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We present an analog of the Robinson-Schensted correspondence that applies to 
shifted Young tableaux and is considerably simpler than the one proposed in [B. E. 
Sagan, J. Combin. Theory Ser. A 27 (1979), l&18]. In addition, this algorithm 
enjoys many of the important properties of the original Robinson-Schensted map 
including an interpretation of row lengths in terms of k-increasing sequences, a jeu 
de taquin, and a generalization to tableaux with repeated entries analogous to 
Knuth’s construction (Pacific J. Math. 34 (1970), 709727). The fact that the 
Knuth relations hold for our algorithm yields a simple proof of a conjecture of 
Stanley. 0 1987 Academic Press, Inc. 

1. INTR~OUCTION 

The Robinson-Schensted correspondence [R, Se] is at the heart of many 
combinatorial results concerning representations of the symmetric group 
yn. This map gives a simple bijective proof of the degree formula (cf. 
Corollary 3.2 below) and has been generalized by White [W2] to prove 
the orthogonality relations for the complete character table. Another 
generalization due to Knuth [K] provides a combinatorial proof of a fun- 
damental identity involving Schur functions. White [Wl ] and Thomas 
[T2] have shown that there is a connection between the Robinson- 
Schensted algorithm and the Littlewood-Richardson rule [LR] which 
computes induced characters. In addition, the algorithm is equivalent to 
Schiitzenberger’s jeu de taquin [Still and can be used to compute the 
lengths of monotone subsequences of a permutation [Se, Gr]. 

In [S] we proposed an analog of the Robinson-Schensted map involv- 
ing shifted Young tableaux. The main purpose of this construction was to 
give a bijective proof of the degree formula for projective representations of 
4. Unfortunately the analog was fairly complicated and did not seem to 
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have any of the other nice properties of the original correspondence. In this 
paper we will present a new shifted Robinson-Schensted map which is not 
only much simpler but also reflects many of the important aspects of its 
parent algorithm. In particular we will use the Knuth relations for the 
shifted correspondence to give an almost trivial proof of a conjecture of 
Stanley that had withstood attack by other means. 

It should be mentioned that many of these results have also been 
obtained independently by Worley and appear in his MIT thesis [Wo]. 
Worley’s methods, however, differ substantially from our own and his work 
should be consulted as an alternative approach to this subject. 

2. DEFINITIONS AND NOTATION 

Let P denote the set of positive integers. Recall that a partition of n E P is 
a positive integral vector 1= (1,) &,..., A,) such that il, > 1, > . . . 2 1, and 
C Ai = n. We write A I-n to show that ;Z is a partition of n. The length of A, 
r(J), is the number of components 1. A partition of n is strict, written 1 + n, 
if A, > A2 > . ‘. > A,. 

Given a strict partition A + n the corresponding shifted shape A is an 
arrangement of n cells in I(1) rows with row i containing Aj cells and inden- 
ted i - 1 spaces. For example, if 1= (4,2, 1) then the shifted shape of 1 is 
shown in Fig. 1. We denote by (i, j) the cell in the ith row and jth column 
of the shifted shape so that 

A=((i,j)j l<i<I(1)andi<j<i+&l}. 

A set of cells that will play a crucial role in the sequel will be the diagonal 
{(i, i) EL}. All other cells in 1 are off-diagonal. 

A (partial) shifted Young tableaux P of shape I is an injection P: A+ P 
which is increasing along rows and columns. Informally we think of P as a 
placement of distinct elements of P in the cells of A and let pii denote the 
element of P in cell (i, j). If we wish to refer only to the shape of P we will 
write expressions like (i, j) E shape P. Sometimes it will be convenient to 
consider P as merely the set of entries pii so that we can use notation such 

FIG. 1. The shifted shape (4,2, 1). 
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as x E P to mean x =po for some (i, j). By way of illustration, one possible 
shifted tableau of shape (4, 2, 1) is 

1 3 5 8 
P= 41. 

9 

In this case (2,3) E shape P but (2,4) q! shape P. Also 3 E P because plz = 3 
but 2# P. 

A partial shifted tableau is called standard if the numbers in the cells are 
precisely 1, 2,..., n, where 3, k n. The number of standard shifted tableaux of 
shape I is denoted g,. As an example, i j 3 and l : 4 are the only stan- 
dard shifted tableaux of shape (3, 1) so gC3,i, = 2. 

In the following sections it will be useful to extend the positive integers 
to P, = P u ( cc } by adjoining a new symbol which is greater than every 
element of P. It is now possible to embed a shifted tableau P in the full 
shifted plane {(i, j) 1 1 d i 6 j} by setting pii = co for (i, j) 4 1. We will 
assume from now on that all our tableaux have been so embedded without 
specific mention. However, we will often omit the extra cc’s when working 
out examples. 

All our algorithms will be written in a pidgin Pascal similar to that in 
Aho, Hopcroft, and Ullman [AHU]. There are two advantages to this 
approach. First of all, it will provide a rigorous description of the 
algorithms and leave us free to present a more informal synopsis in the 
text. Second, it will then be easier to code these procedures on an actual 
computer and investigate further properties of these algorithms. 

3. THE SHIFTED ROBINSON-SCHENSTED ALC~RITHM 

Although the original Robinson-Schensted algorithm was first dis- 
covered by Robinson [R], our shifted analog will more closely follow the 
presentation of Schensted [Se] and we will henceforth use only the latter 
name. The function BUMP is fundamental to algorithms of this sort. It 
takes as input an integral vector v (padded with co’s) and an element x E P. 
The function scans the vector to find the first v[i] larger than x and 
replaces v[i] by x. Note that BUMP returns the value removed from v and 
also that if v is weakly increasing from left to right then after applying 
BUMP, v will still weakly increase. 

function BUMP(x: P; var v: array of P): [Fp; 
var 

i: P; 
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begin 
(1) i: = FIRST(v); (FIRST returns the index of the first component of v 
(2) while x>v[i] do i:= i+ 1; 
(3) BUMP := v[i]; 

(4) v[i] := x 
end; {BUMP} 

Given a shifted tableau P and a positive integer x q! P we can insert x 
into P to form a new shifted tableau as follows. Bump y, =x into the first 
row of P which will remove an element y,. Now we try to bump y, into the 
second row and continue until one of two things happens. Either some y, 
will replace an co at the end of a row and come to rest there, called a 
Schensted move, or y, will replace some non-oo diagonal element of P, a 
non-Schensted move. In the non-Schensted case we continue the bumping 
process along the columns: yk+ r is placed in column k + 1 and so on until 
some y comes to rest at the end of a column. The function INSERT is 
coded below. It returns the new tableau and, as a side effect, sets a boolean 
variable schen indicating whether the insertion was a Schensted move or 
not. The reader can easily verify that the tableau property (increasing rows 
and columns) is preserved by INSERT. 

function INSERT(x : P; var P: SHIFT-TAB; var schen: boolean): 
SHIFT-TAB; 

var 
k:P; 
Y, 9 Y2,-, Y, : e 

begin 
(1) schen : = true; 
(2) y, := x; 
(3) k:= 1; 
(4) repeat begin 
(5) ; z ;;TUMP(yk, row k of P); 
(6) : 

end {repeat } 
(7) until (yk= 00) or (yk--l = Pk-I,k--l); 
(8) if yk = co then INSERT := P 
(9) else begin 

(10) repeat begin 
(11) yk+ 1 : = BUMP(y,, column k of P); 
(12) k:= k+l 

end {repeat } 
(13) until y, = 00 ; 
(14) schen : = false; 
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(15) INSERT:= P 
end {else} 

end; (INSERT} 

If insertion of x into P yields P’ we will write I,(P) = P’ for short. As an 
example, the reader can verify that 

is a Schensted move and that 

is non-Schensted. 
We need one more concept before we can state the shifted Schensted 

correspondence. A shifted tableau is called circled if some of its elements 
have been distinguished by having rings placed around them, i.e., the 
entries of our tableau are taken from the set P” = { (iJ, 1, 0,2, 0, 3,...} 
with the total order (iJ < 1 < @ < 2 < @ < 3 < . . . and the restriction that 
@? and m cannot both occur in the tableau. When we wish to refer to an 
integer without specifying whether it is circled or not we will write Q . This 
convention will only apply to variables near the middle of the alphabet. 
With letters near the end, such as x and y, no assumption is to be made 
about whether the integers they represent are circled or not unless the con- 
trary is specifically stated. Thus we could have x = @ or x = n but n itself 
will always stand for an uncircled integer. 

THEOREM 3.1 (shifted Schensted correspondence). There is a bijection 
between permutations 71 EC!& and pairs (P, Q) of standard shifted tableaux 
such that shape P = shape Q k n and Q has a subset of its off-diagonal 
elements circled. 

Proof: If 7r = x1 x2 *. . x, is one-line notation then we can find the 
corresponding pair (P, Q) using the procedure SHIFTED SCHENSTED. 
Starting with P and Q both empty, we insert the elements xi, x1,..., x, into 
P. After inserting xk, a new cell (i, j) will become filled at the end of a row 
and column of P. We then set 

if the insertion of xk was a Schensted move 
if the insertion of xk was a non-Schensted move. 
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Because R E ‘$n we are assured that P and Q are standard with n cells. Also 
our choice of the cell (i, i) above ensures that at every stage shape 
P= shape Q. Finally note that a non-Schensted move must involve the 
bumping of a diagonal element into the next column so qii will never be 
circled for any i. 

procedure SHIFTED-SCHENSTED (x1 x2.. . x, : PERMUTATION); 
var 

k:P; 
schen : boolean; 
P : SHIFT-TAB; 
Q : CIRC-SHIFT-TAB; 

begin 
P:= /zr; 
Q:= 0; 
for k : = 1 to n do begin 

P := INSERT (xk, P, schen); 
(i, j) : = shape P - shape Q; 

. {shape Q is the same as shape P before the insertion} 
if schen then qii : = k else qii : = @ 

end {for} 
end; { SHIFTED-SCHENSTED} 

To show that this map is a bijection we construct its inverse step-by-step. 
The algorithms BUMPOUT, DELETE, and SHIFTED-SCHENSTED- 
INV accomplish this task. 

functio? BUMPOUT (x: IF’; var v: array of P): P; 
{ BUMPOUT will only work properly if v[ i] < x for some i} 
var 

i: P; 
begin 

i : = LAST (v); 
while x<v[i] do i := i- 1; 
BUMPOUT : = v[i]; 
v[i] := x 

end; { BUMPOUT} 

function DELETE ((i, j) : CELL; var P : SHIFT-TAB; 
var schen : boolean) : P; 

