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A probabilistic algorithm of Greene, Nijemhuis, and Wilf is applied to shifted 
shapes. It is proved that this procedure yields a Young tableau of the given shape 
and that all such tableaux are equally likely. 

1. INTRODUCTION AND DEFINITIONS 

The study of standard and generalized Young tableaux has led to 
interesting results in quite a number of areas of mathematics. These arrays 
are of importance in the representation theory of the symmetric and 
general linear groups [12], in invariant theory [7], and in connection with 
various combinatorial problems [ 11. In addition, many algorithms have 
been developed that manipulate the tableaux and their entries [5, 61. We 
will be particularly concerned with a probabilistic procedure developed by 
Greene et al. [4]. This algorithm generates a standard Young tableau of 
fixed shape at random. In so doing, it also provides a proof of the hook 
formula (Eq. (1.1) below) which enumerates such tableaux. 

There is another family of arrays, the shifted Young tableaux, that 
exhibit many similarities to their unshifted cousins [8]. It is the purpose of 
this paper to show that the Greene, Nijenhuis, and Wilf procedure can be 
extended to shifted tableaux. Interestingly enough, the algorithms for both 
types of tableaux are identical, but the proof that all tableaux are equally 
likely is much more difficult in the shifted case. 

Let us now make the concepts introduced in the last two paragraphs 
more precise. A partition of the integer n is a vector X = (x,, X,, . . . , &) 
having integral components such that A, 2 X, L - - - 2 & > 0 and Zi& 
= n. The shape of X, S, is an array of n cells or nodes into r left-justified 
rows with 4 cells in row i. Finally by placing the numbers 1,2, . . . , n into 
the cells of S so that the rows and columns increase we obtain a standard 
Young Tableau of shape S (see Fig. 1). The number of standard Young 
tableaux of shape S will be denoted by& 
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214 BRUCE SAGAN 

FIO. 1. The shape of (4,2,2, 1) with two of its hooks, and a standard Young tableau of 
that shape. 

Let (i, j) be the cell in the ith row and jth column of S. The hook of 
node (i, j) is defined by 

HU = {(i,j’)lj’ 2 j} u {(i’, j)li’ 2 i} 

while the hooklength is hU = 1 HJ. In Fig. 1 we have used dotted lines to 
indicate the (1, 3) and (2, 1) hooks with corresponding hooklengths hi, = 

2, h2, = 4. Given a fixed shape S it is possible to express the number of 
standard Young tableaux of that shape in terms of the hooklengths: 

fs = 
n”! h..’ 

(i,j)ES r/ 

(1.1) 

For the original proof of this result the reader can consult [2]. 
A partition A* = (At, A,*, . . . , &+) is strict if At > A,* > - - - > A,? > 0. 

The shifted shape, S*, of X* is an array of Xiv cells into r rows with row i 
containing &’ cells and indented i - 1 spaces. Placing the integers from 1 
to n in S* so that the rows and columns increase yields a shifted standard 
Young tableau (see Fig. 2). We will letg be the number of shifted standard 
Young tableaux of a given shifted shape. 

The shifted hook of cell (i, j) E S* is, by definition, 

I$ = {(i, j’)lj’ 2 j} U {(i’, j)li’ 2 i} u {(j + 1, j’)]j’ 2 j + 1) 

with shifted hooklength hz = I HJ. In Fig. 2, two of the hooklengths are 
KI = 6 and h& = 4. Furthermore, the hook formula (1.1) has an analog: 

.G= I;! hlr’ 
(i&ES’ rl 

(1.2) 

FIG. 2. The shifted shape (4,2,1) with two of its hooks, and a shifted standard Young 
tableau of that shape. 
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In the next section we use this formula to develop an algorithm for 
picking a tableau of given shape at random. Although all our results are 
stated for shifted shapes, everything that we say in Sections 2 and 3 can 
also be applied to the unshifted case (as is done in j4D. 

