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SYMMETRIC FUNCTIONS IN NONCOMMUTING VARIABLES

MERCEDES H. ROSAS AND BRUCE E. SAGAN

Abstract. Consider the algebra Q〈〈x1, x2, . . .〉〉 of formal power series in
countably many noncommuting variables over the rationals. The subalgebra

Π(x1, x2, . . .) of symmetric functions in noncommuting variables consists of all
elements invariant under permutation of the variables and of bounded degree.
We develop a theory of such functions analogous to the ordinary theory of
symmetric functions. In particular, we define analogs of the monomial, power
sum, elementary, complete homogeneous, and Schur symmetric functions as
well as investigating their properties.

1. Introduction

Let Q[[x1, x2, . . .]] = Q[[x]] be the algebra of formal power series over Q in a
countably infinite set of commuting variables xi. For each positive integer m, the
symmetric group Sm acts on Q[[x]] by

(1) gf(x1, x2, . . .) = f(xg(1), xg(2), . . .),

where g(i) = i for i > m. We say that f is symmetric if it is invariant under
the action of Sm for all m ≥ 1. The algebra of symmetric functions, Λ = Λ(x),
consists of all symmetric f of bounded degree. This algebra has a long, venerable
history in combinatorics, algebraic geometry, and representation theory; see, e.g.,
[6, 18, 26, 32].

Now consider Q〈〈x1, x2, . . .〉〉 = Q〈〈x〉〉, the associative algebra of formal power
series in the noncommuting variables x1, x2, . . .. Define the algebra of symmetric
functions in noncommuting variables, Π = Π(x), to be the subalgebra consisting of
all elements in Q〈〈x〉〉 which are invariant under the action defined by (1) and of
bounded degree. (This is not to be confused with the algebra of noncommutative
symmetric functions of Gelfand et al. [9] or the partially commutative symmetric
functions studied by Lascoux and Schützenberger [15] as well as by Fomin and
Greene [5].) This algebra was first studied by M. C. Wolf [36] in 1936. Her goal
was to provide an analogue of the fundamental theorem of symmetric functions in
this context. The concept then lay dormant for over 30 years until Bergman and
Cohn generalized Wolf’s result [2]. Still later, Kharchenko [13] proved that if V is
a graded vector space and G a group of grading-preserving automorphisms of the
tensor algebra of V , then the algebra of invariants of G is also a tensor algebra.
Anick [1] then removed the condition that G preserve the grading. Most recently,
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216 MERCEDES H. ROSAS AND BRUCE E. SAGAN

Gebhard and Sagan [8] revived these ideas as a tool for studying Stanley’s chromatic
symmetric function of a graph [29, 31].

This paper gives the first systematic study of Π(x) and is structured as follows. In
the next section we define Π(x)-analogues for the monomial, power sum, elementary,
and complete homogeneous bases of Λ(x). We relate the two sets of bases in
Theorem 2.1 using the projection map ρ : Q〈〈x〉〉 → Q[[x]] which lets the variables
commute. In Section 3, we derive change of basis equations for these four bases by
summation or Möbius inversion over the lattice of partitions. As a consequence,
we obtain some properties of the fundamental involution ω : Π(x) → Π(x) in
Theorem 3.5. In the following section, we define a right inverse for ρ, called the
lifting map, and study its relation with an inner product on Π(x). In Section 5,
we recall some facts about the algebra of MacMahon symmetric functions M and
show that a particular subspace of M is naturally isomorphic to Π(x) as a vector
space. This permits us to define a noncommuting-variable analogue, Sλ, of a Schur
function in Section 6. The next two sections are devoted to obtaining analogues for
Sλ of the Jacobi-Trudi determinants (Theorem 7.1) and Robinson-Schensted-Knuth
algorithm (Theorem 8.1). We end with a list of comments and open questions.

2. Basic definitions

Let n be a nonnegative integer. For λ = (λ1, λ2, . . . , λl) a partition of n, we
write λ � n and denote the length of λ by l = l(λ). We will use the notation

(2) λ = (1m1 , 2m2 , . . . , nmn)

to mean that i appears in λ with multiplicity mi, 1 ≤ i ≤ n. The bases of the
symmetric function algebra Λ(x) are indexed by partitions. Following [18, 32], we
use the notation mλ, pλ, eλ, and hλ for the monomial, power sum, elementary, and
complete homogeneous symmetric functions bases. Our next goal is to define the
analogues of these bases in noncommuting variables; these analogues will be labeled
by set partitions.

Define [n] = {1, 2, . . . , n}. A set partition π of [n] is a family of disjoint sets,
called blocks B1, B2, . . . , Bl, whose union is [n]. We write π = B1/B2/ . . . /Bl � [n]
and define length l = l(π) as the number of blocks. There is a natural mapping
from set partitions to integer partitions given by

λ(π) = λ(B1/B2/ · · · /Bl) = (|B1|, |B2|, . . . , |Bl|),

where we assume that |B1| ≥ |B2| ≥ · · · ≥ |Bl|. The integer partition λ(π) is the
type of the set partition π.

The partitions of [n] form the partition lattice Πn. (Do not confuse Πn with the
algebra Π(x).) In Πn the ordering is by refinement: π ≤ σ if each block B of π is
contained in some block C of σ. The meet (greatest lower bound) and join (least
upper bound) operations in Πn will be denoted ∧ and ∨, respectively. There is a
rank function in Πn given by r(π) = n − l(π).

To obtain analogues of the bases of Λ(x) in this setting, it will be helpful to
think of the elements of [n] as indexing the positions in a monomial xi1xi2 · · ·xin

.
This makes sense because the variables do not commute. Now given π � [n[, define
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SYMMETRIC FUNCTIONS IN NONCOMMUTING VARIABLES 217

the monomial symmetric function, mπ in noncommuting variables by

mπ =
∑

(i1,i2,...,in)

xi1xi2 · · ·xin
where the sum is over all n-tuples (i1, i2, . . . , in)
with ij = ik if and only if j, k are in the same
block in π.

