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Abstract. We show that the poset of aB partitions of an nd-set with block size divisible by d is shell- 
able. Using similar techniques, it also follows that various other examples of exponential structures 
cited by Stanley are also shellable. The method used involves the notion of recursive atom orderings 
introduced by Bjorner and Wachs. 
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1. The Problem 

In a private communication [7], Richard Stanley asked whether the poset, IIid), of all 
partitions of an n&set with block size divisible by d (8 adjourned) was ‘Cohen-Macaulay 
or even shellable?’ The motivation for this question stemmed from research concerning 
group actions on the associated homology complex, the subject of a forthcoming paper 
of Calderbank, Hanlon and Robinson [3]. Michelle Wachs [9] was the first to prove that 
IILd) is indeed shellable and an identical proof was subsequently rediscovered by the 
author. 

lIcd) is only one example of an exponential structure as introduced by Stanley [5]. 
Exponnential posets are so-called because they give rise to identities similar to the well 
known exponential formula for II, = II:) (see Foata [4]). Although it is not true that all 
exponential structures are shellable, most of the ‘natural’ examples cited by Stanley can 
be shelled using techniques similar to those for II, (‘) The purpose of the present work is . 
to give explicit shellings of these exponential posets. I am grateful to Michelle Wachs for 
letting me include her original result. 

2. Preliminaries Concerning Shellability 

We assume that most readers are already familiar with the general theory of shellability 
and so only review here the particular definitions and theorems needed for our purposes. 
Those wishing more background should consult the survey article of Bjorner et al. [2]. 

A poset P is said to be graded if it is finite, has a 6 and i (i.e., 6 <x 4 1 for all x E P) 
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and all maximal chains have the same length. In this section, all our posets will be graded. 
A poset is shellable if there is an ordering of its maximal chains ml, mz , . . . , m,, such that 
forallmiand~lmi,i<j,thereisak<jwithminmi~rninmk=mi-{x}forsome 
XEWlj. 

Many different methods have been developed for showing that a poset is shellable. The 
one that we will use employs atom orderings. Given x, y E P then x is covered by y, 
written x +y to indicate that xy is an arc of the Hasse diagram of P, if x <y and there is 
no z with x <z <y. An atom of P is an element covering 8 and the set of atoms of P 
will be denoted A(P). We say P admits a recursive atom ordering or RAO if there is a 
total ordering of A(P), al, a2, . . . , ah, satisfying the two conditions. 

(Rl) For all j, the interval [a], i] admits an RAO where the atoms that come first are 
those covering some ai, i <j. 

(R2) For all aj and all ai, i <j, if ai, ai <y then there exists ak with k < j and 
aj,ak+z<y. 

Bjorner and Wachs [I] were the first to define RAO’s and prove the following two 
results: 

THEOREM 1 [ 1, Theorem 3.21. If P admits an RAO then P is shellable. 0 

THEOREM 2 [l, Theorem 5.11. If P is a semimodular lattice then P admits an RAO. 
In fact every total ordering of A(P) extends to an RAO. 0 

For our application we will also need the following rather technical lemma. 

LEMMA 3. Suppose P is such that [a, i] is a semimodular lattice for all a E A(P). Then 
P admits an RAO if and only if some ordering of the atoms of P satisfies condition (R2) 
above. 

Proofi The ‘only if’ implication is a triviality. For the other direction let al, a2, . . . , ah 
be an ordering of A(P) such that (R2) holds. For each i order the atoms of [ai, i] in any 
way so long as those covering al, . . ., ai- i come first. Now use Theorem 2 to extend 
atom ordering of each [ai, i] to an RAO. cl 