2. THE hGORITHM 

It is convenient to have a notation for the nodes (i,J of a shape without 
reference to coordinates. We will use the letters u and w  to stand for cells 
of a shifted shape S* (thus u = (i,j) for some coordinates i andj). We will 
also use the notation H, for Hg, h, for hii, etc. 

Consider a fixed shape S* with n nodes. Suppose we have an algorithm 
which produces a standard shifted Young tableau of shape S* at random. 
In fact, suppose this procedure gives each tableau of shape S* with 
probability II o,,.h,/n!. The hook f ormula (1.2) follows immediately, for 

(number of tableaux) * (probability of each tableau) = 1 

or E. llh:/n! = 1; thusfi = n!/llh,*. 
Our candidate for the desired algorithm is 

GNWl. Set it 1. 

GNW2. (Now S* has n - i + 1 nodes.) Set j t 1 and pick a node 
u, E S* with probability l/(n - i + 1). 

GNW3. If h: > 1, pick a node t++, E H; - {uj} with probability 
l/(h; - 1). If not, go to GNWS. 

GNW4. Set j t j + 1 and return to GNW3. 

GNWS. (Now h: = 1.) Give node uj the label n - i + 1 and delete uj 
from S*. 

GNW6. Set i t i + 1. If i I n, return to GNW2; if i > n, terminate. 

The sequence of nodes u,, us, uj, . . . generated by one pass through the 
outer loop of this algorithm is called a trial. A trial must end after a finite 
number of steps, for if t++, E H; - { uj} then clearly h;+, < h;. Thus the 
hq form a decreasing sequence of positive integers which terminates when 
h = 1 for some 1. Of course, as each node of S* is labeled and deleted in 
zNW5, the hooks and hooklengths for the next loop must be modified 
appropriately (the h, will stay the same or decrease by one). Hence the 
algorithm will have labeled every node of S* after n trials. 

THEOREM 1. Given a shifted shape S*, the algorithm GNWl-6 will 
produce a standard shifted Young tableau of shape S* at random. In addition, 
the probability of obtaining any particular tableau is lIOEs.hz/n!. 
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Proof (beginning). If or is the terminal node of our first trial, then v, 
must be maximal in S*; i.e., there is no node of S* below or to the left of 
u,. GNW5 gives u, the label n and removes it from further consideration. It 
follows by induction on n that the algorithm does indeed produce a 
standard labeling of S* where the rows and columns increase. 

We must now prove that all tableaux are equally likely with probability 
IIh,*/n!. Let w  be any maximal node of S*. By induction on n, it suffices 
to show that the probability of terminating the first trial at w  is 

fl h,*/n! 
prob(w) = VES 

fl h,*/ (n - l)! ’ 
0=x 

where S: is the shape S* with w  deleted and the hooklengths in the 
denominator are taken in S;. Letting W = {u E S*lw E Ho and w  # u}, 
we can write this fraction as 

h* 
prob(w) = -! 0 v 

n OEW h,’ - 1 

where all hook lengths are now taken in S*, or 

prob(w) = f 

Suppose that w  has coordinates (a, j3). Then the elements of W are of 
three types: those in the ath row, those in the pth column, and those in the 
(a - 1)st column. See Fig. 3. Letting a, = hi; - 1, bj = h$ - 1, and ci = 
h&, - 1 we can rewrite Eq. (2.1) as 

prob(w) = prob(a, p) = n 1 + 1 ‘i’ 1 + 1 afi’ 1 + 1 
41l’( 4)j-c2( b,)i-I( ‘I)’ 

(2.2) 

where by convention empty products are equal to 1. 

Fm. 3. IV = (395) ad F+’ = ((3931, (3,4), (‘,5), (2 5). (I,% (2,2)}. 
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We will need a readable notation for the terms in the product expansion 
of (2.2). Given subsets A C {a,, a,, . . . , a,-i}, B C {b,, b,,,, . . . , bB-,}, 
and C G {c,, c2, . . . , ca- i}, where A = {a,,, ai2, . . . }, B = {$,, bj2, . . . }, 
and C = {ck,, ck,, . . . }, we define 

1 1 
A . Be C = ai,ai2 . . .4,bi, . . . C& . . . 

