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Abstract

Let Dn,k be the family of linear subspaces of Rn given by all equations of the form

ε1xi1 = ε2xi2 = . . . = εkxik ,

for 1 ≤ i1 < . . . < ik ≤ n and (ε1, . . . , εk) ∈ {+1,−1}k. Also let Bn,k,h be Dn,k
enlarged by the subspaces

xj1 = xj2 = . . . = xjh = 0,

for 1 ≤ j1 < . . . < jh ≤ n. The special cases Bn,2,1 and Dn,2 are well known as the
reflection hyperplane arrangements corresponding to the Coxeter groups of type
Bn and Dn, respectively.

In this paper we study combinatorial and topological properties of the inter-
section lattices of these subspace arrangements. Expressions for their Möbius
functions and characteristic polynomials are derived. Lexicographic shellability
is established in the case of Bn,k,h, 1 ≤ h < k, which allows computation of the
homology of its intersection lattice and the cohomology groups of the manifold
Mn,k,h = R

n \ ∪Bn,k,h. For instance, it is shown that Hd(Mn,k,k−1) is torsion-free
and is nonzero if and only if d = t(k − 2) for some t, 0 ≤ t ≤ bn/kc. Torsion-
free cohomology follows also for the complement in Cn of the complexification
BCn,k,h, 1 ≤ h < k.



1 Introduction

A subspace arrangement is a finite set

A = {K1, . . . , Kh}

of linear subspaces Ki in real Euclidean space Rn. We assume that there are no
containments Ki ⊆ Kj, i 6= j. An extensive theory exists for the case of real and
complex hyperplane arrangements (i.e., codimKi = 1), see Orlik and Terao [10].
Work on subspace arrrangements of more general type has begun only in the last
few years. See Björner [1] for an overview of this development.

The k-equal arrangement, An,k, consists of all subspaces of the form

{x ∈ Rn : xi1 = xi2 = . . . = xik},

for k-subsets 1 ≤ i1 < . . . < ik ≤ n. Here the xi are the coordinate functions in Rn.
This arrangement has been thoroughly investigated in several recent papers. It first
appears in the work of Björner, Lovász and Yao [2, 3], motivated by its relevance
for a certain problem in computational complexity. Obtaining good expressions for
the Möbius function of the intersection lattice L(An,k) was of crucial importance
in that work. Later, Björner and Welker [5] computed the homotopy type of
L(An,k) and then, via the Goresky-MacPherson theorem [7], the cohomology of
the complement Mn,k = R

n \ ∪An,k. Then Björner and Wachs [4] found a new
approach to these computations via lexicographic shellability. Finally Sundaram,
Wachs and Welker [12, 13] determined the representations arising from the Sn
action on L(An,k) and on H∗(Mn,k).

One way to think of An,k is as the orbit WAn−1(Kk) of the single subspace

Kk = {x ∈ Rn : x1 = x2 = . . . = xk},

under the standard action of the reflection group WAn−1
∼= Sn on Rn (permuting

coordinates). Now consider the k-equal subspace arrangement of type Dn, Dn,k,
consisting of all subspaces of the form

{x ∈ Rn : ε1xi1 = ε2xi2 = . . . = εkxik},

for 1 ≤ i1 < . . . < ik ≤ n and (ε1, . . . , εk) ∈ {+1,−1}k. Adding to Dn,k the
subspaces

{x ∈ Rn : xj1 = xj2 = . . . = xjh = 0},

for 1 ≤ j1 < . . . < jh ≤ n results in the k, h-equal subspace arrangement of type
Bn. Denote by WBn and WDn the reflection groups of types Bn and Dn with
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their standard action on Rn, see Humphreys [8]. Then Bn,k,h is the orbit union
WBn(Kk) ∪WBn(K ′h) where

K ′h = {x ∈ Rn : x1 = x2 = . . . = xh = 0},

1 ≤ h < k ≤ n, while Dn,k is the orbit WDn(Kk) = WBn(Kk), 1 < k < n.
Thus it is geometrically motivated to view Bn,k,h and Dn,k as the type Bn and Dn

analogs of An,k, respectively, especially since for k = 2 and h = 1 all these subspace
arrangements specialize to the hyperplane arrangements of the respective reflection
groups.