For example,

m13/24 =x1x2x1x2+x2x1x2x1+x1x3x1x3+x3x1x3x1+x2x3x2x3+x3x2x3x2+ · · · .

These functions are precisely the symmetrizations of monomials and so they are
invariant under the action of Sm defined previously. It follows easily that they
form a basis for Π(x).

We define the power sum function in noncommuting variables, pπ, by

pπ =
∑

(i1,i2,...,in)

xi1xi2 · · ·xin
, where ij = ik if j, k are in the same block in π.

To illustrate,

p13/24 = x1x2x1x2 + x2x1x2x1 + x4
1 + x4

2 + · · · = m13/24 + m1234.

The elementary symmetric function in noncommuting variables is

eπ =
∑

(i1,i2,...,in)

xi1xi2 · · ·xin
, where ij 	= ik if j, k are in the same block in π.

By way of example,

e13/24 = x1x1x2x2 + x2x2x1x1 + x1x2x2x1 + x2x1x2x1 + · · ·
= m12/34 + m14/23 + m12/3/4 + m14/2/3 + m1/23/4 + m1/2/34 + m1/2/3/4.

To define the analogue of the complete homogeneous symmetric functions, it will
be useful to introduce another way of looking at the previous definitions. (This was
the method that Doubilet [4] used to define certain ordinary symmetric functions
associated with set partitions.) Any two sets D, R and a function f : D → R deter-
mine a kernel set partition, ker f � D, whose blocks are the nonempty preimages
f−1(r) for r ∈ R. For f : [n] → x we denote by Mf the corresponding monomial

Mf = f(1)f(2) · · · f(n).

Directly from these definitions it follows that

mπ =
∑

ker f=π

Mf .

Using our running example, if π = 13/24, then the functions with ker f = π are
exactly those of the form f(1) = f(3) = xi and f(2) = f(4) = xj , where i 	= j.
This f gives rise to the monomial Mf = xixjxixj in the sum for m13/24.

Now define

(3) hπ =
∑
(f,L)

Mf ,

where f : [n] → x and L is a linear ordering of the elements of each block of
(ker f) ∧ π. Continuing with our running example,

h13/24 = m1/2/3/4 + m12/3/4 + 2m13/2/4 + m14/2/3 + m1/23/4 + 2m1/24/3

+m1/2/34 + m12/34 + 4m13/24 + m14/23 + 2m123/4 + 2m124/3 + 2m134/2

+2m1/234 + 4m1234.
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218 MERCEDES H. ROSAS AND BRUCE E. SAGAN

Now we would like to give some justification to the above nomenclature by
exhibiting its relation to that used for the ordinary symmetric functions. To this
end, consider the projection map

ρ : Q〈〈x〉〉 → Q[[x]]

which merely lets the variables commute. We will need the notation

λ! = λ1!λ2! · · ·λl!,
λ! = m1!m2! · · ·mn!,

where the mi are the multiplicities in (2). We extend these conventions to set
partitions by letting π! = λ(π)! and π! = λ(π)!. Note that

(4)
(

n

λ

)
:= number of π of type λ =

n!
λ!λ!

.

The next proposition was proved by Doubilet for his set partition analogues of
ordinary symmetric functions, and a similar proof can be given in the noncommut-
ing case. The alternative demonstration given below brings out the combinatorics
behind some of Doubilet’s algebraic manipulations.

Theorem 2.1. The images of our bases under the projection map are:
(i) ρ(mπ) = π!mλ(π),
(ii) ρ(pπ) = pλ(π),
(iii) ρ(eπ) = π!eλ(π),
(iv) ρ(hπ) = π!hλ(π).

Proof. For (i), let B1, B2, . . . , Bk be all blocks of π of a given size. Recalling the
remarks immediately before the definition of mπ, we see that mπ is constant on the
positions indexed by each of these Bi. Since B1, B2, . . . , Bk are of the same size,
the variables in the positions indexed by Bi can be interchanged with the variables
in the positions indexed by Bj for 1 ≤ i, j ≤ k to give another monomial in the
sum for mπ which maps to the same monomial in the projection. It follows that
these blocks give rise to a factor of k! in the projection, and so π will contribute π!.

To prove (ii), note that p[n] = m[n] and so, from (i), ρ(p[n]) = mn = pn. Now
pλ = pλ1pλ2 · · · pλl

. Furthermore, pπ = pB1/B2/···/Bl
is precisely the shuffle of p[λ1],

p[λ2], . . ., p[λl], where |Bi| = λi and the elements from p[λi] are only permitted to
be in the positions indexed by Bi. (We are letting the shuffle operation distribute
over addition.) The desired equality follows.

The proof of (iii) is similar. We have ρ(e[n]) = n!en since if all n positions have
different variables, then they can be permuted in any of n! ways and still give the
same monomial in the projection. In the general case, we have the same phenom-
enon of multiplication corresponding to shuffling, with each block B contributing
|B|!. So the total contribution is π!.

Finally we consider (iv). By the same argument as in (iii), it suffices to show that
ρ(h[n]) = n!hn. Consider a monomial M = xλ1

j1
xλ2

j2
· · · aλl

jl
in hn. These variables

can be rearranged to form n!/λ! monomials in noncommuting variables where λ =
(λ1, λ2, . . . , λl). To obtain one of these monomials in (3) we must have λ(ker f) = λ
since ker f ∧ [n] = ker f . But then the number of pairs (f, L) is just λ!. So the
number of monomials in hπ mapping to M under ρ is just λ! · n!/λ! = n!, which is
what we wanted. �
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SYMMETRIC FUNCTIONS IN NONCOMMUTING VARIABLES 219

We end this section by defining a second action of the symmetric group which
is also interesting. Since our variables do not commute, we can define an action
on places (rather than variables). Explicitly, consider the vector space of elements
of Π(x) which are homogeneous of degree n. Given a monomial of that degree, we
define

(5) g ◦ (xi1xi2 · · ·xin
) = xig(1)xig(2) · · ·xig(n)

and extend linearly. It is easy to see that if bπ is a basis element for any of our four
bases, then g ◦ bπ = bgπ, where g acts on set partitions in the usual manner.