(empty sets contribute a factor of 1 to the denominator). In the sections 
that follow we will give a combinatorial interpretation to the sums of such 
terms. 

3. TERMS OF THE FORM l/(A . B), tc=Q9 

If u = (i, j) is a node of S* we consider Z,, = the horizontal projection of 
u = i and JO = the vertical projection of u = j. The reason for this 
redundant notation is to prevent indexing confusion later on in the proof. 
Now given a trial u,, u2, . . . , u, = (a, /3) the horizontal projection of the 
trial is the set Z = {iii = Z% for some k, 1 5 k I I, and i # a}. Similarly 
the uertical projection of the trial is J = { jl j = J% for some k, 1 I k I I, 
and j # 8). Let prob(@ 1Z.Z) denote the probability of terminating at 
(a, /3) using a trial with horizontal projection Z and vertical projection J. 

F’ROFOSITION 2. Let (a, p), Z = {i,, i2, . . . }, and J = { jl, j,, . . . } be 
giuen. Further suppose that 1 5 ik < a and a 5 j, < /3 for all k. Then 

proW$IZJ) = -&, 

where A = {a,,, a,,, . . . } and B = {b,,, bi2, . . . }. 

For variety’s sake we present an example before the proof. Consider the 
shifted shape in Fig. 3 with w  = (a, /3) = (3,5). Let us pick Z = (1) and 
J = {3,4}. Then the possible trials for prob (3, 51{ l}, {3,4}) are just 

0, = (1,3); 02 = (1,4); u3 = (1,5); u, = (3,5), 

u, = (1,3); u2 = (1,4); uj = (3,4); u4 = (3,5), 

and 

u, = (1,3); u2 = (3, 3); u, = (3,4); 0, = (3, 5) 

with corresponding probabilities 2 - 4 * 3, i - 5. 3, and $ - f - f so 

prob(3, 51(l), {3,4}) =~.$.~+~.f,f+t.~.t=~. 
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On the other hand A = {a,} and B = {b,, b4}, where a, = hf, - 1 = 3, 
b3 = h& - 1 = 3, and b, = h$ - 1 = 2, so 

1 1 1 
-=m=ijj* A.B 

Proof of Proposition 2. This proof is essentially the one given by 
Greene, Nijenhuis, and Wilf but we include it for completeness. 

Case 1. Suppose that either Z or J is empty. For definiteness let Z = 0 
(the case J = 0 being similar). Then the only possible trial is 

01 = (xi,), 

which instantly gives 

u2 = (M2), . . . , q = (a, P), 

. . . =$=A, . 

where A = 0. 
Case 2. Now we induct on m = IZ u J I. Note that m = 0 is taken care 

of in Case 1. In fact we can assume that Z # 0, J # 0 and that the 
proposition has been proved for m - 1. Since Z = {i,, iz, . . . } # 0 and 
J = {jl,j2, . . . } # 0 it follows that o, = (il, j,), where i, # a and j, # /3. 
Furthermore there are only two possible choices for u,, i.e., u2 = (i2, j,) or 
u, = (il, j2). Hence if we let I, = Z - {il} and J, = J - {j,} then we can 
apply the induction hypothesis yielding 

prob( aP IZJ) = h?, ‘- 1 [proWV,J) + proWWJ,)] 
‘Jl 

1 1 1 
= h&, - 1 Qzi, . . . bj,bj2 . . . 