After a review of definitions and some preliminary material in Section 2, we
begin in Section 3 with the combinatorial study of the intersection lattices L(Bn,k,h)
and L(Dn,k). These are both isomorphic to lattices of signed graphs, as can be seen
from work of Zaslavsky [15, 16]. Generating functions for the Möbius functions
and characteristic polynomials of such lattices are determined in a setting which
is more general than what the motivating geometric examples would demand. In
particular, we derive an explicit expression for the characteristic polynomials of
L(Bn,k,h) and L(Dn,k) using a lattice point counting method due to Blass and
Sagan [6]. This is the only purely combinatorial technique we know of to get such
a result. It follows that these polynomials factor partially over the nonnegative
integers, Z+. It is interesting to compare this with the hyperplane case where the
corresponding polynomials factor completely over Z+.

In Section 4 we prove lexicographic shellability of the intersection lattices
L(Bn,k,h). This makes possible the computation of the homotopy type (which
turns out to be a wedge of spheres) and the homology groups of these lattices.
The homology of L(An,k) was computed via a certain recursive procedure in [5]
and later using lexicographic shellability in [4]. We remark that we were able to
adapt the recursive procedure to L(Bn,k,h) only in the case h = 1, whereas lexico-
graphic shelling works in general. However, we have so far been unable to apply
either approach to L(Dn,k), so the homology computations for that lattice remain
to be done.

The results from Section 4 are used in Section 5 together with the Goresky-
MacPherson formula to compute the cohomology of the complement Rn \ ∪Bn,k,h.
These cohomology groups are torsion-free, and for the pure arrangement Bn,k,k−1

there is nonzero cohomology only in dimensions that are multiples of k − 2. The
paper ends with some comments on related results and open questions.
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2 Preliminaries

We will review some notions related to subspace arrangements and also establish
notation. Associated with any subspace arrangement A = {K1, . . . , Kh} is its
intersection lattice, L = L(A), which consists of all intersections of subspaces in
A ordered by reverse inclusion. This lattice has unique minimal element 0̂ = R

n

and unique maximal element 1̂ = ∩hi=1Ki. Any partially ordered set with 0̂ and 1̂
is called bounded. (Any terminology from the theory of lattices and posets that we
do not define can be found explained in Stanley’s book [11].)

Let A be a hyperplane arrangement and let A′ be a subspace arrangement.
Then we will say that A′ is embedded in A if each Ki ∈ A′ is an element of L(A).
The subspace arrangements with which we will be concerned are embedded in the
reflection hyperplane arrangements An,Bn and Dn defined as follows:

An = {xi = xj : 1 ≤ i < j ≤ n},
Bn = {xi = ±xj : 1 ≤ i < j ≤ n} ∪ {xi = 0 : 1 ≤ i ≤ n},
Dn = {xi = ±xj : 1 ≤ i < j ≤ n}.

Note that An ⊆ Dn ⊆ Bn.
It will be useful to have a combinatorial description of the intersection lat-

tices L(An), L(Bn) and L(Dn). This is provided by Zaslavsky’s theory of signed
graphs [15, 16]. A signed graph, G, has vertex set V (G) = [n] where [n] =
{1, 2, . . . , n}. The edges E(G) of G can be of three types:

• a positive edge between vertices i and j, denoted ij+,

• a negative edge between vertices i and j, denoted ij−,

• a half edge with only one endpoint i, denoted ih.

Note that both edges ij+ and ij− can be present. The idea is that the edges
ij+, ij− and ih correspond to the hyperplanes xi = xj, xi = −xj and xi = 0,
respectively, in Bn. So associated with any arrangement A ⊆ Bn we have the
associated signed graph GA where an edge is in GA if and only if the corresponding
hyperplane is in A.

We can now characterize L(A) where A = An, Bn or Dn using these graphs.
(With a little more work, one can characterize L(A) for any A ⊆ Bn.) Given
V,W ⊆ [n] with V ∩W = ∅ (and we permit one of V or W to be empty) we let
Kb
V,W denote the complete balanced graph consisting of all positive edges between

vertices of V , all positive edges between vertices of W , and all negative edges from
a vertex of V to a vertex of W . It is called balanced because multiplying the signs
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around any cycle gives a positive sign. Also let Ku
V be the complete unbalanced

graph, i.e., the one that has all edges of both signs between vertices in V . We also
include all half edges on V in Ku

V in the case where A = Bn. It is unbalanced
because there exist cycles with negative edge product. (A half edge is considered a
negative cycle.) By component we mean a connected component in the usual sense
of graph theory.

Theorem 2.1 (Zaslavsky [16]) Let A = An, Bn or Dn. The lattice L(A) is
isomorphic to the lattice of subgraphs G ⊆ GA such that

1. every component of G is complete balanced or complete unbalanced, and

2. there is at most one unbalanced component.

The graphs are partially ordered by inclusion of their edge sets.

