(

r + s

r

)n

.

Ekhad, Vatter, and Zeilberger [1] gave a fully computer-based proof of
the special case r = 3, s = 2 of this conjecture. It is for this reason (and
also at the request of its two human coauthors) that we call this “Shalosh
B. Ekhad’s 10n Lattice Paths Theorem.” Although our demonstration
is very different in nature, being purely human and bijective rather than
inductive, we should mention that some of our ideas came from looking
at the trees generated by Ekhad. Also, while we were writing this note, it
came to our attention that Jonas Sjöstrand [2] has given a bijective proof
of the full conjecture which is similar to ours in some respects but differs
in others.
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Figure 2: The Switching Lemma for r = 3, s = 2

The rest of this paper is structured as follows. In the next section
we will provide three lemmas which will permit us to demonstrate that
our bijection is well defined. These lemmas hold for all r, s. In the final
section, we prove the case s = 2 of Conjecture 1.1.

2 Preliminary Lemmas

We first need to establish some notation. If P is any lattice path and v

is any point, then P + v will denote the translated lattice path obtained
by adding v to every point of P . Note that P is invalid precisely when
there is some ` > 0 such that P and Q = P + `(r, s) intersect where P

enters the intersection with an N -step and Q enters it with an E-step. In
Figure 1, ` = 2.

Given P and a line x + y = i we let vi = vi(P ) be the intersection
of P with this line. Note that this will not necessarily be the ith vertex
of P unless P starts at the origin. We denote the coordinates of vi by
(xi, yi) = (xi(P ), yi(P )) and the edge/step of P into vi by ei = ei(P ).

The next lemma is fundamental to all that follows. The reader may
find it useful to refer to Figure 2 while reading the statement and proof.
Circles mark the points on the lines x + y = i, j and k.

Lemma 2.1 (Switching Lemma) Let P be a lattice path and let Q =
P + (r, s). If there are integers i < k with

xi(P ) > xi(Q) and xk(P ) ≤ xk(Q),
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Figure 3: The Three-Points Lemma for r = 3 and s = 2

then P is invalid.

Proof Since the x-coordinate of a path changes by at most one with
each step, the hypotheses imply that there is an index j with i < j ≤ k

and xj(P ) = xj(Q). If one takes the smallest such j, then we must have
ej(P ) = N and ej(Q) = E. It follows that P is invalid by the remark at
the end of the first paragraph of this section.

Partially order Z
2 componentwise, i.e., (x, y) ≤ (x′, y′) if and only if

x ≤ x′ and y ≤ y′. If P is a path and v is a point then we say that P passes
strictly west of v if there is a point v′ of P with the same y-coordinate as v

satisfying v′ < v. We also define P to pass weakly west of v if for all points
v′ of P with the same y-coordinate we have v′ ≤ v. (We also insist that at
least one such point exists.) Note the difference in the quantifiers between
the two definitions. Passing east, either strictly or weakly, is defined by
simply reversing the inequalities. Many of our geometric arguments will
be based on the following lemma. A path satisfying the hypotheses of
this result is shown in Figure 3.

Lemma 2.2 (Three-Points Lemma) Let u < v < w be three points in
the same equivalence class and let P be a path. Suppose that P passes
strictly west of u, weakly east of v, and weakly west of w. Then P is
invalid.

Proof Among all such triples (u, v, w) satisfying the conditions of the
lemma, we can choose one where u, v are a minimum distance apart,
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Figure 4: The Staircase Lemma for r = 3, s = 2, and n = 3

in which case v = u + (r, s). Now from the possible w’s satisfying the
hypotheses of the lemma with this u, v, pick the one which has minimum
distance from v. Let i and k be the integers such that v and w are on the
lines x+y = i+1 and x+y = k, respectively. Also let Q = P +(r, s). Note
that even though P and Q could intersect on x + y = i + 1, they could
only do so if they entered with an N -step and an E-step, respectively.
So we have xi(P ) > xi(Q). It is also clear from the choice of w that
xk(P ) ≤ xk(Q). Thus we are done by the Switching Lemma.