3. Change of basis

We will now show that all the symmetric functions in noncommuting variables
defined in the previous section form bases for Π(x). Since we already know this
for the mπ, it suffices to find change of basis formulas expressing each function in
terms of the mπ and vice-versa. Doubilet [4] has obtained these results as well as
those in the next section in a formal setting that includes ours as a special case.
But we replicate his theorems and proofs here for completeness, to present them in
standard notation, and to extend and simplify some of them.

Expressing each symmetric function in terms of mπ is easily done directly from
the definitions, so the following proposition is given without proof. In it, all lattice
operations refer to Πn and 0̂ is the unique minimal element 1/2/ · · · /n.

Theorem 3.1. We have the following change of basis formulae:

(i) pπ =
∑
σ≥π

mσ,

(ii) eπ =
∑

σ∧π=0̂

mσ,

(iii) hπ =
∑

σ

(σ ∧ π)!mσ. �

To express mπ in terms of the other functions, we will need the Möbius function
of the parition lattice Πn. The Möbius function of any partially ordered set P is
the function µ : P × P → Z defined inductively by

µ(a, b) =

⎧⎨
⎩

1 if a = b,
−

∑
a≤c<b

µ(a, c) else.

This can be rewritten in the useful and more intuitive form

(6)
∑

a≤c≤b

µ(a, c) = δa,b,

where δa,b is the Kronecker delta. For more information about Möbius functions,
see the seminal article of Rota [25] or the book of Stanley [30].

The Möbius function of Πn is well known. In particular

µ(0̂, 1̂) = (−1)n−1(n − 1)!,

where 1̂ = 12 · · ·n is the unique maximal element of Πn. This is enough to determine
µ on any interval of this lattice. For example, for any π = B1/B2/ · · · /Bl and
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220 MERCEDES H. ROSAS AND BRUCE E. SAGAN

λ = λ(π) we have the lattice isomorphism [0̂, π] ∼=
∏

i Πλi
. Since the Möbius

function is preserved by isomorphism and distributes over products, we have

µ(0̂, π) =
∏

i

(−1)λi−1(λi − 1)!

Note that, up to sign, this is just the number of permutations α ∈ Sn which have
disjoint cycle decomposition α = α1α2 · · ·αl, where, for 1 ≤ i ≤ l, αi is a cyclic
permutation of the elements in Bi. It follows that∑

σ∈Πn

|µ(0̂, σ)| = n!

Or more generally, because of multiplicativity,

(7)
∑
σ≤π

|µ(0̂, σ)| = π!

a result which will be useful shortly. We finally note that if σ = C1/C2/ · · · /Cm

satisfies σ ≤ π, then we still have an isomorphism [σ, π] ∼=
∏

i Πλi(σ,π), where λ(σ, π)
is the integer partition whose ith part is the the number of blocks of σ contained in
the ith block of π. (We assume the blocks are listed so that the parts are in weakly
decreasing order.) Of course, λ(0̂, π) is just the type of π.

The rest of the proofs in this section will all be based on the Möbius Inversion
Theorem [25, 30]. We will also need a simple corollary of that theorem which
slightly generalizes a result of Doubilet [4].

Corollary 3.2. Let P be a poset, let F be a field, and consider three functions
f, g, h : P → F , where g(a) 	= 0 for all a ∈ P . Then

f(a) =
∑
b≤a

g(b)
∑
c≥b

h(c) for all a ∈ P

⇐⇒ h(a) =
∑
c≥a

µ(a, c)
g(c)

∑
b≤c

µ(b, c)f(b) for all a ∈ P.

Proof. We will prove the forward direction as the converse is obtained by just
reversing the steps. Doing (dual) Möbius inversion on the outer sum for f(a) gives

g(a)
∑
c≥a

h(c) =
∑
b≤a

µ(b, a)f(b).

We can divide by g(a) 	= 0 and then invert the sum containing h(c), which gives
the desired result. �

We are now in a position to invert each of the sums in Theorem 3.1.

Theorem 3.3. We have the following change of basis formulae:

(i′) mπ =
∑
σ≥π

µ(π, σ)pσ,

(ii′) mπ =
∑
σ≥π

µ(π, σ)
µ(0̂, σ)

∑
τ≤σ

µ(τ, σ)eτ ,

(iii′) mπ =
∑
σ≥π

µ(π, σ)
|µ(0̂, σ)|

∑
τ≤σ

µ(τ, σ)hτ .
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Proof. Equation (i′) follows immediately from the Möbius Inversion Theorem ap-
plied to part (i) of Theorem 3.1.

For identity (ii′), use (6) to write (ii) of Theorem 3.1 in the form

eπ =
∑

σ

⎛
⎝ ∑

τ≤σ∧π

µ(0̂, τ )

⎞
⎠mσ =

∑
τ≤π

µ(0̂, τ )
∑
σ≥τ

mσ.

Using the corollary to invert this double sum gives the desired result.
Finally consider (iii′). Applying (7) to Theorem 3.1(iii) gives

hπ =
∑

σ

⎛
⎝ ∑

τ≤σ∧π

|µ(0̂, τ )|

⎞
⎠mσ =

∑
τ≤π

|µ(0̂, τ )|
∑
σ≥τ

mσ.

The corollary again provides the last step. �

The other bases-change equations are derived using similar techniques, so we will
content ourselves with merely stating the result after one last bit of notation. We
define the sign of π, (−1)π, to be the sign of any permutation obtained by replacing
each block of π by a cycle. Note that

(8) µ(0̂, π) = (−1)π|µ(0̂, π)|.