The isomorphism is obtained by sending each graph G to the subspace ∩e∈GHe

where He is the hyperplane corresponding to the edge e. Because of this isomor-
phism, we will often talk about these intersection lattices as if they were lattices
of graphs.

We can now combinatorially describe the subspace arrangements defined in
Section 1. Call a component of a graph trivial or a singleton if it consists of a
single vertex. Note that according to this definition, a single vertex i together
with the half edge ih is nontrivial. Now the k-equal subspace arrangement of type
An, An,k, consists of all graphs in L(An) having exactly one nontrivial component
K and satisfying |V (K)| = k, where | · | denotes cardinality. Note that we must
have k ≥ 2 and that this component must be a complete positively signed (hence
balanced) graph. Also, An,2 = An. The k, h-equal subspace arrangement of type
Bn, Bn,k,h, consists of all graphs in L(Bn) having a unique nontrivial component
K and satisfying |V (K)| = k if K is balanced or |V (K)| = h if it is unbalanced.
Note that we can assume h < k, since if h ≥ k then there are containments among
the subspaces. We also have the specialization Bn,2,1 = Bn. In fact a natural
one-parameter geometric analog of the type An k-equal arrangement is the pure
arrangement Bn,k,k−1. Finally the k-equal subspace arrangement of type Dn, Dn,k,
consists of all graphs in L(Dn) having a unique nontrivial component K which is
balanced and satisfies |V (K)| = k. Note that nothing is to be gained by having a
second parameter h in the Dn case since, with the obvious definition, Dn,k,h = Bn,k,h
for 2 ≤ h < k.

Let Πn,k and Πn,k,h be the induced posets of all graphs from L(An) and L(Bn),
respectively, whose nontrivial components have at least k vertices if balanced and
at least h vertices if unbalanced. In this definition we make no assumption on k
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and h other than k ≥ 2 and h ≥ 1. From Theorem 2.1 we immediately obtain the
following.

Corollary 2.2 For 1 ≤ h ≤ k we have the following lattice isomorphisms.

1. L(An,k) ∼= Πn,k,

2. L(Bn,k,h) ∼= Πn,k,h if h < k,

3. L(Dn,k) ∼= Πn,k,k.

Note that the posets Πn,k,h also exist for h > k, but they are not even lattices in
that case and so are not of interest to us.

Let A be any subspace arrangement and consider the Möbius function µ(X) =
µ(0̂, X) where X ∈ L = L(A). We also let µ(L) = µ(0̂, 1̂). The characteristic
polynomial of L (or of A) is

χ(L, t) =
∑
X∈L

µ(X)tdimX . (1)

In order to give a combinatorial proof of one of the results in Section 3, we will
use the following theorem. In it, Z represents the integers.

Theorem 2.3 (Blass and Sagan [6]) Let A be a subspace arrangement embed-
ded in Bn and let t = 2s+ 1 be a positive odd integer. Consider the cube

Qt = {(x1, . . . , xn) ∈ Zn : −s ≤ xi ≤ s}.

Then
χ(A, t) = |Qt \ A|

i.e., the characteristic polynomial of A evaluated at an odd integer t is the number
of lattice points left in the cube of side t once the subspaces of A are removed.

If L is any partially ordered set then the pair x, y ∈ L determines a closed
interval [x, y] = {z ∈ L : x ≤ z ≤ y}. The corresponding order complex, ∆(x, y),
is the abstract simplicial complex of all sets {x1, . . . , xl−1} coming from chains
x = x0 < x1 < . . . < xl = y in [x, y]. We also write ∆(L) for ∆(0̂, 1̂). We will say
that L has a certain topological property if ∆(L) does.

A property that we will be very concerned with is shellability. A cover in a
poset P is an edge x → y of P ’s Hasse diagram, i.e., a pair x, y ∈ P such that
x < y and there is no z ∈ P satisfying x < z < y. Let C(P ) denote the set of
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covers of P . If L is a totally ordered set then a fuction λ : C(P ) → L is called a
labeling with label set L. This induces a labeling of every maximal chain

C : x = x0 → x1 → . . .→ xl = y

in [x, y] where
λ(C) = λ(x0 → x1), . . . , λ(xl−1 → xl).

The parameter l is called the length of C and denoted l(C). Define the lexicographic
order on maximal chains by saying that C < C ′ if λ(C) < λ(C ′) in lexicographic
order. Note that C and C ′, and thus λ(C) and λ(C ′), can have different lengths.
We say that C is increasing (respectively, decreasing) if λ(C) is a strictly increasing
(respectively, weakly decreasing) sequence. Note the difference between the strict
and weak cases. A lexicographic shelling or EL-labeling of a poset P is a labeling
such that

S1. every interval [x, y] has a unique increasing maximal chain C, and

S2. C < C ′ for any other maximal chain C ′ in [x, y].