+ A 
ailail . . . bj,bj2 . . . I 

ai, + bj, 1 
= h(j, - 1 ai,ai2 . . . bj,bj2 . . . (3.1) 

(where L indicates that the factor is deleted). But it is easy to see that 

h$j, - 1 = (h;B - 1) + (h& - 1) = a,, + bj, (3.2) 

so (3.1) reduces to 

wWWJ) . = -& as desired. 0 

Let (a, 6) be any node of S* such that a I a, b I ,Z? and let prob(c$I(ab) 
be the probability of terminating a trial at (a, 8) given that the trial starts 
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at 0, = (a, 6). C onsidering those (a, 6) where 1 I a I a and a < 6 I p 
we have 

prob( ap lab) = 2 prob(aj3 IZ.Z), 
I, J 

where the sum is over all Z c {a, a + 1, . . . , a - 1 } and J C { b,6 + 
1 
akd 

. . , /3 - l} such that a E Z and II E J. If A G {a,, a,,,, . . . , a,-,} 
B c {Z+,, l+,+ ,, . . . , bs-, } have index sets Z and J, respectively, then 

the above sum becomes, via Proposition 2, 

where, again, empty products are equal to one. We immediately have 

PROPOSITION 3. Consider those nodes (a, 6) of S* suti.rjjGzg 1 I a I a 
and a I 6 I /I; then 

cl 

Up to this point our proof has not differed significantly from that given 
for the unshifted case. However, we will need new techniques to account 
for the trials starting from nodes (a, 6) where 1 I a, 6 < a. 

4. A COUNTEREXAMPLE AND A STEP FORWARD 

Knowing Proposition 2 we might hope at this point to express each of 
the terms l/(A - B . C), C # 0, as the probability of a certain type of trial, 
i.e., as the sum of probabilities of all trials of a given type. However, this 
cannot be done, as we will see in the following example. 

Consider the shape of the strict partition X* = (1001, 101, 11, 1) with 
w  = (a, /3) = (4,4), part of which is shown in Fig. 4. This is by no means 
the smallest counterexample but our choice of h* ensures that the hook- 
lengths in each row of the portion under consideration will differ by an 
order of magnitude. This will make the number of trials we need to check 
very small. Since W = {(1,4), (2,4), (3,4), (1, 3), (2,3), (3,3)} we have 
a, = lOOO, a, = 100, a3 = 10, c, = 1001, c, = 101, cj = 11 (there are no 
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(19 1); 
(1, 1); 
(1, 1); 
(1, 1); 
(1, 1); 
(1, 1); 
(1, 1); 
(1, 1); 
(1, 1); 
(1. 1); 
(1, 1); 
(1, 1); 
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w w . . . 

w w . . . 

w w . . . 

w 

Part of the shape of X* = (1001, 101, 11, 1) with w = (4,4) 

(1, 2); (1,3); C&4); (494) 
(1, 2); a 3% (L4); (2.4); (4.4) 
(l,% (1,3); (64); (394); (49 4) 
(1,2); (1,3); (1,4); (Z4); (3,4); 
(1,2); (1, 3); (2, 3); (2, 4); (49 4) 
(192); (1,3X G&3); G 4); (394); 
(1,2); u,31; G3); (3, 3); (3,4); 
(1,2); (1, 3); (2, 3); (3, 3); (49 4) 
(4% (1,4); c&4); (3,4); (4*4) 
(19% (Z2); (2, 3); (2.4); (494) 
(1, 2); (a 2); c&3); (2,4); (3,4X 
(1, 2); (2,2); (293); (3, 3); (3,4); 

(414) 

(494) 
(49 4) 

(49 4) 
(4,4) 

Pm 4. Trials with probability less than or equal to l/a,02a,c,c2c,. 

b’s). Now consider the term 

1 

alu2a3clc2c3 = (1ooo)o~)(10~~1001)0(11) 

~0.89919 x lo-l2 

In Fig. 4 we have listed all trials that have probability less than or equal to 
1/a,a,u,c,c,c,. It is straightforward, but tedious, to verify that there is no 
subset of the listed trials whose probabilities sum to 

1 
1000~100~10~1001~101~11’ 