Theorem 3.4. We have the following change of basis formulae:

eπ =
∑
σ≤π

µ(0̂, σ)pσ, pπ =
1

µ(0̂, π)

∑
σ≤π

µ(σ, π)eσ,

hπ =
∑
σ≤π

|µ(0̂, σ)|pσ, pπ =
1

|µ(0̂, π)|
∑
σ≤π

µ(σ, π)hσ,

eπ =
∑
σ≤π

(−1)σλ(σ, π)!hσ, hπ =
∑
σ≤π

(−1)σλ(σ, π)!eσ. �

As an application of these equations, we will derive the properties of an analogue
of the involution ω : Λ(x) → Λ(x) defined by linearly extending ω(eλ) = hλ. Define
a map on Π(x), which we will also call ω, by ω(eπ) = hπ for all set partitions π
and linear extension.

Theorem 3.5. The map ω : Π(x) → Π(x) has the following properties:

(i) It is an involution.
(ii) Each pπ is an eigenvector for ω with eigenvalue (−1)π.
(iii) We have ωρ = ρω.

Proof. (i) It suffices to show that the change of basis matrix between the elementary
and complete homogeneous symmetric functions equals its inverse. This follows
directly from Theorem 3.4.
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(ii) We merely compute the action of ω on the power sum basis by expressing it
in terms of the elementary symmetric functions and using equation (8)

ω(pπ) = ω

⎛
⎝ 1

µ(0̂, π)

∑
σ≤π

µ(σ, π)eσ

⎞
⎠ =

1
µ(0̂, π)

∑
σ≤π

µ(σ, π)hσ

=
(−1)π

|µ(0, π)|
∑
σ≤π

µ(σ, π)hσ = (−1)πpπ.

(iii) It suffices to show that the desired equation holds on a basis. So we compute
using Theorem 2.1(iii) and (iv): ωρ(eπ) = ω(π!eλ(π)) = π!hλ(π) = ρ(hπ) = ρω(eπ).

�

4. The lifting map and inner products

We will now introduce a right inverse ρ̃ for the projection map ρ and an inner
product for which ρ̃ is an isometry. Define the lifting map ρ̃ : Λ(x) → Π(x) by
linearly extending

(9) ρ̃(mλ) =
λ!
n!

∑
λ(π)=λ

mπ.

Proposition 4.1. The map ρρ̃ is the identity map on Λ(x).

Proof. Equation (4) and Theorem 2.1(i) give ρρ̃(mλ) = λ!
n!

∑
λ(π)=λ λ!mλ = mλ. �

Recall that the standard inner product on Λ(x) is defined by 〈mλ, hµ〉 = δλ,µ.
We define its analogue in Π(x) by

(10) 〈mπ, hσ〉 = n!δπ,σ,

where π � [n]. This bilinear form respects the grading of Π(x) in the sense that if
f, g are homogeneous symmetric functions of different degrees, then 〈f, g〉 = 0.

Theorem 4.2. The bilinear form 〈·, ·〉 is symmetric, positive definite, and invariant
under the action (5).

Proof. For symmetry, it suffices to show that 〈hπ, hσ〉 = 〈hσ, hπ〉. By Theo-
rem 3.1(iii),

(11) 〈hπ, hσ〉 =

〈∑
τ

(π ∧ τ )!mτ , hσ

〉
= n!(π ∧ σ)!,

where we let (π ∧ σ)! = 0 if π and σ are partitions of different sets. Noting that
(π ∧ σ)! = (σ ∧ π)! completes the proof of symmetry.

As for positive definiteness, take f ∈ Π(x) and write f =
∑

π cπpπ for certain
coefficients cπ. Then, using the expansions for the power sums in Theorems 3.1
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and 3.4, we have

〈f, f〉 =

〈∑
σ

cσpσ,
∑

τ

cτpτ

〉

=

〈∑
σ

cσ

∑
π≥σ

mπ,
∑

τ

cτ
1

|µ(0̂, τ )|
∑
π≤τ

µ(π, τ )hπ

〉

= n!
∑

π

⎛
⎝∑

σ≤π

cσ

⎞
⎠

⎛
⎝∑

τ≥π

cτ
1

|µ(0̂, τ )|
µ(π, τ )

⎞
⎠ .

Now the coefficient of cσcτ in this last sum is

n!
|µ(0̂, τ )|

∑
σ≤π≤τ

µ(π, τ ) =
n!δσ,τ

|µ(0̂, τ )|
.

Since this is zero for σ 	= τ and positive otherwise, our form is positive definite.
Finally, it suffices to verify invariance under the action on a pair of bases:

〈g ◦ mπ, g ◦ hσ〉 = 〈mgπ, hgσ〉 = n!δgπ,gσ = n!δπ,σ = 〈mπ, hσ〉. �

Theorem 4.3. The map ρ̃ : Λ(x) → Π(x) an isometry, i.e., 〈f, g〉 = 〈ρ̃(f), ρ̃(g)〉
for f, g ∈ Λ(x).

Proof. It suffices to show that 〈ρ̃(mλ), ρ̃(hµ)〉 = 〈mλ, hµ〉 for all λ, µ. To compute
ρ̃(hµ), consider

Hµ =
∑

λ(π)=µ

hπ.

Expressing Hµ in terms of the monomial symmetric function basis using Theo-
rem 3.1(iii), we see that the coefficient of mσ is the sum of (π∧σ)! over all λ(π) = µ.
But the usual action of the symmetric group on set partitions shows that this quan-
tity only depends on λ(σ). Thus by (9), Hµ must be in the image of ρ̃. Since ρ is
a left-inverse for ρ̃, we see that Hµ is the image under ρ̃ of

ρ(Hµ) =
∑

λ(π)=µ

ρ(hπ) =
∑

λ(π)=µ

λ(π)!hλ(π) =
(

n

µ

)
µ!hµ =

n!
µ!

hµ.

So finally

〈ρ̃(mλ), ρ̃(hµ)〉 =

〈
λ!
n!