This notion of EL-shellability, introduced in [4], extends the standard one for
graded posets. The fundamental result about shellings that we will need is as
follows.

Theorem 2.4 (Björner and Wachs [4]) Suppose the bounded poset P admits
a lexicographic shelling. Then P has the homotopy type of a wedge of spheres
and thus its integral homology groups are free. For each d ≥ −1 the number
of d-spheres, and hence also the dth reduced Betti number, equals the number of
decreasing maximal chains of P having length d+ 2.

A lexicographic shelling in fact produces additional topological information that
we will not need. Namely, the decreasing maximal chains determine a basis for the
homology and cohomology of P [4].

3 Möbius functions and characteristic polynomi-

als

We will now investigate the combinatorics of the posets Πn,k,h. More generally,
suppose T, V ⊆ Z+ with 1 ∈ T and let Πn,T,V denote the subposet of all graphs in
L(Bn) with components K such that |V (K)| ∈ T if K is balanced and |V (K)| ∈ V
if K is unbalanced. Note that Πn,k,h = Πn,T,V if T = {1, k, k + 1, . . .} and V =
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{h, h+1, . . .}. Similarly define Πn,T as a subposet of L(An). Although these posets
need not be lattices, they still contain the minimal element 0̂ (the empty graph),
so we can still talk about their Möbius functions. By convention, we let µ(P ) = 0
if P is a poset without a unique maximal element.

If we have a subspace X ∈ L(Bn) then dimX = b(G), where b(G) is the
number of balanced blocks in the corresponding graph G. Thus it is consistent
with definition (1) to let

χ(P, t) =
∑
G∈P

µ(G)tb(G).

for any subposet P ⊆ L(Bn) with 0̂ ∈ P . Since determining µ, χ and the corre-
sponding generating functions is no more complicated for arbitrary Tand V , we
will do everything in this generality.

It will be convenient to introduce another subposet of L(Bn). Let Πb
n,T contain

the graphs all of whose components K are balanced and satisfy |V (K)| ∈ T . Also
let Πb

n,k be the special case where T = {1, k, k+ 1, . . .}. Our first proposition gives
a recursion for the characteristic polynomial of this poset.

Proposition 3.1 We have the recurrence relation

χ(Πb
n,T , t) = t

n∑
m=1

2m−1

(
n− 1

m− 1

)
µ(Πm,T )χ(Πb

n−m,T , t).

Proof. If G ∈ Πb
n,T , then let K be the component of G containing the vertex n and

let m = |K|. There are 2m−1
(
n−1
m−1

)
choices for K since it is a balanced complete

bipartite graph. This explains the first factor in the sum.
Now fix K and consider the subposet

P = {G ∈ Πb
n,T : K is a component of G}.

The lower ideal generated by P is isomorphic to the product Πb
n−m,T ×Πm,T , with

P being the cross-section Πb
n−m,T ×K. Thus the contribution of P to χ(Πb

n,T , t) is
χ(Πb

n−m,T , t) · µ(Πm,T )t. This completes the proof.

Let P = (Pn)n≥0 be a family of subposets Pn ⊆ L(Bn) with 0̂ ∈ Pn. Note that
when n = 0 we have L(B0) = {0̂} and χ(L(B0), t) = 1. We consider the following
generating functions

M(P, x) =
∑

n≥1 µ(Pn)x
n

n!

F (P, x, t) =
∑

n≥0 χ(Pn, t)
xn

n!

p(P, x) = F (P, x, 1)
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Note that if Pn has a unique maximal element not equal to 0̂ for all sufficiently
large n, then p(P, x) is a polynomial in x. This will be the case for the lattices
of our type Bn and Dn subspace arrangements. In particular, we will need the
truncated exponential function

pk(x) = 1 + x+
x2

2!
+ · · ·+ xk−1

(k − 1)!
.

Also note that if 1̂ ∈ Pn for all n then F (P, x, 0) = M(P, x). Finally we will need
the following result about the k-equal arrangement An,k.

Theorem 3.2 (Björner and Lovász [2]) We have the functional equations

expM(ΠT , x) = p(ΠT , x),

F (ΠT , x, t) = p(ΠT , x)t

and also
p(Πk, x) = pk(x).

Combining the two previous results, we obtain the following formulae. It is
interesting to compare the expression for χ(Πb

n,2, t) with the well known

χ(Πn,2,1) = (t− 1)(t− 3) · · · (t− 2n+ 1).