To overcome this difficulty we need to look at sums of the terms 
l/(,4 - Be C), but first let us simplify the problem by focusing our atten- 
tion on a special type of trial. A trial oi, u2, . . . , u, = (a, p) is called a 
basic trial if Ju, < a or JS = /3 for all k, 1 I k I 1. In other words a basic 
trial never contains a node in columns a through /3 - 1 (which are 
precisely those columns corresponding to the b’s). The probability of 
reaching (a, j3) from (a, 6) using only basic trials is denoted prob,(a/3 lab). 
If a I a < p then we have automatically that prob,(afllab) = 0. In addi- 
tion if (i,j) is any node in S* let prob&jlab) be the probability of reaching 
(i, j) from (a, b) by a partial trial that contains only nodes u, such that 
Jo, < a, with the possible exception of (i, j) itself; i.e., we are permitted to 
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have j 2 a. Note that for all i we have 

probt,(ialab) = prob,(h + 1 la6) = * * - = prob,($)ab). 

prob(a/?lab) = prob,(a/3lab) - r] 
a sj<B 

. 

Proof. Since every trial from (a, b) to (a, p) must have a first node 
(i, j) with a I j < /3 (and of course 1 5 i I a) 

prob(a#? lab) = 2 prob,(&)ab) - prob(ap)ij) 
ci,n 

IliSa 
aSj<B 

= 2 prob,($)ab). 
Isisa 

(this follows from Proposition 2, empty products being replaced by one 
and a, being replaced by one if i = a) 

In the light of Lemma 4 and Proposition 3 we can finish the proof of 
Theorem 1 by showing that the basic trials account for the terms of (2.2) 
having only factors of l/q and/or l/c,. In other words we must prove the 
following. 
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PROPOSMTON 5. Let (a, j3) be a maximal noa!e of S*. Then we have 

(4.1) 

The next section is devoted to proving this proposition. 

5. ENUMERATION OF BASIC TRLUS 

We need a few preliminary definitions. Consider A = {a,,, a,,, . . . , a,,} 
r {a,, a,, * * * , a,-,}, 1 <i, < i2 < . * * <i,, and C = {cj,,ci,, . . . , ci,} 
c {Cl, $9 * * * , cavl}, 1 <j, <j, < - - - <j,, so that 

1 1 -= 
A*C ai,ai2 . , . ai cj,ci, . . . I+, r 

as usual. Now define four operators on this product (N (for none), R (for 
right), L (for left) and T (for together)) by 

1 
, 

q,-,q-l . . . q-1cj,-1cj2-1 - - - cj,-1 

1 
uj,-l”j,-l * * . Uj,-lci,-lci,-l * * * C$-lca-l 

, 

and 

1 
. 

aj,-lai,-l . . . aj,-l”~-lCi,-lCi,-l * * * c$-lCa-l 

If either A or C is empty they merely contribute 1 to the bottom to the 
denominator, e.g., 

1 

( 1 

1 - == 
c. c. 

JIJZ R %-l’j,-lcj2-1 

Now extend each of these operators to sums by linearity, for example, 
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1 -a 
a2a3c2 

The shape of A* - (6 5,3,2) with w - (4,5) 

or abbreviated 

A particular product 

. . 
1 ( ) 1 - I -I El . 

w3c2 N v2=, 

C A 

. . 
1 ( 1 1 - I -m IH . 

a2a3c2 R w2a3cl 
. 

. . 
1 

( 1 
1 - I -= . 

v3=2 L am2=3 

RI . . . 
1 ( 1 - a l P 

Oza3c2 T w3v2c3 a . 

. . 

1 ( ) 1 1 1 1 -a 
a2a3c2 u 

-+-+-+ 
w2cl w2a3cl wlc2c3 w3w2c3 . . . . = El El . + . + . 

FIo. 5. The operators. 

. . . . %I m . + . . . . 
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Finally define the upward operator, U, by 

It is helpful to view these operations in diagram form. For example, 
consider the shape of A* = (6, 5, 3, 2) with w  = (a, /3) = (4, 5). Figure 5 
illustrates the product l/a,a,c, in this shape and shows the effects of each 
of our operators upon it. 