{DELETE returns the element removed from P} 
var 

k, 1, Y, v..., Y,: ‘T 
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begin 
if schen then k : = i else k : = j; 
{k represents the number of BUMPOUTS needed} 

yk I= pq; 

if not (schen) then {in this case we must 
start on the columns} 

repeat begin 
k := k- 1; 
yk : = BUMPOUT ( yk + l, column k of P) 
end {repeat } 

unti1 Yk + 1 = Pkk 

for 1: = k - 1 downto 1 do {in both cases continue 
along the rows} 

y, : = BUMPOUT ( yl+ r, row 1 of P); 
DELETE : = y, 

end; {DELETE} 

procedure SHIFTEDSCHENSTED-INV (P: SHIFT-TAB; 
Q : CIRC-SHIFT-TAB); 

var 
k: P; 
XlXZ”‘X,. . PERMUTATION; 

begin 
for k : = n downto 1 do begin 

(i, j) : = cell containing q in Q; 
if qii = k then xk : = DELETE ((i, j), P, true) 

else x k : = DELETE ((i, j), P, false) 
end; {for} 

end; (SHIFTED-SCHENSTED-INV} 

If rc is mapped to (P, Q) by the bijection above then we say that P is the 
(shifted) P-tableaux corresponding to n and write P= P(z). A similar 
definition applies to Q. As an example we have listed the tableaux con- 
structed when SHIFTED-SCHENSTED is applied to the permutation 
rc = 2 6 5 1 7 4 3. The inverse construction is obtained by reading the list 
right to left 

p 2, 
2 

6, 
2 

5, 
1 2 12 5 

5, 7, 
1 2 4 

7, 
12 3 6 7 

= 
6 6 6 5 6 45 

P(7c) 

Q: 1, 12, 12, 12@,12@5, 12@5, 12@5@ = 
3 3 3 3@ 3@ 

Q(n). 

As an immediate corollary of this bijection we have a combinatorial 
proof of the degree formula for projective characters of gn. 
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COROLLARY 3.2 [Su]. n != IiF,, 2’-‘(‘)g:. 

Proof: n! is the cardinality of 4 while g: counts pairs of standard shif- 
ted tableaux of the same shape. The factor of 2”-‘(‘) accounts for the 
possible circlings of Q. 1 

4. THE LIFTING LEMMA 

We will now relate the shifted Schensted correspondence to the ordinary 
(unshifted) one. In so doing we will prove a lemma that will permit us to 
lift many of the properties of the original algorithm to this new setting. 
First of all we recall some basic facts about left-justified tableaux. 

Given a partition p = (pl, p2,..., pLI) of n, the shape of p is an array of n 
cells in I(p) left-justified rows with row i continuing pi cells. Such a shape 
will sometimes be called “left-justified,” “ordinary,” or “unshifted” to dis- 
tinguish it from a shifted shape. The unshifted shape of p = (4, 2, 1) is 
shown in Fig. 2. For reasons that will become clear shortly, the row indices 
start at 1 while the column indices start at 0 so that 

A (generalized) Young tableau R of shape p is a map R: p -+ P which is 
weakly increasing along rows and strictly increasing along columns. A 
particular Young tableau of shape (4,2, 1) would be 

1 1 2 2 
R=2 3 . 

4 

To avoid confusion we will always use 1, P, and Q when referring to shifted 
shapes and tableaux, while usually reserving p and R for their unshifted 
cousins. 

Schensted’s correspondence can be constructed using insertion by either 
rows or columns. However when it is applied to generalized tableaux, as 

FIG. 2. The left-justified shape (4, 2, 1). 
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was done by Knuth [K], the column bumping must be modified to 
preserve column strictess, i.e., .X must bump the first element larger than or 
equal to itself in the given column. This gives us a new function BUMPEQ 
which differs from BUMP only at line (2) must be changed to 

(2’) while x>v[i] do i:= i+ 1; 

Row insertion of x into a left-justified tableau R is like performing a 
Schensted move in the shifted case. 

function ROW-INSERT (x: P; var R: GEN-TAB): GEN-TAB; 
var 

k: P; 
Yl , Y,  Y..., y, : p 

begin 
(1) y, := x; 
(2) k:= 1; 
(3) repeat begin 
(4) yk+, := BUMP (yk, row k of R); 

(5) k:= k+l; 
end {repeat} 

(6) until y, = 00; 

(7) ROW-INSERT : = R 
(8) end; {ROW-INSERT} 

If applying ROW-INSERT to an element x and tableau R yields a 
tableau R’ then we write R,(R) = R’. Note that R’s denoting row insertion 
will always bear subscripts while R’s denoting tableaux will never have 
them. 

Column insertion of x into R is done by the function COGINSERT 
whose code is exactly like that of ROW-INSERT with line (4) replaced by 

(4’) y, + i : = BUMPEQ (yk, column k - 1 of R); 

and with ROW changed to COL everywhere. Our shorthand for this 
operation will be C,(R) = R’. The fundamental lemma relating these two 
operations is 

LEMMA 4.1 [Se]. Row and column insertion commute, i.e., for any 
tableau R and x, y E P: 

Rx0 C,(R) = cyoRx(R). I 

If 0=x,x2”’ x, is any sequence of positive integers then the ordinary 
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Knuth-Schensted correspondence associates with o a pair of tableaux 
whose first member is 

This tableau is called the R-tableau corresponding to IS. R can also be built 
up by column insertions. In fact Lemma 4.1 yields 

COROLLARY 4.2 [Se]. R,“...R,,R,,(0)=C,;..C,“~,C,“((25). 

The key concept connecting left-justified and shifted tableaux is that of a 
shift-symmetric tableau. Specifically, a shift-symmetric tableau is a 
generalized Young tableau R such that R,= Rji_ i for all i>j3 1, e.g., 

1 1 2 4 
R=2 5 5 . 

4 

The shift-symmetric tableaux are exactly those obtained by taking a par- 
tially shifted tableau P, transposing P, and then glueing together P and P’ 
along the diagonal. In the example above 

P= 
1 2 4 

s * 

Given tableaux P and R related in this way we write P = fi (this is 
because the monomials corresponding to P and R satisfy this equation; see 
Sect. 8). 

The next lemma is crucial to the rest of our discussion as it relates the 
shifted insertion operator to the two unshifted ones. Intuitively it says that 
the insertion of x into a shifted tableau is equivalent to both row and 
column inserting x into the corresponding shift symmetric tableau. The row 
bumping portion of Z, corresponds to the first half of R, (we cannot see the 
second half because it is “below the diagonal”) while the column bumping 
portion, if any, corresponds to the second half of C, (the first half being 
obscured). 

LEMMA 4.3 (Lifting Lemma). 
P = fi implies Z,(P) = 

Given a shifted tableau P and x $ P then 
C, R,(R). Equivalently, the following diagram 

commutes 
L P ____+ P’ 

1 square 

R CA R’ x x 
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ProoJ: There are two cases. 

Case 1. I, does not displace any diagonal element, finite or infinite. If I, 
applied to P causes elements to be bumped into cells (l,j,); (2, j,);...; 
(k, j,) then R,(R) causes the same elements to be bumped into the 
corresponding cells. Finally, C, causes these elements to be bumped into 
cells ( j, , 0); ( j,, 1 );...; ( j,, k - 1) and the lemma follows. 

Case 2. I, causes the displacement of a diagonal element. (Note that this 
case includes both Schensted moves that end on the diagonal and all non- 
Schensted moves.) Let the cells disturbed by Z, be (1, jr); (2, j,);...; (d, d); 

(id+ I) d + 1 );...; (ik, k). The insertion R,(R) starts with cells (1, jr);...; 
(d- 1, j,-,) but when y, bumps into row d it will replace rddp,, since 
y, < rdd = rdd- r and yd > rd- Id = rdd- 2. Now yd+ 1 is the same as it was for 
Z, and is bumped into row d + 1. Also the portion of row d + 1 of R con- 
taining elements greater than yd+ I (the only ones yd+ r can bump) is the 
same as the corresponding portion of column d+ 1 of P. Hence R, con- 
tinues with the correct elements through the correct cells (d+ I, 
id+, - 1 );...; (k, ik - 1). 

When performing C,, note that although the zeroth column of 
R’ = R,(R) many differ from the zeroth column of R ( = first row of P), the 
only elements changed will be greater than the one which x must displace. 
Hence y, = x enters cell (jr, 0) as desired. This continues to happen until 
y, is to bump an element from column d - 1 at which point y, = rLd- r so 
that yd will replace r&d- r and we will have yd+ I = r& 1. Hence yd+ r = yd 
will bump back onto the diagonal in the dth column of R’ where it should 
be, to start the bumping which corresponds to the column insertion 
portion of Z,. 1 

Given rr = x,x*.. . x,, let E = x, . . . x2x, and consider the concatenation 
RR=x,“‘x~x~x~x*“‘x,. 

COROLLARY 4.4. For 716%“: P(n)=,/R(M). 

Prooj With n as above we have 

P(n) = Ix, . . . Wx,(Qo 

= &JL- ’ C&,(0) by the lifting lemma and induction 

= ,/Rxn . . . R,, C, . . . cJ0) by Lemma 4.1 

= JR,. . . R,, R,, . . . RJ0) by Corollary 4.2 

=J@zj. 1 

Thus the behavior of the shifted P-tableau corresponding to n will mirror 
that of the unshifted R-tableau for the palindrome ii~. 
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5. GREENE'S THEOREM 

In his original paper [Se], Schensted gave an interpretation of the 
lengths of the first row and column of an R-tableau in terms of increasing 
and decreasing subsequences of the corresponding permutation. Later 
Greene [Gr] extended this interpretation to the whole shape as follows. 

Given a sequence of positive integers o = x,x* .. . x, we say that CJ is 
strictly k-increasing if o is the union of k subsequences, each of which is 
strictly increasing (equivalently, contains no decreasing subsequence of 
length k + 1). Note that “l-increasing” is the same as “increasing.” Weakly 
k-increasing, strictly k-decreasing, and weakly k-decreasing sequences are 
defined analogously. Also let aJo) and d,(a) denote the lengths of the 
longest weakly increasing and strictly decreasing subsequences of (T respec- 
tively. For example, c = 314159265 h as a 2-increasing subsequence 
(r = 3 1415925 = 3459 u 1125 which is of maximal length (since o itself is not 
2-increasing) so a2(c) = 8. 