3. Exponential Structures 

Let Il, be the lattice of partitions of the set [n] = ( 1,2, . . . , n} ordered by refinement. 
Given a partition IT E II,, i.e., n = {Br, B2, . . . ,Bk} with the disjoint union Ui Bi = [n], 
we call the sets Bi the blocks of rr and write for convenience rr = Bl/B2/. . . /Bk. If the 
cardinality of each Bi is 1 Bi( = hi then we say rr has type (hi, X2, . . . , A,) and write 1 A 1 = 
(Ar, _ . . , hk). Now take any function f: P -f Z, where Z and P denote the integers and 
positive integers respectively, and define f(ln()=f(Xl)f(X2) . ..f(hk) if lrrl =(X1, . . . . 
hk). Furthermore, f has a corresponding exponentialgenerating function 
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The reason for the subscript II referring to Il, will become clear shortly. 
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One of the most useful tools of enumerative combinatorics is the exponential formula 
which shows that if two functions are simply related via the lattice II, then there is a 
simple relationship between the corresponding generating functions, 

THEOREM 4 (The exponential formula). If J g : P + Z satisfy 

g(n)= .Ec, f(lrl) forall 
n 

then 1 t g=(x) = efntxI. cl 

Generalizations, applications, and other information about the exponential formula 
can be found in Foata’s monograph [4]. 

If a E II,, 1 A I = (hi, hs, . . , X,), then it is well known and easy to prove that 

(1) the upper order ideal U,, = {u 1 u > 8) is isomorphic to IIk, and 
(2) the lower order ideal L, =(a] o<n} isisomorphic to II*, x IIk, x .a* x IIhk. 

It is these two properties that are crucial to Stanley’s generalization [S] . Specifically, 
define an exponential structure Q to be a sequence Q = (Qi , Q,, _ . .) of posets satisfying 
the following three axioms. 

(El) For each it, Q,, has a 1 and all maximal chains have length n - 1, 
(E2) For each minimal element p E Q,, we have Up = II,, 
(E3) For any n E Q, , tr has the same type I 1~ I = (AI, AZ, . . . , hk) in all copies of II, 

in which it lies via the isomorphism in (E2) and L, = Qx, x Qh, x 1.. x Qhk. 
Associated with any function f: P + Z and any exponential structure Q = (Qi, Q2, . . .) 

we have the generating function 

fQw;l f(n) x" n!M(n) 

where M(n) is the number of minimal elements in Q,. Note that if Q = (II,, Ils, . . .) then 
M(n) = 1 for all n and fa(x) = fn(x). Th e analog of Theorem 4 in this setting is: 

THEOREM 5 15, Corollary 3.33. lff; g : P + Z sankfy 

then 

1 t gQ(x) = efQ(? cl 

The examples of exponential structures given by Stanley are the following. 

EXAMPLE 1: d-Divisible Partitions. Let Ily) be the set of all partitions of [nd] with 
blocks of size divisible by d. Ordering II:‘) by refinement we see that Q@’ = (II{‘), 
II:‘), . ..) is an exponential structure. Garrett Sylvester ES] employed Q(*) in his study 
of Ising ferromagnets. The Hasse diagram of IIF) is shown in Figure 1. 
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1234 

12/34 13/24 14123 

Fig. 1. n$? 

EXAMPLE 2: Vector Partitions. Consider the Cartesian product of sets [n]’ = ([n], 

tnl, . . . . [n]). Assuming all operations are component-wise, we can define a vector parti- 
tion n = BJB,/. . ./Bk where each block Bi is an r-vector of sets Bi = (Bit, Biz, . . ., Bir) by 

(1) Ui Bi = [n] ‘,ie.,WiBi,=[n]fors=1,2 ,..., r,and 
(2) Forallindicesi,wehave(Bill=IBi21=...=IBirI. 

The reader should be careful to note that the components of the blocks are ordered: 
(12, 13) # (13,12), but the blocks themselves are not: (12, 13)/(3,2) = (3,2)/(12, 13). 

The set I&rr of all such partitions has an obvious refinement order which yields, for 
fured r, an exponential structure. An application of vector partitions to matrices with 
equal row and column sums is found in Stanley [6, Example 6.111. Figure 2 displays 
n3,2. 