LEMMA 6. Given any row a with 1 I a < a; then if 

2 proba( + lb) = 2 1 
b-a+1 i A,C, 

it foiiows that 

(5.1) 

In fact we have explicitly 

$ prob,(a/?)ab) = ( f + $ + -$) 
6=a a a 0 cl 

..J<Jl + ;)(I + t)* t5e2) 
In words, (5.2) says that the basic trials starting in row a account for 

those terms of (2.2) containing only a,‘s and ci’s where a I i < (Y and at 
least one of l/a,, l/c, as a factor. This lemma immediately implies 
Proposition 5, and thereby completes the proof of Theorem 1, for all terms 
of (5.2) are contained in (4.1). Furthermore take any term l/(A . C) # 1 in 
(4.1), where A = {a,,, a,,, . . . , ai,}, C = { cj,, ci,, . . . , cj,}, and let a, = 
ti(i,, iz, . . . , i,&jz, . . . , is}. Then Lemma 6 assures us that l/(A - C) 
occurs in proba(a/31t@) for some b but not in the probabilities for basic 
trials from any other row. Hence we are done except for the proof of the 
lemma. 

Proof of Lemma 6. We will actually prove a stronger result determining 
implicitly the form of probn(aj3jab) for all (a, h) E S*. Of course 
prob,(a/?lab) = 0 if a I b < /I or II > /3. There are four other cases. 

(1) If 

ProbdaPla + 18) = 7 + , (5.3) 
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then 

Pro$(a/MO = 7 (;), + (;)a. 

In addition l/a, is a factor of every term in (5.4). 

(2) If 

prob(aP[a + la - 1) = x -!- 
i A;C; 

(5.4) 

(5.5) 

and the Ai are as in (5.3) then we have 

prob,(@ Jaa - 1) = 2: -l- 
i (Ai),+(;)T+(&)N+A&&)R 

In addition l/c, is a factor of every term in (5.6). 

(3) If the A(, C/ are as in (5.5) and the terms having Ai = 0 are 
denoted l/ C/ then 

prob,(apjaa - 2) = 

In addition l/a,c,-, or I/u,-,c, is a factor of every term in (5.7). 

(4) If 6 < a - 2 and 

ProMaPIa + 1 b + 1) = 7 -& 
I I 

then 

(5.8) 

(5.9) 

In addition l/uac6+, or l/ah+ ,c, is a factor of every term in (5.9). 

To illustrate (l)-(4) we have put the diagrams corresponding to the terms 
in the sum prob,(afllab) in the (a, b) cell of S+ = (6, 5, 3, 2), where 
(a, /I) = (4, 5). (See Fig. 6.) We now prove each of the cases in turn. 



226 BRUCE SAGAN 

Fro. 6. The shifted shape S* - (6, 5, 3,2) and its basic trials. 

(1) We already know that 

prob,(aPla/?) = f. 
(1 

(5.10) 

so this case follows immediately from the definitions of N and R. 

(2) The trials ol, u2, . . . , u, starting from (a, a - 1) are of two types: 
either Jv, = a - 1 for all k < 1; or there is an S, 1 < s < 1, such that 

J* =a-lfork<sandJ, = /3 for k > s (in addition ZO, = Zu,-,). Thus 

prob,(a/?laa - 1) = : * 
(1 ai!Lxb+t) 

where l/c, (in the first set of braces) is set equal to 1 when Z = a. 
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Rewriting (5.11) we have 

prob,(aPJaa - 1) 
1 

= -- a<gJ + f) + + .<g-,(l+ :) caca-1 

1 
+ 

%-IClFa-I * .<i!L(l + 3 

+ [ l-* a+l?Lk + 31, a a+1 

Comparison of this last expression with (5.10) and ‘(5.11) yields (5.6). 