THEOREM 5.1 [Gr]. Consider (T E P” and suppose the shape of R(a) is 
p= (pl, ,u2 ,..., pr). Then for all k<n 

where p’ = (pi, p;,..., pL) is the conjugate of p, i.e., pi is the length of the jth 
column of p. 1 

The analog of this result for shifted tableaux is 

COROLLARY 5.2. Consider n E ~9~ and suppose the shifted shape of P(n) is 
1 = (A,, 1, )...) A,). Then for all k <I 

ak(77n)=A,+122+ ... +Ak+ 

k 
dk(777c)=A,+A2+ --- +&+ 2 

0 
. 

Furthermore for k > I we have 

a,(En)=l,+ .-* +I,+I;+,+ **. +&+ 
l+l ( > 2 

d,(nn) = Iz, + 

where A; is the length of the jth column of the shifted shape. 
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Proof: If R = R(Crc) then by Corollary 4.4, R has shape 
(A, + 1, A2 +2 ,..., %,+ Z, &+ ,, A;+, ,..., Ah) and conjugate shape 
(A,, A2 + l,..., A,+ I- 1, n;, A;, , ,..., A&). Now apply Theorem 5.1. 1 

Note. (1) Here I’ = (Ai, 1; ,..., Ad) is not the usual conjugate of 1. 

(2) We have implicitly used the lifting lemma in the proof of 
Corollary 5.2 since Corollary 4.4 was proved using its aid. 

We can use these ideas to explain all the entries of a tableau and not just 
its shape. Given any tableay R (shifted or not) with largest part m then R 
determines a sequence of tableaux (R(l), R(‘),..., R’“‘= R), where R”“ is the 
tableau formed by all the elements up to size k in R, i.e., 

RCk’= {rOE R ( ru<k}. 

R also has an associated shape sequence ($“, ,uc2’,..., ,@‘), where 
p(k) = shape RCk’. If, say, 

1 1 2 5 
R=3 4 5 6 

9 

then the associated tableau and shape sequences are 

11 112 112 1125 1125 
(R”’ 3 R(2) 3 R(3) ,..., R@‘, RC9’) = , , 3 ,..., 3456, 3456 

9 

(p(I), p(2), /d3’)...) P’, pt9’) = ((2), (3), (391 ),...v (4>4), (494, 1)). 

Clearly the shape sequence uniquely determines R and vice versa (in fact, 
some authors prefer to define tableaux in terms of their shape sequen- 
ces [Ml). 

Similarly, given (T = x1 x2 . . X, E P” with largest element m we have an 
associated sequence of subsequences (o(l), c(~),..., rrcm)), where 
a(k’=X. x. . . . 

12 
(I’, &, g(3) 

xi, consists of all xi < k. For o = 314159265 we have 
(0 ,..., a@‘, d9’) = (11, 112, 3112,..., 31415265, 314159265). The 
relationship between these concepts is given by 

PROPOSITION 5.3. The R-tableau j>r a sequence o E P” with greatest 
element m satisfies R(a) (k) = R(dk’) for all k < m. 

ProoJ This is any easy reverse induction using the fact that if a largest 
element moves during an insertion it is always the last to be bumped. 1 
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COROLLARY 5.4. The P-tableau for 71 E %,, satisfies 

P(R)(~) = P(n(‘)) for all k <n. 

Proof 

P( 7c)(k) = Jgzj’k’ by Corollary 4.4 

= ,/m by Proposition 5.3 

= P(n’k’) by Corollary 4.4 again. 1 

75 

Now for EEL,, we let a(n) = (a,(%x), a,(iin),..., a,(i/z)) and define the 
Greene inoariant of x to be the vector G(rc) = (a(rr(“), a(rrc2’),..., a(rr’“‘)). To 
illustrate, if rc = 2143 then G(R) = ((2) (3, 4), (4, 5, 6) (4, 7, 8)). This is 
similar to, but not exactly the same as, the Greene invariant as defined by 
Worley [Wo]. We can now characterize those permutations having the 
same P-tableau in terms of their Greene invariants. 

THEOREM 5.5. Given x, ~JE C$ then P(x) = P(o) if and on/y if 
G(n) = G(o). 

Proof: P(n) = P(a) if and only if P(x) and P(a) have the same shape 
vector (A(“, A(‘),..., A@)). But Atk’ = shape P(Z)(~) = shape P(dk’) from 
Corollary 5.4 and shape P(d“‘) = shape P(@)) is equivalent to a(nck)) = 
a(ack’) by Corollary 5.2. Since this holds for all k, the theorem follows from 
the definition of G(n). 1 

In the next two sections we will give two more characterizations of those 
permutations having the same P-tableau. 

6. THE JEU DE TAQUIN 

Schiitzenberger’s “jeu de taquin” or “teasing game” [Siil, Sii2] can be 
described as follows. Given left-justified shapes p1 and l2 with p2 G p,, the 
skew shape p1 --p2 is just the set-theoretic difference. If p1 = (4,2, 1) and 
pc12 = (1, 1) then the unshaded cells in Fig. 3 are the skew shape pL, -p2. 

FIG. 3. The skew shape (4.2, 1) - (1, 1). 
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A corner cell of a shape p in any (i, j) such that (i + 1, j), (i, j + 1) 4 ~1, 
i.e., (i, j) is at the end of a row and column of p. In the example above the 
corner cells of ~1~ are (1,4), (2, 2), and (3, 1 ), while pz has corner cell (2, 1). 

As is to be expected, a skew Young tableau R of shape pz -p, is a 
function R: pL1 - p1 -+ IP with the same row and column restrictions as for 
non-skew tableaux. Given R and any corner cell (i, j) of p2 the function 
MOVE creates a new skew tableau by filling (i, j) with either the element 
directly below or to the right, depending upon which is smaller. This action 
is called a slide. MOVE then proceeds to slide another element into the 
resulting hole until the empty cell propagates to a corner of p, which is 
removed from R. It is easy to verify that MOVE preserves the (skew) 
tableau property 

function MOVE (var(i, j): CELL; varR: SKEW-TAB) : SKEW-TAB; 
var 

r: P; 
temp : CELL; 
pl, pz : PARTITION; 

begin 
(1) pL1 -pL2 := shape (R); 
(2) p2 := Lb-(i,j); 
(3) ifrii+l<rj+ljthen temp:= (i,j+l) else temp:= (i+l,j); 
(4) r:=r . temp 3 
(5) while r( ) 00 do begin 
(6) r.:= y’ 

(7) (i, >) :L temp; 

(8) ifriJ+~<ri+lj then temp : = (i, j + 1) else temp : = (i + 1, j) 
(9) r’= r 

end;’ { wiic} 
(10) pl := pl-(i,j); 

end; {MOVE} 

A diagonal strip in the skew shape with cells (n, 0), (n- 1, l),..., 
(1, n- 1). Given a sequence c=x,x2 . . . x, E P”, place the elements of 0 in 
a diagonal strip tableau R by setting rnei+ ,,i- 1 = xi for i = 1, 2 ,..., n. We 
then play JEU-DE-TAQUIN by choosing corner squares at random and 
moving into them until R becomes a non-skew tableau. For example, if 
0 = 3141 then a typical game is shown in Fig. 4. 

procedure JEU-DE-TAQUIN (a : SEQUENCE); 
var 

R : SKEW-TAB; 
pl, ~1~ : PARTITION; 
(i, j) : CELL; 
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begin 
R: diagonal strip corresponding to o; 
pi - p2: = shape(R); 
while p2 ( ) IJ~ do begin 

(i, j) : = random corner cell of p2 ; 
MOVE ((i, j); R) 

end (while } 
end; (JEU-DE-TAQUIN } 

If applying JEU-DE-TAQUIN to 0 yields a tableau R then we write 
J(C) = R. It is not clear that J is well defined, however. 

THEOREM 6.1 [ Sii2, Tl 1. For any o E IFD” the tableau J(o) is independent 
of the order in which the corner cells are filled and in fact J(a) = R( cr). 1 

The shifted analog of a diagonal strip consisting of cells (n, n), 
(n - 1, n + l),..., (1,2n - 1). Starting with n E 9n in a shifted diagonal strip, 
the shifted jeu de taquin is virtually identical to the unshifted one for 
sequences. The only difference is that, when sliding into a diagonal cell 
(i, i), there is no element in cell (i + 1, i) so we automatically use the 
(i, i + 1) entry. Thus we need only change the code of MOVE at lines (3) 
and (8) to read 

if (i=j) or (rij+l<ri+?i ) then temp : = (i, j + 1) else temp : = (i + 1, j) 

If rr reduces to P under shifted jeu de taquin we write SJ(rc) = P. 

THEOREM 6.2. For any n E ‘$, the shifted tableau SJ(n) is independent of 
the order in which the corner cells arefilled and in fact SJ(rc) = P(n). 

1 

4 P 1 

3 

1 

14 -IF 3 

- 

FIG. 4. The jeu de taquin. 
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Proof: Let P be the shifted diagonal strip for 7c and construct R by tak- 
ing the diagonal strip for 5n and applying the MOVE operation to cells 
(n, n - 1 ), (n + 1, n + 2) ,...) (2n - l,O). Thus P = fi with P and R reducing 
to SJ(rr) and J(%c) under their respective jeux. If we can show that SJ(n) = 
@ we will be done since e = dm = P(x) by Theorem 6.1 
and Corollary 4.4 

By induction, it suffices to show that if P = fi at some stage of the 
game and we move from P to P, then we can make moves in R to form R, 
so that P, = A. Let the move in P fill cell (i, j) and make the moves in 
R that till (i, j) and (j, i- 1). If the move in P never passes through a 
diagonal cell then clearly P, = & holds. 

If diagonal cell (k, k) becomes empty in P then pkk + 1 moves into it. Now 
in R, the move to fill (i,j) will cause (k, k) to become empty. But by shift- 
vmmetry rk + Ik = rk + lk + 1 ’ rkk + I so rkk + i will slide into Cell (k, k) as it 
should. This will continue to happen at all further diagonal cells on the 
path of this move. Hence in R’ = MOVE(R, (i, j)) we see that R’ restricted 
to {(i,j) I jai> 1) is just P,. 