EXAMPLE 3: Colored Graphs. Given a graph G on the vertex set V(G) = [n] then a 
cobring of G is a partition n = Bl/. . . /Bk of V(G) such that if x, y E Bi then xy is not an 
edge in E(G). Partially order the set of colored graphs xn = {(G, n) 1 n is a coloring of 
G) by setting (G, n) < (H, a) if and only if 

(1) n<uinl&,and 
(2) given x and y in different blocks of u then xy E E(G) if and only if xy E E(H). 

Itiseasytoverifythatx=(xl,xz,...) is an exponential structure and Xa is illustrated 
in Figure 3. To simplify the diagram we have suppressed the labels on the vertices. Also 
the pair (G, n) is represented by taking the graph G and encircling the vertices in each 
block of 71. 

A 

Fig.3. x3. 
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ad@bd ad0kd bdecd 

Fig. 4. P2 over GF(2). 

EXAMPLE 4: Vector Space Partitions. Let V, be an n-dimensional vector space over 
the galois field GF(q) and let P,, consist of all direct-sum decompositions V, = WI 0 
M/2 0 ... 0 IV, into nonzero subspaces Wj. Again, refinement provides a partial order 
making V= (PI, Pz , . . .) into an exponential structure. The poset for Pz over GF(2) is 
shown in Figure 4. For simplicity, we represent the vectors in V, by the letters a = 
(1,0),b=(0,1),c=(1,1)andd=(0,0). 

4. The Shellings 

First of all we must make the examples of the previous section graded by adding a unique 
minimal element, cf. condition (El). Hence, given any exponential structure Q = (Qr, 
Q2 ,... )let&=(&i,& ,... ) where &i is Qi with a 6 adjoined. This alone is not enough to 
guarantee shellability, as illustrated by the following example. 

Let Q, = II, for n = 1,2 and for n > 3 the elements of Q, will be partially colored 
partitions of [n] . A colored partition of [n] is a partition where some of the integers 
have been distinguished, i.e., colored. A partially colored partition is a colored partition 
where only elements in blocks of size at most two can be colored. If, given an uncolored 
integer i, we let i’ be the corresponding colored integer then some partially colored parti- 
tions of [4] are 1’/2/3/4’, 1/2’3/4’, 1’3’/24’ and 134/2’. Note that 13’4/2 4 Q4 since a 
block of size three contains a colored element. 

To complete the description of Q,, n > 3, we need only define the covering relation. 
Given a partially colored partition n = Br/Ba/. . ./& then a cover of a is obtained by 
replacing some pair of blocks Bj, Bi by their union Bi U Bi and either perserving the 
coloring of the elements of Bi and Bi in the case 1 Bi U Bi 1 = 2, or removing the coloring 
from all colored elements in the case 1 Bi U Bi 1 > 3. For example 1/2’3/4’ is covered by 
14’12’3, 12314’ and l/234 but not by 1412’3 or 12314. Now Q3 consists of 2’ copies of 
IIS with their maximal elements pasted together so Q3 is clearly not shellable. However. 
Examples 1 to 3 do become shellable and, in fact, have RAG’s that arise from the lexico- 
graphic ordering of their atoms. 

Let (S, 9) be any totally ordered set and let the set of words on S be W(S) = { tl tz . . 
tn I fi E S 1. The lexicographic order, =GL, on W(S) is defied by f1 t2 . . . r, <L s1 s2 . . . s, 
if and only if ti < si in the first position i where the two words differ (to apply this defmi- 
tion in all cases, we must pad both words out to the same length with a symbol less than 
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every eIement of 5’). Now consider the power set of S, P(S) = { 7’1 T C 5’). P(S) is also 
ordered by <L since we can associate with each T El’(S) the word c1 t2 . . . t,, E W(S) 
where T={tl, tz,...,t,,) and tl <t,<*.. < t,, . Hence we can also lexicographically 
order W(P(S)),P( W(S)), etc. 