Given two paths P, Q we say that P is northwest of Q if for every
vertex v = (x, y) of P there is a vertex w = (x′, y′) of Q southeast of v,
i.e., x ≤ x′ and y ≥ y′. The staircase is the path from (0, 0) to (nr, ns)
with steps

S = (ErNs)n.

The dashed path in Figure 4 is the staircase for r = 3, s = 2, and n = 3.
The staircase forms a natural boundary for valid paths. In following the
proof of the following lemma, the reader may wish to consult Figure 4.

Lemma 2.3 (Staircase Lemma) If P is a valid path from (0, 0) to
(nr, ns) then P is northwest of S.

Proof Suppose not. Then since P ends northwest of S, we can pick a
vertex v which is the first vertex of P ∩ S after some vertex of P which
is (strictly) southeast of S. Note that P must enter v with an N -step
and so P passes weakly east of v. Note also that S must enter v with an
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Figure 5: The first case of the bijection with r = s = 2, a = 0, and
b = c = 1

E-step. It follows that we have points u and w in [v] which are on the
lines y = 0 and y = ns, respectively, but that these points are strictly east
of the corresponding points in [0, 0]. Since P begins at (0, 0) and ends at
(nr, ns) which are both in [0, 0], P passes strictly west of u and weakly
west of w. So P is invalid by the Three-Points Lemma, a contradiction.

3 The bijection

Let Vn be the set of all valid lattice paths from (0, 0) to (nr, ns). Then
to prove Conjecture 1.1, it suffices to find, for each n ≥ 2, a bijection
φ : Vn → V1 × Vn−1. To see this, note that every lattice path from (0, 0)
to (r, s) is valid and so |V1| =

(

r+s

r

)

. Iterating this map gives a bijection

between Vn and (V1)
n. And the latter is clearly counted by

(

r+s

r

)n
.

Proof (of Conjecture 1.1 for s = 2) We construct the bijection φ

when s = 2. Given P ∈ Vn we wish to construct φ(P ) = (P ′, Q′) ∈
V1 × Vn−1. By convention, we will consider P ′ as going from (0, 0) to
(r, s) and Q′ as going from (r, s) to (nr, ns). (Strictly speaking, Q′ is
not in Vn−1 since it doesn’t begin at the origin. But the translation of
a valid path is valid, so no harm is done.) Consider the prefix of P up
to and including the second N -step which is of the form EaNEbN for
some a, b ≥ 0. By the Staircase Lemma, we must have a + b ≤ r. Now
consider the suffix of P following the last N -step. Depending on whether
the combined number of E-steps in the prefix and the suffix is at least r or
less than r, we have two cases. Note in the first case that, since a+ b ≤ r,
there is a c ≥ 0 with a + b + c = r such that the suffix has at least c steps
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in it.

(1) For some path Q we have

P = EaNEbNQEc where a + b + c = r.

(2) For some path Q we have

P = EaNEbNQNEc where a + b + c < r.

In the first case, we let

P ′ = EaNEbNEc and Q′ = Q + (c, 0).

An example of such a path P and its image is given in Figure 5 where the
circles indicate the endpoints of Q and Q′. To show that the map and
its inverse are well-defined, we will need the following concept and result.
Given two paths A and B, a blocked edge is an N -edge or an E-edge of
Z

2 which can not be on any valid path having A as its prefix and B as
its suffix. Such edges will be marked with X’s in our figures.

Proposition 3.1 In case (1), the path Q′ is valid and begins with at most
r − b E-steps.

Proof Clearly Q is valid since it is a subpath of a valid path. So Q′ is
also valid, being a translate of Q.