Now consider filling (j, i- 1) in R’. When the corresponding sub- 
diagonal cell (k, k - 1) becomes empty then by shift-symmetry and the 
effect of the first move r’ ktlk-l=rk+lk~I=rkk+l=r;k. Thus r; + ,k _ , will 
slide into (k, k - 1) to preserve column-strictness and this move will stay 
below the diagonal sliding along the mirror image of the (ij) slide. As 
before, P, = A. 1 

As an immediate corollary we have our second characterization of 
permutations having the same P-tableau. 

COROLLARY 6.3. 
SJ(n) = SJ(o). 

Given IT, Q E $, then P(z) = P(o) if and only if 

7. KNUTH EQUIVALENCE 

When Knuth generalized Schenstead’s algorithm to tableaux with 
repeated entries [K] he also noted that there are certain adjacent trans- 
positions in u that leave the tableau R(o) invariant. Specifically, given a 
sequence d E P” and three consecutive elements x, y, and z in cr (not 
necessarily in that order) then a Knuth transposition applied to (J can 

(Kl ) replace xzy by zxy or vice versa if x < y < z, 
(K2) replace yx~ by yzx or vice versa if x < y < z. 

We say that rc, g E P” are Knuth equivalent, written z -k cr, if (r can be 
obtained from rr by a sequence of Knuth transpositions. For example 
3141592 = k 3451129 because 
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3141592 G k 3411592 by WI 

= K 3411529 by WI 

E K 3415129 by (Kl) 

--K 3451129 by (Kl). 

THEOREM 7.1 [K]. Given TT, (TE [Tp” then R(n)=R(o) if and only 
ifn EKo. 1 

For permutations rc = xi x2.. . x, E Ce, the shifted Knuth transpositions are 
basically the same as the usual ones with the addition of a third option: 

(SK1 ) replace xzy by zxy or vice versa if x < y < z, 

(SK2) replace yxz by yzx or vice versa if x < y < Z, 

(SK3) replace xlxZ by x*x,, 

i.e., the first two elements of a permutation can be switched regardless of 
size. Also, rc, CT E ??$ are shafted Knuth equivalent, 7c = SK cs, if (r can be 
obtained from n by a sequence of transpositions of type (SK1 ), 
(SK2), or (SK3). 

THEOREM 7.2. Given 7c, CT E $ then P(n) = P(a) if and only if TC E SK (T. 

Proof. We first prove sufficiency. If rc E sK cr implies tin E k 60 then we 
can use Theorem 7.1 and Corollary 4.4 to conclude that P(z) = ,/m = 
Jm = P(o). By induction we may assume that c is obtained from rr by 
applying a single shifted Knuth transposition and need to show that it can 
be mimicked using ordinary Knuth transpositions. 

Suppose the transposition is of type (SK1 ) with n = x, * * + xzy . . . x, and 
o=x~“‘zxy...x,. Thus 

7171=X;~~yZX~~~XrX,~~~X2y~~~X, 

EKX" . ..yxz “‘xIx,“‘zxy”‘x, by W) 

EKX, . ..yzx “‘x1x,“‘zxy”‘x, by (K2) and the fact that 
x and y are distinct 

= aa. 
The second half of (SKl), replacing zxy by xzy, follows from symmetry 
and the argument for (SK2) is similar. 

Now assume that the transposition is of type (SK3). If xi <x2 then 
x~=xx,~~~x,x,x,x,~~~x, 

=~X,“‘X,X*X~X~“‘X” by 61) 

EKX, “‘x1x*x2x1”‘x, by WI 

= aa. 

582a/4J/l-6 
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If x1 > x2 then merely read the preceding four lines backwards. Hence the 
new shifted Knuth transposition for rc is really a combination of two old 
ones using elements which are “invisible” since they live in 7c. 

It can also be proved directly that an (SK3) transposition leaves the 
P-tableau invariant. Merely note that Z,,Z.,,(d) = Z,,Z,z(d) since there is 
only one shifted tableau with two given elements. Hence 

P(n) = 1.X”. . . Z.Y,Z.JX,(4) = 1,. . . . Zx,L,Z.x,(4) = P(a). 

Unfortunately we cannot lift the “only if’ direction from Theorem 7.1. 
This is because it is not obvious that if 71~ = k &s then rc E SK (T (the trans- 
positions done in transforming Erc to 60 need not be done in symmetric 
pairs). However, a direct proof is available. 

Given a shifted tableau P, the corresponding word of P, w(P), is the 
sequence obtained by reading the rows of P from left to right starting with 
the last row and working up. If 

1 3 5 8 
P= 47, 

9 

for example, then w(P) = 9471358. Clearly the P-tableau of w(P) is P itself. 
Hence we need only show that if rc is any other sequence with P(n) = P 
then n = SKY. By induction on the number of elements of P, the 
problem reduces to showing the following: if P' is a tableau such that 
P'=Z,(P) for some x then w(P) x =SK w(P) where, as usual, 
juxtaposition denotes concatenation of sequences (or sequences and 
elements). 

If Z,(P) is a Schensted move then the insertion of x into P can be 
simulated using transposition of types (SK1 ) and (SK2) as in the unshifted 
case, proving the assertion. Since this simulation will be needed again later 
in the proof we will review the details. Suppose Z, displaces pv from the 
first row of P. Thus pu-i <x<py<py+i < **. <piA, so that 

= SK PI1 “‘P21*p11 “‘PljxPlj+l”‘P1,2~ 
by repeated applications of (SK2) 

= SK PI1 “‘P2r1*PljPIl “‘Plj-lxPlj+l”‘Pl~~ 

by repeated applications of (SK1 ). 

But now the suftix (from pl1 on) of this last word is the first row of Z,(P) 
while pv is in the correct position to begin bumping into row two of P. 
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Hence this process can continue as long as only row insertions are 
required. 

Now consider a non-Schensted insertion Z,(P). If P has only one element 
y then w(P) x =yx = Sk xy = w(P’) by (SK3). If P has more than one 
element then let w(P) =pI1 . *. yz so that y and z are the last two elements 
in the first row of P. Also let 1= (A,, A*,..., A,) be the shape of P. We need 
to consider a couple of cases. 

Case 1. x bumps z from row 1 of P. For any tableau P let P be the 
tableau obtained by removing the first row of P, 

w(P)x ‘SKW(B)Zpll*..yX by simulation of row insertion 

= SK wzm PI, “‘YX by induction. 

But Z=(P) will either be p’ or p’ with a t adjoined in cell (1,;1, + 1) in the 
case where Z,(P) causes a t to be bumped into column 1, + 1. Next the 
insertions I,,, ,..., Z, will push all the elements in columns l,..., A1 - 1 of Z;(P) 
down one row. This yields a tableau P’, which agrees with P’ except along 
the A1 th column which is still one row too high 

w(ZAp))P,,*- yz = SK w(Pi) x by induction 

- SK w(P’) since I,( Pi ) is Schensted 

(it merely moves column A, down one cell). 

Case 2. x bumps an element <z from row 1 of P. Thus x < y < z and so 
using (SKl) and induction we have 

w(P)x=p,,“‘yzx =sKp/,“‘yxZ zSKw(P,)xz =SKw(z,P1)z, 

where P, is P with z removed and the last column moved up a row. Now 
Z,(P,) is Schensted by definition of P,. If we can show that Zz applied to 
Pi = Z,(P,) is also Schensted then we will be done by the same reasoning 
as at the end of Case 1 (here, however, Pi need not equal P, with its L,th 
column raised a cell). 

To prove that Z,(P,) Schensted implies Z,(P;) Schensted, it s&ices to 
show that the path of insertion of z into Pi is the same as the path of inser- 
tion of z into P, except possibly for the first displacement which could be 
one cell to the right. The path of insertion, of course, consists of all cells 
where a bump takes place. In passing from P, to P’ = Z,(P,) the contents 
of every cell decrease or stay the same. Thus if Z, causes no elements of the 
last column to be displaced then the two paths are identical. Suppose now 
that the path of Z, crosses column 1,. It must do so on column insertion 
since x < y and hence exactly one cell will be modified. 
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If that cell is (1, 2,) then the element from cell (2, E.,) of P ends up as 
entry p’in, + , in P’, . If Zz bumps p’,,., + i back to the second row, the path will 
continue down column 2, as before. Otherwise Zz will bump Z&, which 
implies that P;~, > z and so p’,>,, must have come from cell (i, I, - 1) in P, 
where i > 2 (i = 1 would imply p& = y < z). Hence &, _, < &, so that P’,~, 
must bump &. But under these conditions the (2,n;) entries in PI and P’ 
are identical so the paths are again the same from the second row on. 

If the modified cell in column Ai is (i, A1 ) for i > 2 then the bumping path 
and elements bumped will agree through row i- 1. Since P, is obtained by 
pushing up column 1 I of P, we must have pkl, _, < pkp, j., for all k B 2 and 
this property is preserved in P’, : Thus p;, _ , <pi- lj., < p:.j., SO that the path 
will continue through cell (i, A,) although it will displace a smaller element. 
But Pi+ IA,- I <PLl <P:+ 121 SO that pi+li, is bumped which is the same 
number from the same cell as in ZJP,). Hence the insertion will push down 
the rest of the 1, th column as desired. 1 

8. THE SHIFTED KNUTH CORRESPONDENCE 

We now generalize the construction of Section 3 to tableaux with 
repeated entries, thus obtaining a shifted version of Knuth’s algorithm 
[K]. A generalized shifted Young tableau, T, is an assignment of elements 
of P” to a shifted shape 1. having the properties 

(Tl) T is weakly increasing along rows and columns and 

(T2) For each integer !@J, there is at most one @ in each row and at 
most one m in each column of T. 

An example of a generalized shifted tableau is 

T=@ 1 10033 @ 
2 2 2 @@4 4 

@ 3 3 
4 4 

Note that conditions (Tl) and (T2) imply that the cells of T containing liiiJ 
form a union of rim hooks (connected skew shapes containing no 2 x 2 
block of squares). Also from (T2) we see that the labeling of every liiiJ in a 
rim hook is completely determined except for the one at the bottom left 
which can be circled or not. 

As noted in Section 4, Knuth’s original algorithm has as output a pair of 
column strict tableaux while shifted tableaux can have many copies of @ in 
a column. Thus in describing the algorithms which follow it will be con- 
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venient to form modified shifted tableaux where the circled elements have 
been made distinct by attaching subscripts to them and insisting that 

01<01<03< . ..<1<0.<0,<...<2<‘... 