∑
λ(π)=λ

mπ,
µ!

n!

∑
λ(σ)=µ

hσ

〉
=

λ!λ!

n!2

(
n

λ

)
n!δλ,µ

= δλ,µ = 〈mλ, hµ〉. �

To define the inner product (10) in terms of other pairs of bases, we will need
the zeta function of the partition lattice Πn, defined by

ζ(π, σ) =
{

1 if π ≤ σ,
0 else.
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Theorem 4.4. The following formulae define equivalent bilinear forms:

〈eπ, eσ〉 = n!(π ∧ σ)!, 〈eπ, hσ〉 = n!δπ∧σ,0̂,

〈eπ, pσ〉 = (−1)σn!ζ(σ, π), 〈eπ, mσ〉 = (−1)σn!λ(σ, π)!ζ(σ, π),

〈hπ, hσ〉 = n!(π ∧ σ)!, 〈hπ, pσ〉 = n!ζ(σ, π),

〈hπ, mσ〉 = n!δπ,σ, 〈pπ, pσ〉 = n!
δπ,σ

|µ(0̂, π)|
,

〈pπ, mσ〉 = n!
µ(σ, π)ζ(σ, π)

|µ(0̂, π)|
, 〈mπ, mσ〉 = n!

∑
τ≥π∨σ

µ(π, τ )µ(σ, τ )
|µ(0̂, τ )|

. �

The proof is similar to the derivation of (11), and is omitted.

5. MacMahon symmetric functions

Schur functions in noncommuting variables will be defined in Section 6. This
will require another piece of machinery, namely the MacMahon symmetric func-
tions. The connection between symmetric functions in noncommuting variables
and MacMahon symmetric functions was first pointed out by Rosas [23, 24].

Consider n sets, each consisting of a countably infinite number of commuting
variables,

ẋ = {ẋ1, ẋ2, . . .},
ẍ = {ẍ1, ẍ2, . . .},

...
x(n) = {x(n)

1 , x
(n)
2 , . . .}.

For each positive integer m, the symmetric group Sm acts on Q[[ẋ, ẍ, . . . ,x(n)]]
diagonally, i.e.,

(12) gf(ẋ1, ẍ1, . . . , ẋ2, ẍ2, . . .) = f(ẋg(1), ẍg(1), . . . , ẋg(2), ẍg(2), . . .),

where g(i) = i for i > m. We say that f ∈ Q[[ẋ, ẍ, . . . ,x(n)]] is symmetric if it is
invariant under the action of Sm for all m ≥ 1.

Consider a monomial

M = ẋa1
1 ẍb1

1 · · ·
(
x

(n)
1

)c1

ẋa2
2 ẍb2

2 · · ·
(
x

(n)
2

)c2

· · · .

Letting λi = [ai, bi, . . . , ci] be the exponent sequence of the variables of subscript i,
we define the multiexponent of M to be the vector partition


λ = {λ1, λ2, . . .} = {[a1, b1, . . . , c1], [a2, b2, . . . , c2], . . .}.

By summing up the vectors which make up the parts of 
λ we get the multidegree
of M


m = [m1, m2, . . . , mn] = [a1, b1, . . . , c1] + [a2, b2, . . . , c2] + · · · .

In this situation we write 
λ � 
m, 
m � m, where m =
∑

i mi, and call m the degree
of M . We say that f ∈ Q[[ẋ, ẍ, . . . ,x(n)]] has bounded degree if there is a positive
integer m such that all monomials in f have degree at most m. Define the algebra of
MacMahon symmetric functions, M = M(ẋ, ẍ, . . . ,x(n)), to be the subalgebra of
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Q[[ẋ, ẍ, . . . ,x(n)]] consisting of all f which are symmetric under the action defined
by (12) and of bounded degree.

Given a vector partition 
λ, there is an associated monomial MacMahon symmet-
ric function defined by

m�λ = sum of all the monomials with multiexponent 
λ.

By way of example,

m[2,1],[3,0] = ẋ2
1ẍ1ẋ

3
2 + ẋ3

1ẋ
2
2ẍ2 + · · · .

Note that we drop the curly brackets around 
λ for readability. These functions are
precisely the symmetrizations of monomials in Q[[ẋ, ẍ, . . . ,x(n)]] and so they are
invariant under the action (12) of Sm for all m ≥ 1. It follows easily that they
form a basis for M.

Call a basis b�λ of M multiplicative if it satisfies

b�λ = bλ1bλ2 · · · bλl .

We now define the bases of power sum, elementary, and complete homogeneous
MacMahon symmetric functions to be multiplicative with

p[a,b,...,c] = m[a,b,...,c],∑
a,b,...,c

e[a,b,...,c]q
arb · · · sc =

∏
i≥1

(
1 + ẋiq + ẍir + · · · + x

(n)
i s

)
,

∑
a,b,...,c

h[a,b,...,c]q
arb · · · sc =

∏
i≥1

1

1 − ẋiq − ẍir − · · · − x
(n)
i s

.

To see the connection with noncommutative symmetric functions, let [1n] denote
the vector of n ones. Now consider the subspace M[1n] of M spanned by all the
m�λ, where 
λ � [1n]. There is a linear map

Φ :
⊕
n≥0

M[1n] → Π

given by

ẋiẍj · · ·x(n)
k

Φ�→ xixj · · ·xk.

Given any B ⊆ [n], the characteristic vector of B is [b1, b2, . . . , bn], where bi = 1 if
i ∈ B and bi = 0 otherwise.

Theorem 5.1 ([23]). The map Φ is an isomorphism of vector spaces. Furthermore,
for each basis we have discussed

bλ1,λ2,...,λl
Φ�→ bB1/B2/···/Bl

,

where b = m, p, e, or h, and λi is the characteristic vector of Bi. �

By way of illustration b[1,0,1,0],[0,1,0,1]
Φ�→ b13/24 for any of our bases.
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6. Schur functions

We will now give a combinatorial definition of an analogue of a Schur function
in the setting of MacMahon symmetric functions. This will give, via the map Φ,
such a function in noncommuting variables. Consider the alphabet

A = Ȧ � Ä � · · · � A(n)

= {1̇, 2̇, . . .} � {1̈, 2̈, . . .} � · · · � {1(n), 2(n), . . .}.
Partially order A by

(13) i(k) < j(l) if and only if i < j.