For the second statement, suppose to the contrary that Q′ begins with
more than r− b E-steps. Then Q contains a point (d, 2) where d > r + a.
But now it is impossible for P to get to (rn, 2n). This is because the
initial E-steps of P produce a sequence of blocked N -edges starting at
points (x, y(x)) for every x with d ≤ x ≤ rn, where 2 ≤ y(x) < sn and
y(x) is a weakly increasing function of x. So we have a contradiction.

In the second case, we will show that Q = REr+1 for some path R.
Assuming this for the moment, we can define

P ′ = EaNEr−a−cNEc and Q′ = Ea+b+c+1NR′

where R′ = R + (c + r + 1, 1). Figure 6 illustrates this case with the
endpoints of Q and Q′ being marked with closed circles while those of R

and R′ are marked with open ones.
We now verify the claim about Q and the fact that Q′ is valid.

Proposition 3.2 In case (2), the path Q ends with at least r+1 E-steps.
In addition, Q′ is valid.
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Figure 6: The second case of the bijection with r = s = 2, a = b = 0, and
c = 1

Proof We prove the first statement by contradiction. Note that because
of the final N -step in P , any E-edge into a vertex of the class [r − c, 2] is
blocked. Now the subpath QN of P passes strictly west of u = (r − c, 2)
since a + b + c < r. This subpath also ends at w = u + (n− 1)(r, 2). But
if Q ends with fewer than r + 1 E-steps then QN passes weakly east of
v = u + (n − 2)(r, 2) since the E-edge into v is blocked. This contradicts
the Three-Points Lemma as long as n ≥ 3. For n = 2, just note that P

would have to contain points both east and west of the blocked edge into
(r − c, 2) which is impossible.

Since R′ is a translation of a valid path R, it is valid itself. So the only
way Q′ could be invalid is if one of the E-steps in the prefix Ea+b+c+1 is
in conflict with an N -step in R′. Note that such an N -step must be out of
a point of some class [x, 3] with x ≥ 2r + 1. Suppose that this is the case
and consider what this implies about the original path P . In particular,
consider the class [r−c, 2] as in the previous paragraph. Using the same u

and w as before, the supposed N -step forces P to contain a point weakly
east of some v in this class with u < v < w. But then P must pass weakly
east of v since the E-edge into v is blocked. So the Three-Points Lemma
(or a direct argument when n = 2) provides the necessary contradiction.

We now describe the inverse map. Suppose we are given (P ′, Q′) ∈
V1 × Vn−1 and write

P ′ = EaNEbNEc and Q′ = EdNR′

for some path R′. Then, again, we have two cases to describe P =
φ−1(P ′, Q′).
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1. If d ≤ r − b then let

P = EaNEbNQEc where Q = Q′ − (c, 0).

2. If d > r − b then let

P = EaNEb+d−r−1NREr+1NEc where R = R′ − (r + c + 1, 1).

It is easy to verify that this is a case-by-case inverse for the map φ.
Furthermore, the demonstration that φ−1 is well defined is quite similar
to the one just given for φ, so we omit it. This completes the proof of
Conjecture 1.1 when s = 2.

We can say a little more about the case s = 2. Let Φ : Vn → (V1)
n be

the map obtained by composing φ with itself n−1 times. Consider a path
P ∈ Vn and let Φ(P ) = (P ′

1, . . . , P
′

n). Then directly from our definition
of φ, we see that P and P ′

1 begin with the same number of E-steps before
the first N -step. So given a with 0 ≤ a ≤ r, Φ restricts to a bijection
between the P with prefix EaN and the n-tuples (P ′

1, . . . , P
′

n) where P ′

1

satisfies the same restriction. But, as we mentioned before, the validity
condition imposes no restriction on paths in V ′

1, so the number of such P ′

1

is clearly r − a + 1. Thus we have proved the following corollary.

Corollary 3.3 Suppose s = 2. Given a with 0 ≤ a ≤ r, the number of

P ∈ Vn with a prefix of the form EaN is (r − a + 1)
(

r+2

2

)n−1
.
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