We also require that for each set of 0’s the subscripts increase from upper 
right to lower left. One modified tableau for the T above is 

T=@, 1 1 02 02 3 3 01 
2 2 2 03 a)2 4 4 

04 3 3 
4 4 

If we are to insert an @ into T we must also modify it by giving it a sub- 
script smaller than that of any @ in T. Thus if we were to insert @ into 
our running example then we would change it to @i. However, in the text 
we will often omit the subscripts to avoid notational clutter, assuming that 
the reader can reintroduce them as necessary. 

With this bookkeeping device, the new INSERT function is exactly like 
the old one with two changes. First, we must use BUMPEQ instead of 
BUMP on the columns (this change occurs as line (11) of the code in 
Sect. 3). For example, 

Z@(l 1 1 2 3 3 0 7)=(1 1 1 2 0 3 0 7 7) 
203007 203360 

4 @ 5 4 0 5 

6 6 0 6 

because insertion of @ 1 into 

1112 3 3 01 7 
2 02 3 01 02 7 

4 02 5 
6 6 

yields 

1 1 1 2 0, 3 0, 7 7 
2 o2 3 3 6 a2 

4 01 5 
02 6 

(we are justified in using the same symbol for this operator since Z, restric- 
ted to standard tableaux is the same as the one defined previously). 
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The second change only occurs if an q bumps another q from the 
diagonal and one (or both) is circled. In this case the circle is erased from 
the largest circled element of the pair before continuing with the column 
bumping. Examples of the two cases when this can occur are 

because the @ entering the second row on the diagonal loses its circle and 

since the @ leaving the second row diagonal cell has its circle erased (this 
is the larger of the two Q’s in the modified tableau). Hence the else clause 
at line (9) of INSERT should begin with 

if (y,-,= 0) and (yk=m) then UNCIRCLE (fkPIkP1); 

if (ykp, = 0) and (yk = 0) then UNCIRCLE (yk); 

before starting the repeat (we assume the tableau is now named T, not P). 
It is easy to see that, even with the change, T remains a generalized tableau 
after insertion. It is also important to note that, for all H, the circling of 
the lowest leftmost q in T is invariant under insertion. This fact will be 
important in the sequel. 

Just as Knuth’s algorithm puts pairs of generalized Young tableau in 
one-to-one correspondence with matrices having entries in P u {0}, we can 
use circled matrices which are those with entries in P” u { 0} and obtain 

THEOREM 8.1 (shifted Knuth correspondence). There is a bijection 
between circled matrices A = (aq) and pairs (T, U) of generalized shifted 
tableaux such that shape T = shape U, U has no circles on its diagonal and j 
appears xi av times in T while i appears cj au times in U (we add elements 
of lFD” ignoring their circles). 

Proof: We first convert A to two-line notation as follows. Take uij 
copies of the pair i and put these columns in lexicographic order. If aii was 
circled then circle the first j in the string of i columns. For example, 

has 
1112223 

a two-line notation 0 2 2 1 1 @ 1 . 

If TX;;;::::rfln is the notation for A then INSERT the xk into T and place 
the mk in U so as to preserve shape, and flag which moves were non- 
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Schensted. Hence the only real difference between the procedures SHIF- 
TED-KNUTH and SHIFTED-SCHENSTED is at line (7) which becomes 

(7') if schen then uij : = mk else uii : = mk ; 0 
It is not clear that line (7’) preserves the tableau properties in U. 

However, this follows from 

LEMMA 8.2. Given a generalized shifted tableau T and x,, x2 E PO, let 
(i, , j,) and (i2, j,) be the cells added on the boundary in passing from T to 
T’=Z,.,(T) and from T’ to Z,,(T), respectively. Zf x1 6 x2 as subscripted 
elements then 

(i) Z,, Schensted implies that Zx. is Schensted and j, < j,, 

(ii) Z,., non-Schensted implies that Z,, is non-Schensted and i, > i,. 

Proof: (i) Under these conditions, the path for IX2 always lies to the 
right of the path for IX, (proof as for the ordinary Knuth correspondence). 
Thus the second insertion cannot displace a diagonal element and j, <j,. 

(ii) If I,.* is non-Schensted then Zr, cannot be Schensted by part (i). 
Furthermore the row portion of the second insertion is still to the right of 
the first. This forces the column displacements for IX, to be above those for 
I,.. and so i, > i,. 1 

We now prove that U satisfies (Tl) and (T2) by induction. Suppose 
;;:::?:,I maps to (T, U’) and consider the U corresponding to T= Z,,(T’). 
If m,-, < m, thenmis placed on the boundary of u’ and is larger than 
any other entry so U is a tableau. If m,- 1 = m, = m then by the 
lexicographic ordering we have x,- , < x, and Lemma 8.2 applies. Thus 
when IX, is non-Schensted, all previous insertions obtained from pairs ; 
must be non-Schensted by (ii). So only 0’s appear in U’ and the new @ 
added by the last insertion is in a lower row preserving the tableau proper- 
ties. On the other hand, when Z.Xn is Schensted there are two possibilities. 
Either Z.r.-, is also Schensted, in which case an m is added to U in a 
position to the right of all other m’s by (i) so that (Tl), (T2) hold. 
Otherwise IX.-, is non-Schensted and, reasoning as before, the largest 
element in u’ is @ so an m can be added anywhere on the border. 

To finish the proof of the theorem we must verify that one can recover a 
circled matrix from its pair of tableaux. The construction is similar to the 
inverse for the shifted Schensted map and only two additional points need 
discussion. 

First of all, since elements may appear with repetition in U, we must 
know which of the possible largest elements to remove. If the maximum 
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value is m (resp. @ ) then by Lemma 8.2, again the rightmost (resp. lowest) 
one was the last to enter and should be removed first. 

Second, we must be sure that we can reconstruct the circling in T if an 
q from a column bumps out another q on the diagonal. The diagonal q 
can be either circled or not but the column m must be uncircled 
(otherwise in the modified tableau we would have a smaller entry bumping 
out a larger one, which is impossible). Thus, there are two cases 
corresponding to those discussed for insertion. If both m’s are uncircled, 
then the entry displaced from the diagonal becomes circled before bumping 
into the row above. If only the diagonal element is circled then a circle is 
placed on the incoming m. Thus the insertion procedure is invertible as 
promised. 1 

In working out an example, rather than remodifying the tableau before 
each insertion, it is easier to modify the sequence rc = xi x2.. . X, once and 
remove the subscripts at the end. The modified sequence corresponding to 7c 
is obtained by labeling the 0’s in rc right to left with 1,2, 3,..., labeling the 
0’s in like manner and continuing. So given 

000 
A= 1 @ 0 

i i @ 0 0 

we obtain the two-line array 

11122 33 1 1122 33 
@@31@@1 

which is modified to 
02013 1 a, 01 1’ 

Now the algorithm constructs the following tableaux 

T:o,,o,o,,o*o,3,lo,o, 3,1@,@,3,11 @,@, 3, 1 1 1 @,3 

02 02 01 2 
I/: 1, I 1 1 1 1 1, 1.1 @,I 1 1 a.1 1 1 @@,ll l@@ 

2 2 20 

so finally 

11103 ill@@ 
o 2 > 2 o .  

For any finite multiset (“set” with repetitions) S of elements from PO, 
with maximum H, the content of S is c(S) = (l”‘, 2O*,..., mom), where a, is 
the number of q ‘s in S. In particular, if S is any sort of array then we can 
talk about the content of the array. For the tableau T above we have 
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c(T) = ( 13, 22, 32). Also define the monomial corresponding to T to be 
m(T) = x’flx;* * * . x, am and form the generating function 

SJx) = C m(R), 
R 

where the sum is over all (left-justified) generalized Young tableaux of 
shape p. s@(x) is called a Schur function and plays a crucial role in the 
ordinary representation theory of 9,,. Knuth’s correspondence can be used 
to derive Cauchy’s identity for the sP, namely 

where the sum is over all partitions p and s,(y) is the Schur function in the 
indeterminates yi, i E P. 

The shifted analog of the Schur functions are a special case of the Hall- 
Littlewood polynomials called Schur Q-functions and defined by 

Q,(x) = 1 m(T) 

as T runs over all generalized shifted tableaux of shape A. The Q, satisfy 
the following identity: 

COROLLARY 8.3. 

i,,zl z=; & Qh) Qi(yh n 
1 J 

where the sum is over all strict partitions il. 

Proof: The left-hand side enumerates all circled matrices A. The 
denominator counts matrices with entries in P u {0}, while the numerator 
accounts for the circles. For choosing the xi yi from 1 + xi vj amounts to 
circling au and adding one to it (so that aq becomes positive). Otherwise 
the 1 is chosen, leaving the entry alone. 

By Theorem 8.2. we will be done if we can show that the right side 
corresponds to (T, U) pairs. en(x) counts all possible generalized shifted 
tableaux T by definition. To see why the remaining factor enumerates the 
U-tableaux, note that the elements on the diagonal of an arbitrary tableau 
are all at the lower left end of their rim hooks and so can be circled or not. 
Thus after collecting like monomials, all terms in the sum QA(y) will be 
divisible by 24”). It follows that (l/2’(“)) Q,(y) counts shifted tableaux with 
no diagonal circles. m 

We remark that one can rederive Corollary 3.2 by equating the coef- 
ficients of x1 x2 . . . x, y, y, . . . Y,, on both sides of Corollary 8.3. 
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9. LABELING OPERATORS 

We now concentrate on the T-tableau corresponding to CT, where 
o=x1xz . . . x, E ( P”)n, which is defined as T(a) = Z.K,. . . Z,,(C,~). It would be 
tempting to try to prove a lifting lemma for T-tableaux connecting the 
original and shifted versions of Knuth’s algorithm. Unfortunately, when a 
generalized shifted tableau is shift-symmetrized the result is not column 
strict. One could fix this by modifying the rows as was done for the 
columns, but then all the entries of the tableau have essentially become dis- 
tinct. Thus we might as well replace the generalized tableau by a standard 
one and then appeal to the results proved for the shifted Schensted map. 
This is the purpose of a labeling operator. 

Given a generalized shifted tableau T, define the labeling of T to be the 
triple 

UT) = (P, c, ~1, 
where 

(i) P is the standard shifted tableau defined as follows. If there are k 
0’s in T then replace them with the numbers 1,2,..., k working from top to 
bottom. Now replace the l’s in T by k + 1, k + 2,..., k + I moving from left 
to right. Continue with the 0’s replaced by k + I+ 1, etc. until every 
element is labeled. 