Consider a partition λ and a vector 
m = [m1, . . . , mn] such that λ, 
m � m for some
nonnegative integer m. Define a dotted Young tableaux Ṫ of shape λ and multidegree

m = [m1, . . . , mn] to be a filling of the shape of λ (drawn in English style) with
elements of A so that rows are nondecreasing, columns are strictly increasing, and
there are mk entries with k dots. Now define the corresponding MacMahon Schur
function to be

S �m
λ =

∑
λ(Ṫ )=λ

MṪ where MṪ =
∏

i(j)∈Ṫ

x
(j)
i

and the factor x
(j)
i occurs in the above product with multiplicity, i.e., the same

number of times that i(j) occurs in Ṫ . For example, if λ = (3, 1) and 
m = [2, 2],
then the coefficient of ẋ2

1ẍ1ẍ2 in S �m
λ is 3, corresponding to the three dotted tableaux

T1 = 1̇ 1̇ 1̈
2̈

, T2 = 1̇ 1̈ 1̇
2̈

, T3 = 1̈ 1̇ 1̇
2̈

.

The notion of multidegree generalizes to any multiset M of elements from A. If M
has mk elements with k dots, we write 
m(M) = 
m = [m1, . . . , mn].

Theorem 6.1. The function S �m
λ is a MacMahon symmetric function.

Proof. It is obvious that S �m
λ is of bounded degree, so we need only show that it

is symmetric. Because any permutation is a product of adjacent transpositions, it
suffices to show that S �m

λ is invariant under the transposition (i, i+ 1), where i ≥ 1.
So it suffices to find a shape-preserving involution on dotted tableaux Ṫ → Ṫ ′ which
exchanges the number of elements equal to i(k) with the number equal to (i + 1)(k)

for all k, 1 ≤ k ≤ n. We will use a generalization of a map of Knuth [14] used to
prove that the ordinary Schur functions are symmetric.

Since Ṫ is semistandard, each column contains either a pair i(k), (i+1)(l); exactly
one of i(k) or (i+1)(l); or neither. In the first case, replace the pair by i(l), (i+1)(k).
In the second, replace i(k) by (i + 1)(k) or replace (i + 1)(l) by i(l) as appropriate.
And in the third case there is nothing to do. It is easy to verify that this involution
has the desired properties. �

If 
m = [1n], then we will write Sλ for S �m
λ and make no distinction between Sλ

and its image under the map Φ. The latter will cause no problems because we will
never be multiplying these functions. Note also that if 
m has only one component,
then S �m

λ = sλ, the ordinary Schur function.
The Sλ do not form a basis for Π(x) since we only have one for every integer,

rather than set, partition. However, we can still provide analoques of some of the
familiar properties of ordinary Schur functions. To state our results, we will need
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the dominance order on integer partitions, µ � λ, and the Kostka numbers, Kλ,µ.
(For definitions, see [18, 32].)

Theorem 6.2. The functions Sλ have the following properties:

(i) Sλ =
∑
µ�λ

µ!Kλ,µ

∑
λ(σ)=µ

mσ.

(ii) The Sλ are linearly independent.
(iii) ρ(Sλ) = n!sλ.
(iv) ρ̃(n!sλ) = Sλ.
(v) 〈Sλ, Sµ〉 = n!2δλ,µ.

Proof. (i) Consider a monomial xṪ , where Ṫ has shape λ, and suppose that this
monomial occurs in mσ where λ(σ) = µ. Then the number of ordinary tableaux
T with the same content, µ, as Ṫ is Kλ,µ and this is only nonzero for µ � λ.
Furthermore, the number of ways to distribute dots in T so as to give the same
monomial as xṪ is µ!, so this finishes the proof.

(ii) The lexicographic order on integer partitions is a linear extension of the dom-
inance order. So from (i), each Sλ only contains mσ where λ(σ) is lexicographically
less than or equal to λ, and those with λ(σ) = λ have nonzero coefficient. So if one
orders the Sλ this way, then each Schur function will contain at least one monomial
symmetric function not previously found in the list.

(iii) Using (i) again along with Theorem 2.1(i) and (4) gives

ρ(Sλ) =
∑
µ�λ

µ!Kλ,µ

∑
λ(σ)=µ

ρ(mσ) =
∑
µ�λ

µ!Kλ,µµ!

(
n

µ

)
mµ = n!

∑
µ�λ

Kλ,µmµ = n!sλ.

(iv) Clearly from (i), all mσ with λ(σ) = µ have the same coefficient in Sλ. So
Sλ is in the image of ρ̃. The equality now follows from (iii) and the fact that ρ is a
left-inverse for ρ̃.

(v) We compute using (iv) and the fact that ρ̃ is an isometry

〈Sλ, Sµ〉 = 〈ρ̃(n!sλ), ρ̃(n!sµ)〉 = 〈n!sλ, n!sµ〉 = n!2δλ,µ. �

7. Jacobi-Trudi determinants

In this section, we prove analogs of the Jacobi-Trudi determinants [18] for the S �m
λ ,

where 
m is arbitrary. The ordinary and noncommuting variable cases are obtained
as specializations. We use the lattice-path approach introduced by Lindström [16]
and developed by Gessel and Viennot [10]; see [26] for an exposition.

If f ∈ Q[[ẋ, ẍ, . . . ,x(n)]] and 
m is a vector, then let 〈
m〉f denote the sum of all
terms qMM in f , where qM ∈ Q and M is a monomial of multidegree 
m. Also let
λ′ denote the conjugate of the partition λ.