(3) We will use reverse induction on the row a. There is an analog of 
Eq. (3.2) which will play an important role in what follows. Specifically, let 
(i,j) E S* with i I j < (Y - 1; then 

h$ - 1 = (h$ - 1) + (h;+,a-, - 1) = a, + ci+l, 

h$ - 1 = (hi*,,, - 1) + (hif-, - 1) = q+l + q. (5.12) 
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To start the induction consider a = a - 2. From the definition of a 
basic trial we have 

prob&@b - 2 a - 2) = h*- y _ 1 [prob,(aPla - 2a - 1) 
a 2.x 2 

+prob,(apja - 2j3) + prob,(@la - 1 a - 1) + prob&aPla - 1 /I)]. 

Now using (5.10) and (5.11) yields 

prob,(db - 2 a - 2) = h*- y _ 1 
a 2a 2 

[ 
l+ l+ l+ 1 

X- 
c-2 ca-2ca-I aa-2%2 aa-2%-I%-2 

1 
+ +L+ l +L+ l +L 

Qa-I%-2%-l Qa-2 as-2a,-, h %--1%-l %-1 1 
1 

1 

%-1 + cm-2 %-2 + c-1 

= hoI*-&-2 - 1 
+ 

aa-l%-2 a,-2%-2%-1 

+ 
am-2 + G-1 

+ 
%-2 + co!-1 

+ 
aa- + cm-1 

aa-2a,-lca-2ca-l aa--2L- 1 aa-2%-1%1 I 

l + 1 1 Z + 
a a-1%-2 %-2%-2% 1 %-2%-lca-2cct-l 

l f 1 
+ 

aa-2ca-l %-2%- lcx- 1 
(by (5.12)) 

which is (5.7). 
Now consider the ath row, a < a - 2. Clearly 

prob,(ap(aa - 2) = 
1 

h&-2 - 1 
x prob,(ajIlij) . (5.13) 

(iJ)EKL-2 
(i,j)Z(a, a-2) I 

We must show that every term of (5.7) appears in (5.13). First consider 
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terms of the form (l/C& From (5.11) we know that 
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1 ( 1 1 
q R= a,-,c,ci2 . . . cik ’ 

where a < i2 < * - . < ik <a - 1. Since h,*,-, - 1 = a,-, + c, we have 

1 ( 1 1 Qcx-1 + % 

q a= h,*,-, - 1 ’ Qa-lC,Ci,. . . Ci, 

1 
= h&-2 - 1 ( 

l + 
1 

c,ci, . . . ci, a,- ,ci, . . . ci, 1 ’ 

where 

1 
c,q, . . . ci I 

occurs in prob,(aj3la a - 1) and by induction 

1 

occurs in probs(a/3( i2a - 2). Hence both terms will be found in (5.13) and 
also the (l/C& have l/a,-,c, as a factor. 

Next we have terms such as (l/AfQ. These can be split into two 
groups: 

(i) A,! = 0. This case can be treated analogously to (l/ CJR with the 
roles of a and c reversed. 

(ii) A; # 0. An arithmetic lemma is required, 

LnMMA7. Leti,<i,<... < is < a be a fined set of indices; then 

Proof of Lemma 7. Induct on the number of indices, s, using the fact 
that ai + 5 =aj+cjforalli,j<a.Ifs=1theidentityistrivial.Ifs>1 
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we have 

. a&tail + ci2) + i: %, 
k-3 

. . . tk;_,ak+, . . . ai, 

I 

1 = - a. ai a. 

fi agog i I’ ’ ” ’ ’ ’ 

a4 + ai,ai, . . . aicl,(a,, + Ci,) 

j-1 

+ i ci,... 
k=4 

ci,-,ai,+, . -. ai, 1 
1 

= - a. a. a. . . . ai, + 

jc, ascil 1 ” ” I4 

a, a, . . . akCi,(ai, + Ci,) 4 I 

. . . cik- ,ai,+ , . . . a, 
I 

k-4 I 

1 
= - ai, ki2 Cj,Cix . . . ci,-,ai,+, . . . a&) + Ci,cj, . . . C&] 

i ( Ii ailc4 = 
j-l 

=- :, $2 ai,ai, . . . akkk$+, . . . c& 1 + ci,ai,f . . . a& ’ 
and wing induction on the term in brackets 

k*, ai,ai2 . . . aik/cik+, . . . ci, 

. . . Cjkljkak + , . . . ai, 
I 

+ ci,ai, !  . . ai, 

l ci,akajk+, . . . ai, * 
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Now given any set {i,, iz, . . . , is} G {a, a + 1, . . . , a - 2}, where i, = 
a, consider all the terms of (5.7) having the form 