(ii) c = c(T) is the content of T. 

(iii) s = s( T) is the set of all integers m such that the lower-leftmost 
occurrence of q in T is circled. For example, when 

T=a 1 I@@33 @I 
2 2 2 @@I)4 4 

033 

4 4 

then 

L(T)= 

2 3 4 8 13 14 15, (13, 24, 3’, 46), { 1, 3) 
5 6 7 9 16 19 20 

10 11 12 
17 18 

The components c and s of the labeling appear so that we lose no infor- 
mation in passing from T to L(T). Specifically, 

LEMMA 9.1. The labeling operator for generalized shifted tableaux is 
icjective. 
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Proof. We must show that given a triple (P, c, s) we can reconstruct the 
tableau T from which it came. We will find the positions of the III’s, the 
case for general •J being similar. Since c(T) = (l”‘, 2nZ,..., morn) the cells 
labeled 1, 2,..., a, in P contained either 0 or 1 in T. Let the cells contain- 
ing these elements have coordinates (ir, jI), (iZ, j2),..., (i,, , j,,) respectively. 
Since P came from a generalized tableau we must have i, < i2 < . . . < ik > 

l/f+12 . . . > i,, for some k. Thus the entries 1,2,..., k - 1 should be replaced 
by (iJ while k + 1, k + 2,..., u1 should become 1. The only question occurs 
with (ik, j,) but this is easily resolved for tikjk = @ if and only if 
l~.s(T). m 

Analogously, we have a labeling operator for sequences o = x1x2. ’ ’ 
xn E P”)“, 

where 

(i) rc E CC& is the permutation obtained from c in almost the same 
way as P is obtained from T above. The only difference is that when replac- 
ing 0’s one works from right to left instead of top to bottom. 

(ii) c = c(a) is the content of C. 

(iii) s = s(a) is the set of all integers whose leftmost occurrence is 
circled. 

As an illustration, if g = 1 1 0 (iJ @ 2 2 0 (iJ 0, then L(o) = 
(3 4 7 2 6 8 9 10 15, (l*, 2’, 3l), {2,3}). Reasoning as in Lemma 9.1, we 
have 

LEMMA 9.2.. The labeling operator for sequences is injective. 1 

Henceforth it will be assumed that all operators on standard tableaux 
and permutations have been extended to triples by letting them act on the 
first component, e.g., P(n, c, s) = (P( ) IL , c, s). The connection between the 
shifted Schensted and Knuth algorithms can now be stated. 

THEOREM 9.3. For any sequence CJ E ( p”)n we have 

PL(a) = LT(a), 

i.e., the labeling operator commutes with formation of tableaux by insertion. 

Proof: We need to refine the labeling operators so that we can work at 
the bumping level. First consider sequence-tableau pairs (0, T) and let 

Uo, T) = (71, P, c, s), 
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where 

(i) rc and P are obtained from (T and T respectively by, for each q , 
labeling the 0’s in 0 followed by those in T (using the order defined above 
within the permutation or tableau) and then labeling the m’s in T followed 
by those in 0. 

(ii) c = c(a u T). 

(iii) s G P with i E s exactly when T contains an q and i E s( T) or T 
does not contain an q and ie s(a). 

The reader should think of CJ as the suffix of a larger sequence whose 
initial segment has been converted to T by insertion. In fact, if ~7 = xw *. . u 
then let B = w.. . ZI be 0 with its first element removed and define Z.JCJ, T) = 
(6 1, T). 

It is clear from the definition that the labeling operator for pairs reduces 
to the ones for sequences or tableaux if T = 4 or (T = 4, respectively. Hence, 
to prove the theorem it suffices to show that Z,L(o, T) = LZ,(o, T) for any 
(r, T with x E P” being the first element of 0 and 1 E P being the first element 
of L(g, T). 

Now enlarge the sequence-tableau pairs to quadruples (a, T, y, k), where 
YE P” and k is the index of the row or column of T into which y is being 
bumped. (There is never any ambiguity as it is impossible to find two dif- 
ferent positions for y, one in the kth row and one in the kth column, both 
of which maintain the tableaux properties). Our final labeling operator is 

L(a, T, y, k) = (71, P, 1, k, c, s) 

defined by 

(i) 7c and P are constructed from 0 and T as above until we get to 
the value y = &ij in T. To determine I, the label of y, we continue as follows. 
If we are bumping into row k then for y = @ (resp. y = m) first label all 
similar elements above (resp. below and in) the kth row, then y itself, and 
end with those below and in (resp. above) row k. If @ (resp. m) is to be 
bumped into the kth column then label all similar elements to the right of 
and in (resp. left of) column k, label y, and continue with the entries to the 
left of (resp. right of and in) the kth column. Finally, label the rest of the 
elements of c and T as before. 

(ii) C=C(CJU Tuy). 

(iii) When y # q we determine whether i E s by using the same rules 
as for pairs (cr, T). In the contrary case, consider the cell into which y will 
be placed and see if there are any q ‘s already in T below, to the left of, or 
in this position. If so, then i E s exactly when i E s( T). Otherwise i E s if and 
only if y is circled. 
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If applying the appropriate bumping function to y and T yields output z 
and a new tableau T then define 

B,h T, Y, k) = 
(c‘, T’, z, k + 1) ifz#cc 
(6, T, x 

7 
1) otherwise, o = x8. 

This reduces the problem to proving 

B,L(o, T, y, k) = LB,@, T Y, k) 

where I is the label of y. 

(9-l) 

Assume that we are bumping into the kth row (the column case is 
similar). First of all, we must show that y and 1 are placed in the same 
positions in T and P, respectively. This will happen if tkj 6 y is equivalent 
to pkj < 1. If y = @ then tkj < y as modified integers (circled elements sub- 
scripted) implies that tkj < m - 1. Thus tkj is labeled before y as desired. If 
y = m then it is also possible that tkj= m but then by condition (i) for 
quadruples, we label all the m’s in row k before y so again pkj < 1. In the 
same way, it can be shown that tkj > y implies pkj > 1. 

Now we must check that the label of y remains 1 after it is bumped into 
row k. If y = @ then, after bumping, y is labeled after labeling the 0’s in 
rows 1 through k - 1. This is the same as the order in which these elements 
are labeled in (a, T, y, k) by condition (i). Note that this holds even if y’s 
circle is removed because of bumping an m on the diagonal. In that case, 
there are no 0’s below y, and y becomes the lowest leftmost m which is 
labeled directly after all the 0’s above. If y = m then y will be placed after 
any other m’s in row k and so will be the last m to be labeled in the rows 
below and including the kth. This again agrees with the label of y in 
L(o, T, Y, k). 

Similarly, one may check that the other elements of T and the element z 
coming out of row k receive the same labels before and after bumping. In 
particular, when z = cc this follows from the fact that condition (i) for 
L(6, T’, x, 1) reduces to the corresponding one for the pair L(xb, T’). 
Hence the first four components on both sides of Eq. (9.1) agree. 

Clearly C(O u T u y) is invariant under bumping since only circling can 
change. To see that s remains the same, recall that the circling of the lowest 
leftmost entry of T is never changed by insertion. Also condition (iii) is 
constructed so that even when this element is in transition between rows, 
its status can still be ascertained by consulting S. This completes the 
verification of Eq. (9.1) and the proof of the theorem. 1 
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10. GREENE'S INVARIANT 

Given a modified sequence a, an increasing subsequence relative to 6a is a 
subsequence x,x2 ‘. . x, of Oa such that x1 .. xi is a subsequence of 6, 
xi+l . . . x, is a subsequence of a, and 

(Al) x1... xi is strictly increasing, 

(A21 xixi+ 1 . . . x, is weakly increasing. 

Dually, a decreasing subsequences relative to Oa satisfies 

PI) xl ’ . . xi is weakly decreasing, 

(D2) xixi+ 1 . . . x, is strictly decreasing. 

A k-increasing (resp. k-decreasing) subsequence relative to 6a is one which is 
the union of k increasing (resp. decreasing) subsequences relative to ea. We 
also let a,(Ca) (resp. l,Jaa)) denote the length of the longest k-increasing 
(resp. k-decreasing) subsequence relative to Co. 

For this section only we will let L(a), L(T) denote the first component of 
the usual labeling triple. 

THEOREM 10.1. Let a be a mod$ed sequence, then 

ak(ca) = adL(a) L(a)) 

and 
dk(6a) = d,(L(a) L(a)). 

Proof: We will prove the assertion about a,; the same method can be 
used to obtain the result for dk. First we show that a,(r?a) B a,(L(a) L(a)) 
by proving that for every weakly k-increasing subsequence of L(a) L(a) the 
corresponding subsequence in 6a is k-increasing relative to Ca. This will 
follow if we can demonstrate that given 16 m in L(a) L(a) with I to the left 
of m then their parent elements x and y in 6a satisfy the proper inequality 
needed for (Al)-(A2). 

Note that we must always have x < y because L is order preserving. Thus 
(A2) is satisfied and it suffices to show that when x, y E 6 then we cannot 
have x = y. But equal elements are labeled from right to left in passing to 
L(a) and so x to the left of y would imply I > m, a contradiction. Hence 
(Al) holds as well. 

Unfortunately, the same argument cannot be used to prove that 
a,(cTa) < a,(L(a) L(a)). For example, if a = 11 then Co = 1111, and the 
subsequence consisting of the first, third, and fourth l’s is increasing 
relative to Oa. However, L(a) L(a) = 2112 so that the corresponding sub- 
sequence 212 is not increasing. Notice, though, that we can transform our 
subsequence in 5a to the one containing the l’s in positions two, three, and 
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four and obtain the weakly increasing subsequence 112 in L(o) L(a). The 
rest of the proof will show that this type of transformation can always be 
done. 

Let x1x2 “‘x,=01u62cI”‘cIcJ~, where each cri is an increasing sub- 
sequence relative to 60 and u denotes disjoint union. Also define the left 
and right halves of gi to be OF = oi n 5, Roy = ci n (T for all i. Finally, let CT~ 
be the subsequence whose last element in 6 is the farthest to the left among 
all the CJ~. 