THEOREM 6. H’,“‘, H,, r, and i,, all admit recursive atom orderings. 
Proof: It is well-known that IT, is a semi-modular lattice and by condition (E2) in the 

definition of an exponential structure, given any atom a E Q, we must have [a, i] N II,. 
Thus, Lemma 3 applies so to finish the proof we need only show that in each of the 
three examples we may order the atoms so as to satisfy condition (R2). In each case the 
lexicographic order will suffice. 

fj’,“‘: 

Every rr E fi’,“’ is in P(P( [nd])). Thus, the atoms of filf) are ordered by dL in a sequence 
nlT2 . ..Rh. Given i <j and ni = B,/. . . /B, , rri = Cl/. . . /C,, it is convenient to distinguish 
two cases. 

(i) B1 # Cr. Since Iri <L ni and B1 # C1 we must have B1 <L Cr. Consider 1= 
min (Br - Cr ), m = max Cr , and note that I < m (since B1 <L Cr ). Find the block C, in 
rrj such that I E C, and construct the d-sets 

Ci=C1 -{m}t{l),C;=C,-{Z}t{m} 

and the atom 

nk=nj-(Cl,Ct}+{CI,C;}. 

Now Z< m so Cl <L Cr and ?rk <L ni which, in turn, implies k <j. Furthermore, 

?rjvnk =cl uc&/c&.+~j,+ 

Finally, if ‘II > ni, rrj then 1 and m are in the same block of 71 (since I E B1, m E Cr and 
B, nC, >{l)#f). H ence, Cr U C, is contained in a single block of rr and rr > Irj V nk 

showing that (R2) is indeed satisfied. 
(ii) B1 = Cr. Find the first index s such that B, #C, and apply the same construction 

as in (i) to B, and C,. The only additional verification required is that 1 E C, >L C,, which 
is true since Bq = Cq for 4 < s. 

hI.6 
Elements of h-n, r are in P( W(P( [n]))) so <t applies again to give an atom ordering 
lrl7r2 . . . rrh in II,, r. Given i <j with 

ni=BlI...IBn =(l,bl~, . . ..bl.)/.../(n, bn2, ...,b,p-) 

and 

7rj=ClI...IC, =(l,c12, . . ..cl.)/...l(n, c,2, . . . . c,,) 

there are, as before, two cases. 
(i) B1 f Cr. Hence B1 <A CI so consider the smahest index m such that br,,, <cl,,, . 
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Now find the unique element cl,,, ,2 < 1 d r, satisfying cl,,, = b r ,,, and construct the atom 
rk = 7~~ with elm and crm interchanged. 

Nowc~,=bl,<cl,sonk<~rrjandk<j.Also 

flj’Ink=(ll,..., clmclm ,..., cl&,)/(2 ,..., $r)/...+flj,nk. 

To finish things off, note that if rr > rrf, 9 then elm and bl, = cl,,, are in the same block 
of n, forcing n > nj v nk. 

(ii) B1 = Cr. Find the smallest s such that B, #C, and apply the construction in (i). 
The verification that I > s holds as before. 

The atoms of 2, are of the form (Gi, 6) where 6 = l/2/. . . /n and Gi is a graph on the set 
[n]. Each such graph can be viewed as a set of edges {u, V} = uv, hence Gi EP(P([n])) 
and QL orders the (Gf, 6). Given atoms (Gi, 6), (Gi, 6) with i < j there are two cases. 

(i) Gi C Gi. In this case consider the edge WV = max E(GI) and the graph Gk = Gj - UV. 
(ii) Gi d Gj. In this case take instead the edge M = min (E(Gi) - E(Gj)) and the 

graph Gk = Gi t uv. 
By construction in both cases ( Gk ,6) <L ( Gj, 6) and also 

where G = Gk (in case (i)) or G = Gj (in case (ii)). NOW if (a n) > (Gi, 6) (Gj, 6) then 
H C Gr n Gj C G in both cases. Also, u and v are both in the same block of a since uv 
is an edge in exactly one of the two graphs Gi, Gi. Hence, (a n) > (Gk, 6) V (Gj, 6). Cl 

By combining Theorems 1 and 6 we obtain our desired result. 

THEOREM 7. II’,“), H,, r, and X, are all shellable. cl 

The reader will note that we have not found a recursive atom ordering for &, the 
vector space partition poset. It would be interesting to resolve the shellability question 
in this last case. 
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