1 

( 1 

1 -= 
A;CL L a,ais . . . atcikck,, . . . q,c=-, ’ 

1lklS. 

Using Lemma 7 and h,*, --z - 1 = a, + c, _ I we can write 

a,a, 2 

1 s 

= hzamz- l’,,, Et 

1 
a, *... aikcik...c,-, +u,,ai,.. 

1 
. ai,ci, . . . ci, 

1 1 
ui,...u,*ci,...c,-, + c,,ci *... ci,ui,...u,. ’ 

where, by induction, 

1 
ai . . . aikcik . . . c, _ , 

appears in prob,(afl 1 &a! - 2) and 

1 
cuci 1 . . . cikai, . . . a, , 

appears in prob,(a/3laa - 1). Again both terms will be found in (5.13) and 
(l/A;C& has a factor of l/a,c,-,. 

Finally the terms (1 /A(C,‘), of (5.7) are handled in the same fashion as 
those of the form (l/Af CJ,. All the formulas merely contain an extra 
factor of l/u,- ,. Now we have shown that all the terms of (5.7) occur in 
(5.13). It is also necessary to check that these are the only terms and that 
they each occur exactly once. This tedious but straightforward verification 
is left to the reader. 

(4) We prove (5.9) by simultaneous reverse induction on a and 6. The 
anchor and induction steps are practically the same so only the latter is 
presented. By definition of the algorithm 

1 
prob,( a/3 lab) = - 

hzb - 1 x ProbddW) . 
(id) E 4 

(W+<u, b) 1 
Using cases (I), (2), (3) and the induction hypotheses on a and 6 we can 
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rewrite this as 

(5.14) 

where the sum is over all l/Ai”C,“’ that appear in 

prob,(crfiIi’j’) for (i’,j’) E Hz+, 6+,, (i’, j’) # (a + 1, b + 1). 

Hence 

ch,*+ 1 b+ 1 - l)prob,(@(a + 1 b + 1) 

= (h* a+lb+l 

Furthermore the “in addition” clauses in (l), (2), (3), and inductively (4) 
allow us to index the terms l/A,“Cy so that l/a,+,c,+, is a factor of 
l/Arc: for all i I I and l/a,+,c,+, is a factor of 1 /A,” C” for all i > I. 
Since h,*+, b+, - 1 = a,,, + cb+2 = ab+2 + c,+,, (5.15) becomes 

where the numerator cancels into the denominator in each of the four 
sums. Hence we can substitute this expression into (5.14): 

prob,(d lab) =x-&($&f)” 

=- 
IJ 
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+c~(li&),+c~(JigT 
+z,cb+l(&)N + ‘b+l(&), 

+ cub+, + %) 2 
(J&),+ (TigT) 

+cab+l + Cal x 
( i>,(T&), + (&),) 

+@Q+cb+l,i $&)L+(&),)] 

=~I(&),+(&),+(&),+(&)T 

+$(&),+(&)R+(Yi&),+(Y&)T 

as desired. 
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Now that we have proved (l), (2), (3), and (4) the lemma is almost 
complete. In fact (5.1) follows immediately from (5.4), (5.6), (5.7), and 
(5.9). Reverse induction on a and (5.1) will give us (5.2) for 

= 

This is a very complicated proof, especially in view of the simplicity of 
the end result, EQ. (5.1). It would be interesting to find a more direct 
method for establishing Lemma 6. 
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