By induction we can assume that (r2,..., CJ~ have been transformed so that 
the corresponding subsequences in L(o) L(a) are weakly increasing and 
that the elements of ui,* gi remain unchanged (although they may be 
shuflled into different subsequences) with one exception. We are permitted 
to replace a rightmost element of a:, i 2 2, with an element farther to the 
right in 5. These conditions insure that rrl will not get in the way of the 
transformation of fr2,..., ok. 

Now considerations like those in the first half of the proof show that the 
only possible descent that can occur in the labeled version of crl is between 
x and y, where x (resp. y,) is the rightmost (resp. leftmost) element of 0: 
(resp. ~7). In fact this will only happen when x = y, = 12 and y, is closer to 
the beginning of CJ than x is to the end of 5. 

Let the labels of x and y 1 be I and m 1 respectively, I > m i, and consider 
all n’s in 6 with labels less than or equal to m,. If some such n is not a 
member of u i r 2 oi we can replace x by this n and we are done. Otherwise 
each such n is already in some bi, i 2 2. But then by the pigeonhole prin- 
ciple there must be one oi such that gf begins with an element y, whose 
label, m2, is greater than m 1. Form the new subsequences fll : = r~k u rr: 
and ci : = 0: u oy, where : = is, as usual, the Pascal assignment symbol. By 
construction, ci still corresponds to a weakly increasing subsequence in 
L(a) L(a). If the labeling of (pi is now weakly increasing, then we are done. 
Otherwise, keep repeating this process, starting with the new (rl and y,. It 
is easy to verify that at some point one of the two conditions for ter- 
mination of the loop becomes satisfied so that e1 becomes labeled 
appropriately. 1 

We now have the analog of Greene’s theorem for generalized shifted 
tableaux. 

THEOREM 10.2. Zf r~ is a modz$ed sequence and shape T(a) = 
(4 3 L..., A,) then for k < I 

a~(&7)=A,+~,+ ... +&+ , 

Z,(5a)=A,+;1,+ ... +I,+ . 
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Furthermore, for k > 1 we have 

a,(f?a)=l,+ ... +A1+;l;+, + ... +A;+ 
1+1 ( > 2 

ZjJ&J) = 1, + ... +A,+&+ ... +A;_,+ I 
0 2 ’ 

where 2; is the length of the jth column of the shifted shape of 1. 

Proof: By commutativity of the labeling operator (Theorem 9.3) 

(4 9 L..., AI) = shape T(o) = shape LT(o) = shape PL(o). 

But we have just proved that a,JCo)=a,(L(a) L(a)) and d,(Ca) = 
d,(L(a) L(a)) so the theorem follows from the corresponding result for 
P-tableaux, Corollary 5.2. 1 

Finally, given (T E (PO)” let o(‘) denote the subsequence xi, x2,..., xk of (r 
consisting of all xi d z. When z is circled, say z = 0, assume that z has the 
highest possible subscript so that x < z for any other x = @ in 0. Setting 
a(a) = (aI( a,(f?o),..., a,(oa)) then the Greene invariant of c is defined 
to be 

G(o) = (a(d@ ‘), a(@)),..., a(d@)), a(@‘)), 

where m is the largest value in CJ. It will now be an easy matter for the 
reader to prove 

THEOREM 10.3. Given cl, ~,E(P’)” then T(a,)= T(a,) if and only if 
G(o, I= G(cd. 

11. ENCORE LE JEU DE TAQUIN 

To obtain the jeu de taquin for modified skew tableaux we need only 
make one change in the MOVE function of Section 6. Specifically, suppose 
that diagonal cell (i, i) is to be filled during a move in tableau T and that 
tii+19 ti+li+l both have the value q . By condition (Tl) we must have 
iii+ 1 = @ while ti+ li+ I may be circled or not. In either situation tii+ I will 
move into square (i, i) and ti+ li+ 1 will follow into (i, i + 1). If ti+ li+ 1 = @ 
then we remove its circle before it slides up. Otherwise ti+ li+ 1 = m and the 
circle of tii+ 1 is erased after it moves left. Thus the following lines should be 
added just after line (6) in the code of MOVE 
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if (i = j) then begin 
•iJ := tii; 
if (ti+ li+ 1 = 0) then UNCIRCLE (ti+ l.i+ 1); 
if (ti+ ,i+ 1 = m) then UNCIRCLE (tii) 

end; {then} 

Examples of these two cases are given in Fig. 5. 
Let SJ devote the shifted jeu de taquin applied to modified sequences, 

then 

THEOREM 11.1. Given a modified sequence o then the tableau SJ(o) is 
independent of the order in which the cells are filled and SJ . L(a) = L. SJ(a). 

Proof: Consider some given order of filling the cells in the diagonal 
tableau corresponding to g. If we can show that following the same order 
in L(o) will always ensure SJ * L(a) = L. SJ(a) then since SJ 1 L(o) is 
independent of order (Theorem 6.2) and L is injective (Lemma 9.1) we will 
have that SJ(o) is also independent. 

Reducing the problem from the game to the move level and from there 
to a single slide (cf. the proof of Theorem 9.3) it becomes apparent that we 
need to prove the following. Consider a skew modified tableau T with a 
hole at cell (i, j) and L(T) = (P, c, s), labeling the elements of T as one 
would a non-skew hole-less tableau. It is important to note that for tableau 
with holes, deciding whether m ES is done by first finding the column of 
smallest index in which an q appears and then going to the bottom q in 
that column, i.e., “leftmost” takes precedence over “lowest.” If sliding to fill 
(i, j) in T and P yield T’ and P’, respectively, then it suffices to show 
L(T) = (P’, c, s). 

First, the elements used to slide into (i, j) in both T and P should come 
from the same cell. This is trivially true if (i, j) is on the diagonal since then 
there is only one choice. Otherwise i # j and we must verify that 
tv+ 12 ti+ lj ifandonlyifpV+,>pi+ij. This follows from the fact that L is 
monotone increasing except when tii+, = ti+ ,j= m. But in that case the 
(i+l,j) entry is labeled before the (i,j+l) one, so pi+Ij<pij+l as 
required. 

Next, if y = q is the element used to fill (i, j) in T we must show that y 
gets the same label I before and after the slide. Assume that y slides left (the 

FIG. 5. Special diagonal slides. 
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case where J’ slides up is similar) and that y’s circling is unchanged. If 
y = @ then y’s label must remain I because it stays in the same row. If 
y = m then there can be no m in column j so that all m’s to the left of J 
before the slide still bear the same relationship afterwards. Since m’s are 
labeled left to right, y will again receive label 1. Finally, suppose that y = @ 
slides onto the diagonal and becomes uncircled. Then y must have been the 
lowest @ in T and becomes the leftmost m in T. In either situation y is 
labeled directly after all the other 0’s. 

The same sort of considerations show that the labels of the other entries 
of T remain the same after the slide. Thus L( T’) has first component P’. 

Lastly, we must check that c and s are left invariant. The fact that 
c(T) = c( T’) is immediate because sliding does not change content, verify- 
ing that S(T) = s(T) is again a case by case argument. Returning to our 
assumption that y is sliding left, suppose that y is the lowest leftmost 
occurrence of q in T. Since y is even farther left after the slide it continues 
to represent that position in T’. Also y’s circling cannot change in this case, 
so m ES(T) if and only if m E s( T’) as desired. If y is not the lowest leftmost 
q then there are two possibilities. One is that there could be a z= q to 
the left of y in T. But then z must be in the same row or lower than y 
before and hence after the slide. The second option is to have all other q ‘s 
in T directly below y also in the same column. This forces y = @ and 
ti+ lj < @ when i#j, which contradicts the fact that y is to slide into cell 
(i, j). Thus under these conditions we must have i = j so that y = @ is 
sliding onto the diagonal with tij+ , = q being the lowest leftmost q in T. 
It is easy to check that whether to+, = @ or m, the presence or absence of 
that integer in s will be preserved. [ 

Commutativity of L and SJ provides the final link in the chain of 
theorems needed to prove 

THEOREM 11.2. Given a modified sequence g then SJ(a) = T(a). 

Proof: Applying Theorems 11.1, 6.2, and 9.3 in turn yields 

L. SJ(o)= SJ. L(o) = P. L(o) = L. T(a). 

Hence SJ(u) = T(o) by injectivity of the labeling operator (Lemma 9.1). 1 

12. THE KNUTH RELATIONS REVISITED 

Given a modified sequence 0 then the possible Knuth relations that can 
be applied to Q in order to form another modified sequence are 

(SK 1) replace xzy by zxy or vice versa if x < y < z, 
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(SK2) replace yxz by yzx or vice versa if x < y 6 z, 

(SK3) for the first two elements of Q we may 

replace liij q by q q or vice versa if m #n, 

replace !jij m by liij @ or vice versa, 

i.e., we can change the circling of the second element while keeping the first 
the same. Knuth equivalence of modified sequences is defined in the usual 
way using the three relations above. By way of example 

3 024 01 =SK 3 02 014 by C3K2) 

‘SK023014 by the first half of (SK3) 

=stC020134 by C3K2) 

E-Sk@,134 by the second half of (SK3). 

This equivalence relation extends to triples (rc, c, s) by saying that 
(711, Cl, Sl ) =sx(zz,cz,Sz) means rcl =skz2, c,=c2 and s1=s2. With 
this convention, the labeling operator respects Knuth equivalence. 

THEOREM 12.1. Given modified sequences a, and a2 then ai = sK a2 if 
and onlry if L(a,) = sK L(a2). 

Proof: Suppose first that a, =sK a2 with L(a,)=(x,, cl,sI) and 
L(a,) = (7r2, c2, s2). Since none of the three relations change the content or 
circling of the leftmost element liii~ in a sequence it is clear that c, = c2 and 
s, =s2. 

To prove that rr, E sk 7c2 it suffices to show that if a1 can be transformed 
into a2 by applying a single SKI’ above, i= 1,2, 3, then rci can be turned 
into rc, by the corresponding SKi in Section 7. Suppose that the transpor- 
tation is of type (SKl) and the elements x, y, z are labeled I, m, n, respec- 
tively. If x<y<z then 1 <m <n because L is monotone and SK1 applies 
to z1 and n2. If x = y then they must both be uncircled since the sequences 
are modified. But uncircled elements are labeled left to right and x is to the 
left of y in both triples of (SK 1). So I < m and (SK1 ) can again be applied. 
The argument if (SK2) is used is similar and there is nothing to prove for 
(SK3) since the first two elements of a permutation can always be 
interchanged regardless of magnitude. 