Theorem 7.1. Given a partition λ and vector 
m with λ, 
m � m, we have

S �m
λ = 〈
m〉 det

⎛
⎝ ∑

�t �λi−i+j

h�t

⎞
⎠ and S �m

λ′ = 〈
m〉 det

⎛
⎝ ∑

�t �λi−i+j

e�t

⎞
⎠ .

Proof. We will only prove the first identity, as the second is obtained by a similar
argument.
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Consider infinite paths in the extended integer lattice Z × (Z �∞):

P = s1, s2, s3, . . . ,

where the st are steps of unit length either northward (N) or eastward (E). (A
point of the form (i′,∞) can only be reached by ending P with an infinite number
of northward steps along the line x = i′.) If P starts at (i, j), then we label an
eastward step along the line y = j′ with the label

L(st) = (j′ − j + 1)(k)

for some k which can vary with the step, 1 ≤ k ≤ n. Considering P as a multiset
of labels, it has a well-defined multidegree 
t. Then for 
t � t we have

h�t =
∑
P

MP where MP =
∏
�(k)

x
(k)
� ,

the sum being over all paths of multidegree 
t from (i, j) to (i+t,∞) and the product
being over all labels in P taken with multiplicity. Note also that if the labels in P
are read off from left to right, then they correspond to a single-rowed dotted Young
tableau of multidegree 
t.

To get products of complete homogeneous symmetric functions and tableaux of
shape λ = (λ1, . . . , λl), consider initial vertices u1, . . . , ul and final vertices v1, . . . , vl

with coordinates

(14) ui = (−i, 1) and vi = (λi − i,∞)

for 1 ≤ i ≤ l. Consider a family of labeled paths P = (P1, . . . , Pl), where, for each
i, Pi is a path from ui to vg(i) for some g ∈ Sl. We assign to P a monomial and a
sign by

MP =
l∏

i=1

MP and (−1)P = (−1)g,

respectively. So denoting the determinant by D, we have

D =
∑
P

(−1)PMP ,

where the sum is over all path families with beginning and ending vertices given
by (14).

Construct a monomial-preserving, sign-reversing involution ı on such P which
are intersecting as follows. Let i be the smallest index such that Pi intersects some
Pj and take j minimum. Consider the NE-most point, v0, of Pi ∩ Pj . Create
P ′ = ıP by replacing Pi, Pj with P ′

i , P
′
j , respectively, where P ′

i goes from ui to v0

along Pi and then continues along Pj , and similarly for P ′
j .

Because ı pairs up intersecting path families of the same monomial and opposite
sign, they all cancel from the determinant leaving only nonintersecting families.
Furthermore, by the choice of initial and final points, a family can only be nonin-
tersecting if its associated element of Sl is the identity. So we now have

D =
∑
P

MP ,

where the sum is over all nonintersecting families. But there is a bijection between
such families and tableaux. Given P, read the elements of Pi from left to right to
obtain the ith row of the associated tableau Ṫ . The fact that P is nonintersecting
is equivalent to the fact that Ṫ has increasing columns. The given initial and final
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vertices ensure that the shape of Ṫ is λ. Applying 〈
m〉 to both sides of the last
equality restricts the multidegree so as to finish the proof of the theorem. �

Note that if 
t = [t] has a single component, then 
t � λi−i+j forces t = λi−i+j.
So the sums in each entry of the determinants reduce to a single term and we recover
the ordinary form of Jacobi-Trudi.

We now specialize to the case of noncommuting variables case so as to determine
the image of Sλ under the involution ω.

Corollary 7.2. We have ω(Sλ) = Sλ′ .

Proof. Merely note that ω exchanges the two Jacobi-Trudi determinants. �

8. The Robinson-Schensted-Knuth map

In this section, we give a generalization of the famous Robinson-Schensted-Knuth
bijection [14, 22, 27] to tableaux of arbitrary multidegree.

A biword of length n over A is a 2 × n array β of elements of A such that
if the dots are removed, then the columns are ordered lexicographically with the
top row taking precedence. The lower and upper rows of β are denoted β̌ and β̂,
respectively. Viewing β̌ and β̂ as multisets, the multidegree of β is the pair


m(β) = (
m(β̌), 
m(β̂)).

We now define a map β
R−S−K�→ (Ṫ , U̇) whose image is all pairs of dotted semistan-

dard Young Tableaux of the same shape. Peform the ordinary Robinson-Schensted-
Knuth algorithm on β (see [26] for an exposition) by merely ignoring the dots and
just having them “come along for the ride.” For example, if

β = 1̇ 2̇ 2̈ 2̇ 3̈ 4̈
2̇ 1̈ 3̈ 3̇ 2̈ 1̇,

then the sequence of tableaux built by the algorithm is

2̇ , 1̈ , 1̈ 3̈ , 1̈ 3̈ 3̇ , 1̈ 2̈ 3̇ , 1̈ 1̇ 3̇
2̇ 2̇ 2̇ 2̇ 3̈ 2̇ 2̈ = Ṫ ,

3̈

1̇ , 1̇ , 1̇ 2̈ , 1̇ 2̈ 2̇ , 1̇ 2̈ 2̇ , 1̇ 2̈ 2̇
2̇ 2̇ 2̇ 2̇ 3̈ 2̇ 3̈ = U̇ .

4̈

The next theorem follows directly from the definitions and the analogous result for
the ordinary Robinson-Schensted-Knuth map.

Theorem 8.1. The map

β
R−S−K�→ (Ṫ , U̇)

is a bijection between biwords and pairs of dotted semistandard Young tableaux of
the same shape such that


m(β) = (
m(Ṫ ), 
m(U̇)). �
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Because this analogue is so like the original, most of the properties of the ordi-
nary Robinson-Schensted-Knuth correspondence carry over into this setting with
virtually no change. By way of illustration, here is the corresponding Cauchy iden-
tity [17] which follows directly by turning each side of the previous bijection into a
generating function. Note that for β̂ and U̇ we are using a second set of variables
ẏ, ÿ, . . . ,y(n).