For the “if’ direction we proceed as before, keeping the same notation. 
Take the case where rc I and 7c2 differ by a transposition of type (SK1 ). 
Since L is monotone and I < m < n we must have x < y < z. But if y = z then 
we must have m > n because of the left-to-right labeling of uncircled 
elements and this is a contradiction. Thus x < y < z and (SK1 ) can be 
applied to a1 and a2. 
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Omitting the (SK2) case, which presents nothing new, consider what 
happens if initial elements x and y with labels I and m are switched. If x 
and y are not versions (circled or uncircled) of the same integer then they 
can certainly be interchanged by the first half of (SK3). If, on the other 
hand, we have x = y = n then XJ’ = nn is labeled Im, where m = 1+ 1. Now 
ml= I + If and if the second n is to have a smaller label then y becomes 0. 
Meanwhile x = n cannot change since si = s2 so nn is replaced by n@ 
which is consistent with the second half of (SK3). The same sort of reason- 
ing can be applied to the other three cases where x and y have the same 
underlying integer. 1 

We conclude this section with a result that the reader has surely 
anticipated. 

THEOREM 12.2. Given modified sequences g, and o2 then cr, =SK tsz if 
and onfy zf T(o,) = T(o,). 

Proof: We have the following string of equivalent statements: 

OI =SKc2 if and only if L(a,) = sk L(a,) by Theorem 12.1 

if and only if PL(a, ) = PL(o,) by Theorem 7.2 

if and only if LT(a,) = LT(rr,) by Theorem 9.3 

if and only if r(a,) = T(a,) by Lemma 9.1. 

13. STANLEY'S CONJECTURE 

The Schur P-functions are defined by P,(x) = (l/2”“‘) Q,(x) and count 
generalized shifted Young tableaux with none circled on the diagonal. 
Pi(x) is a symmetric function in the variables xi, iE P, a fact which is not 
obvious from the combinatorial interpretation but follows trivially from the 
equivalent algebraic definition, see MacDonald [M]. The sJx) are also 
symmetric and form an integral basis for the space of all symmetric 
functions. Thus for a given partition ;1 of n we have PA(x) = Cflcn alas,(x) 
for some scalars alp E 2. Stanley noted that the foregoing machinery could 
be used to prove a conjecture of his [St] that the a,, are actually non- 
negative. 

THEOREM 13.1. Zf PA(x) = &, a,+sJx) then aApE P u (0). 

Proof: Take any fixed generalized shifted tableau T of shape 1 and con- 
sider all pairs (T, Ui) as U, varies through all generalized tableaux of the 
same shape with no diagonal circles. Note that Pi(x) enumerates this set 
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via the second component. Using the inverse shifted Knuth map, we obtain 
a set of matrices in modified two-line notation which form, by definition, a 
shifted Knuth equivalence class E. But the possible Knuth transpositions 
(Kl)-(K2) for left-justified tableaux are a subset of those for generalized 
shifted tableaux (SK1 k(SK3). Thus E can be partitioned into ordinary 
Knuth equivalence classes E = E, CI E, c) * * * II! Ek. Now applying the 
regular Knuth correspondence to E we see that each E,. becomes a set of 
pairs (Ri, S,,), where Ri is a fixed generalized left-justified tableau and S, 
takes on all possible second tableau values. Hence if pi= shape Ri= 
shape S, for all j then s,(x) counts the S, and PA(x)=s,,(x)+ 
sp,b) + ... +s,,(x). # 

For example, if A = (3,l) and we choose T = ’ $ 4 then E = { 1342, 3142, 
1324, 3124, 3412, 4312, 4132, 1432), where the top rows of the two-line 
arrays take on all possible values and so have been omitted for lack of 
space. Now 

E= (1342, 1324, 3124) CI (3142, 3412) CJ (4312, 4132, 1432) 

whence the elements of each subset map to tableau pairs with first com- 
ponents 

124 12 1 2 

3 9 34, and 3 , 
4 

respectively. Thus Pt3,1)(x) = s(~,~)(x) + So,,,) + So,,,,,). It should be 
noted that a character-theoretic proof of Theorem 12.1 can be given. In 
fact, Stanley and Morris [St, Mo2] independently observed that the result 
follows easily from an earlier work of Morris [Mol 1. 

With a little more work, we can extract further information about the 
coefficients aAp. Take the shifted tableau T in the proof of Theorem 13.1 to 
be standard so that all the left-justified Ri will have entries 1, 2,..., n as well. 
Given ,u, the number of times sP occurs in the sum for PA is just the number 
of Ri having shape p. We have proved 

COROLLARY 13.2. Zf PA(x) = C,, aIpsp(x) then a,, < fp, where f,, is the 
number of ordinary standard Young tableaux of shape p. 1 

14. COMMENTS AND OPEN PROBLEMS 

We have seen that many of the properties of the Robinson-Schensted 
correspondence have analogs for the shifted case. However, the original 
algorithm is so rich in structure that there is still much to be done. 
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(1) The reader may have noticed that most of our theorems have dealt 
with the first tableau of the pairs (P, Q) and (T, U). There are many results 
for the unshifted correspondence that involve both arrays but these do not 
seem to carry over easily to our setting. For example, if II E 9” then a result 
of Robinson [R] states that applying Robinson-Schensted to 71-l 
interchanges the tableaux. On the other hand, there does not seem to be 
any simple connection between (P(X), Q(n)) and (P(c’), Q(c’)). It 
should be noted that MacLarnan [Ml] has developed a whole family of 
shifted Schensted-like correspondences, all of which have the property that, 
with appropriate circling changes, P(c’) = Q(Z) and Q(rc) = P(c’). 
Unfortunately, these maps do not enjoy other important properties such as 
the Knuth relations. 

(2) The difficulty in working with Q-tableaux is the absence of a lifting 
lemma relating the left-justified and shifted cases. A candidate for such a 
result is the following conjecture of Shore [Wo]. Given Q(R), consider the 
corresponding shift-symmetrized tableau where the circling below the 
diagonal has been reversed. Now delete all circled elements and perform 
slides to eliminate the holes. Shore conjectures that the final array will be 
the second tableau of the ordinary Robinson-Schensted map. For example, 
suppose rc = 3142 so that 

n-(P(x),Q(n))= : 4, ’ y ‘) 

and 

by the shifted and left-justified algorithms, respectively. Shore’s method for 
obtaining S(n) from Q(R) is shown in Fig. 6. 

FIG. 6. Shore’s transformation. 
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(3) Sometimes even results involving just the first tableau are elusive. 
In Schensted’s original paper [Se] he proves that R(E)=R(rr)‘, where t 
denotes transposition. It is not at all clear what is meant by the transpose 
of a shifted tableau or how to apply Schensted’s theorem to P(E). 

(4) Viewing n: as a permutation matrix, we can let the dihedral group 
of the square act on rc and ask: what happens to the corresponding 
tableaux? Problems (1) and (3) are the special cases of this approach 
obtained by considering two reflections. Gansner [G] and Schiitzenberger 
[Si.iZ] have answered this question for the ordinary algorithm. What can 
be said for P and Q? 

(5) Lascoux and Schiitzenberger [LS] have been able to interpret 
various algorithms in this area of research by using their plactic monoid 
A. .& can be viewed as the quotient of the free monoid on P (or any 
ordered alphabet) by the Knuth relations (Klk(K2). It is tempting to try 
the same thing in the shifted case, but we run into problems immediately 
because (SK3) is not context-free. It would be interesting to find the 
correct definition for a shifted plactic monoid and use it to obtain the 
results of this paper. 

(6) White [W2, W33 and White and Stanton [SW] have generalized 
the Robinson-Schensted algorithm to rim-hook tableaux and hybrid 
tableaux (those which are partially column-strict and partially rim-hook). 
These correspondences can be applied to give a combinatorial proof of the 
orthogonality relations for the full character table of $ by using the Mur- 
nagham-Nakayama formula [Jl] to interpret the characters. We have 
recently developed a shifted rim-hook tableaux correspondence and hope it 
will provide, in conjunction with the projective Murnagham-Nakayama 
rule developed by Humphreys [H], a bijective proof of the projective 
character relations. These results will appear elsewhere. 

(7) A number of authors [Tl, Wl, W3] have shown that there is an 
intimate connection between the Robinson-Schensted map and the 
celebrated Littlewood-Richardson rule for computing products of Schur 
functions. As yet, no analogous formula is known for finding the expansion 
of en(x) Q,(x). Perhaps the correspondence we have presented here can 
point the way. In particular, Worley [Wo] has developed a method for 
computing the coefficients of Q,(x) S,(x), where S,(x) = det(Qc,,pi+,,(~)). 
Worley has also used a shifted analog of Schiitzenberger’s evacuation 
operator [Sii2] (a relative of the jeu de taquin) to obtain various other 
properties of symmetric function expansions conjectured by Stanley. Thus 
the problem of the preceding section is not the only one to succumb to this 
machinery. 

(8) The Hall-Littlewood polynomials Q,(x; t) are symmetric functions 
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in the variables xi, ie P, and a parameter t [M]. On setting t = 0 or 
t = -1 one obtains the Schur functions s>.(x) or Q,(x), respectively. Also, 
the Qn(x; t) satisfy the identity 

Qh; t) QAY; 1) 

(where b,(t) is a polynomial in t) which generalizes both Cauchy’s identity 
and Corollary 8.3. Perhaps it is possible to find a Knuth-type algorithm for 
proving this equation which will have the left-justified and shifted maps as 
special cases. 

(9) Another approach to subsuming both correspondences would be to 
work in the covering group @n of F& [Su]. @m is a central extension of 4 by 
the Schur multiplier, in this case of order 2, so that /41= 2n!. The ordinary 
representations of gn correspond to both the ordinary and projective 
representations of gn. James [J2] has suggested that by finding a 
Robinson-Schensted map for 5?,, one might obtain the other two “for free.” 

(10) Robinson-Schensted correspondences have been developed for 
other groups, notably the classical Weyl groups [BV] and the symplectic 
group [B]. These involve various different types of arrays such as domino 
and oscillating tableaux. Can projective analogs be found? 

It is hoped that this selection of problems will whet the reader’s interest 
in the subject. 

Note added in proof: Haimon (private communication) has recently proved Shore’s conjec- 
ture in (2) above by using a correspondence that is in some sense dual to the one we have 
presented. The dual correspondence applied to n-i yields the pair (Q(n), P(n)) thus providing 
another way of approaching the questions raised in (1). 
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