Theorem 8.2. We have∑
m≥0

∑
λ,�m,�p �m

S �m
λ (ẋ, . . . ,x(n))S�p

λ(ẏ, . . . ,y(n)) =
∏

i,j≥1

1

1 −
∑n

k,l=1 x
(k)
i y

(l)
j

. �

9. Comments and questions

(I) Rosas [24] computed specializations of symmetric functions in noncommut-
ing variables and, more generally, of MacMahon symmetric functions.

(II) Is there an expression for S �m
λ analogous to Jacobi’s bialternant formula [18,

26, 32]?
(III) Is there a connection between Π(x) and the partition algebra Pn(x) [3,

11, 12, 20]?
(IV) Is there a way to define functions Sπ for set partitions π � [n] having

properties analogous to the ordinary Schur functions sλ?
(V) Given a basis bλ(x) for Λ(x) we say that f(x) ∈ Λ(x) is b-positive if the

coefficients in the expansion f(x) =
∑

λ cλbλ(x) satisfy cλ ≥ 0 for all λ. Stanley [29,
31] showed that associated with any combinatorial graph G there is a symmetric
function XG(x) ∈ Λ(x) which generalizes the chromatic polynomial of G. Together
with Stembridge [33], he conjectured that for a certain family G of graphs (those
associated with (3+1)-free posets) XG is e-positive for all G ∈ G. Gasharov [7]
has proved the weaker result that XG is s-positive for all G ∈ G. Gebhard and
Sagan [8] have proved that XG is e-positive for all G in a subfamily of G by using
symmetric functions in noncommuting variables. It would be interesting to enlarge
the subfamily to which these methods can be applied.

Acknowledgments

Part of the research for this paper was done while both authors were residents
at the Isaac Newton Institute for Mathematical Sciences in Cambridge, England.
We thank the Institute for support during this period. We are also indebted to
Timothy Chow, Ira Gessel, and Larry Smith for helpful discussions. Finally, we
owe a great debt of thanks to an anonymous referee whose incredibly detailed and
helpful comments greatly improved the exposition.

References

[1] D. J. Anick, On the homogeneous invariants of a tensor algebra, in “Algebraic Topology:
Proceedings of the International Conference held March 21–24, 1988,” Mark Mahowald and
Stewart Priddy eds., Contemporary Mathematics, Vol. 96, American Math. Society, Provi-
dence, RI, 1989, 15–17. MR90i:55033

[2] G. M. Bergman and P. M. Cohn, Symmetric elements in free powers of rings, J. London
Math. Soc. (2) 1 (1969), 525–534. MR40:4301

[3] W. Doran and D. Wales, The partition algebra revisited, J. Algebra 231 (2000), 265–330.
MR2001i:16032

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=90i:55033
http://www.ams.org/mathscinet-getitem?mr=40:4301
http://www.ams.org/mathscinet-getitem?mr=2001i:16032


SYMMETRIC FUNCTIONS IN NONCOMMUTING VARIABLES 231

[4] P. Doubilet, On the foundations of combinatorial theory. VII: Symmetric functions through
the theory of distribution and occupancy, Studies in Applied Math. 51 (1972), 377–396.
MR55:2589

[5] S. Fomin and C. Greene, Noncommutative Schur functions and their applications, Discrete
Math. 193 (1998), 179–200. MR2000c:05149

[6] W. Fulton, “Young Tableaux,” London Mathematical Society Student Texts 35, Cambridge
University Press, Cambridge, 1999. MR99f:05119

[7] V. Gasharov, Incomparability graphs of (3+1)-free posets are s-positive, Discrete Math. 157
(1996), 193–197. MR98k:05140

[8] D. Gebhard and B. Sagan, A chromatic symmetric function in noncommuting variables, J.
Algebraic Combin. 13 (2001), 227–255. MR2002d:05124

[9] I. M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. Retakh, J.-I. Thibon, Noncommutative
symmetric functions, Adv. in Math. 112 (1995), 218–348. MR96e:05175

[10] I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. in
Math. 58 (1985), 300–321. MR87e:05008

[11] T. Halverson, Characters of the partition algebra, J. Algebra 238 (2001), 502–533.
MR2002a:20019

[12] T. Halverson and J. Fraina, Character orthogonality for the partition algebra and fixed points
of permutations. Adv. Appl. Math. 31 (2003), 113–131. MR2004e:16016

[13] V. K. Kharchenko, Algebras of invariants of free algebras, Algebra i Logika 17 (1978) 478–487
(Russian); Algebra and Logic 17 (1978), 316–321 (English translation). MR80e:16003

[14] D. E. Knuth, Permutations, matrices and generalized Young tableaux, Pacific J. Math. 34
(1970), 709–727. MR42:7535

[15] A. Lascoux and M.-P. Schützenberger, Le monoid plaxique, in “Noncommutative Structures
in Algebra and Geometric Combinatorics, (Naples, 1978),” Quad. Ricerca Sci., Vol. 109,
CNR, Rome, 1981, 129–156. MR83g:20016

[16] B. Lindström, On the vector representation of induced matroids, Bull. London Math. Soc. 5
(1973), 85–90. MR49:95

[17] D. E. Littlewood, “The Theory of Group Characters,” Oxford University Press, Oxford, 1950.
MR2:3a

[18] I. G. Macdonald, “Symmetric functions and Hall polynomials,” 2nd edition, Oxford Univer-
sity Press, Oxford, 1995. MR96h:05207

[19] P. A. MacMahon, “Combinatorial Analysis,” Vols. 1 and 2, Cambridge University Press,
Cambridge, 1915, 1916; reprinted by Chelsea, New York, NY, 1960.

[20] P. Martin, The structure of partition algebras, J. Algebra 183 (1996), 319–358. MR98g:05152
[21] S. D. Noble and D. J. A. Welsh, A weighted graph polynomial from chromatic invariants
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