Theorem 3.3 We have the functional equation

F (Πb
T , x, t) = p(ΠT , 2x)t/2.

In particular

F (Πb
k, x, t) = pk(2x)t/2 =

[
1 + 2x+ · · ·+ (2x)k−1

(k − 1)!

]t/2
,

and
χ(Πb

n,2, t) = t(t− 2)(t− 4) · · · (t− 2n+ 2).

Proof. Multiplying the equation in Proposition 3.1 by xn−1/(n−1)! and summing,
we obtain

Fx(Π
b
T , x, t) = tMx(ΠT , 2x)F (Πb

T , x)

where the subscript x denotes the derivative with respect to that variable. This
differential equation is easily solved by separating variables and then simplified by
using Theorem 3.2:

F (Πb
T , x) = exp

(
t

2
M(ΠT , 2x)

)
= p(ΠT , 2x)t/2.
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The first special case follows from Theorem 3.2 again. The second is obtained from
the first by extracting the coefficient of xn/n! using the binomial theorem.

Although χ(Πb
n,k, t) factors over the integers for k = 2, it does not do so in

general. However, it does factor partially. To see this, it is convenient to expand
this polynomial in the basis of double falling factorials

{t}n = χ(Πb
n,2, t) = t(t− 2)(t− 4) · · · (t− 2n+ 2).

We will also need a certain refinement of the Stirling numbers of the second kind,
namely let

Sk(n, j) = the number of partitions of [n] into j subsets, each subset of size ≤ k.

Corollary 3.4 We have the expansion

χ(Πb
n,k, t) =

n∑
j=1

2n−jSk−1(n, j){t}j,

and the divisibility relation

{t}dn/(k−1)e | χ(Πb
n,k, t)

where d·e is the round-up function.

Proof. The second expression follows from the first because Sk−1(n, j) = 0 for
n > (k − 1)j.

To obtain the expression for χ, write pk(x) = 1 + p̄k(x) and use Theorem 3.3:

F (Πb
k, x) = (1 + p̄k(2x))t/2

=
∑

j≥0

(
t/2
j

)
p̄k(2x)j

=
∑

j≥0{t}j2−j p̄k(2x)j/j!

Now take the coefficient of xn/n! on both sides, using the fact that this coefficient
in p̄k(2x)j/j! is just 2nSk−1(n, j).

We can now follow the same path for Πn,T,V that we did for Πb
n,T .

Proposition 3.5 We have the recurrence relation

χ(Πn,T,V , t) = t
∑n

m=1 2m−1
(
n−1
m−1

)
µ(Πm,T )χ(Πn−m,T,V , t)

+
∑n

m=1

(
n−1
m−1

)
µ(Πm,T,V )χ(Πb

n−m,T , t).
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Proof. The first and second sums correspond to graphs G ∈ Πn,T,V where the
component K containing the vertex n is balanced and unbalanced, respectively.
Since the details are very much like those in the proof of Proposition 3.1, we omit
them.

Theorem 3.6 We have the functional equations

M(ΠT,V , x) = p(ΠT , 2x)−1/2p(ΠT,V , x),

F (ΠT,V , x, t) = p(ΠT , 2x)(t−1)/2p(ΠT,V , x).

In particular for h ≤ k

F (Πk,h, x, t) = pk(2x)(t−1)/2ph(x).

Proof. As in the proof of Theorem 3.3, we multiply the equation in Proposition 3.5
by xn−1/(n− 1)! and sum:

Fx(ΠT,V , x, t) = tMx(ΠT , 2x)F (ΠT,V , x, t) +Mx(ΠT,V , x)F (Πb
T , x, t).

Moving the first term from the right to the left side of this equation, we see that
it is linear in F (ΠT,V , x, t) with integrating factor

exp

(∫
−tMx(ΠT , 2x) dx

)
= exp

(
− t

2
M(ΠT , 2x)

)
= p(ΠT , 2x)−t/2

by Theorem 3.2. Applying the integrating factor, we get

∂

∂x

[
F (ΠT,V , x, t)p(ΠT , 2x)−t/2

]
= Mx(ΠT,V , x)F (Πb

T , x, t)p(ΠT , 2x)−t/2

= Mx(ΠT,V , x)

by Theorem 3.3. Integration gives

F (ΠT,V , x, t) = p(ΠT , 2x)t/2M(ΠT,V , x).

If t = 1 this specializes to

M(ΠT,V , x) = p(ΠT , 2x)−1/2p(ΠT,V , x)

which, when plugged back into the previous equation, also gives the formula for
F (ΠT,V , x, t) in the statement of the theorem.
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For the “in particular,” the factor of pk(2x)(t−1)/2 is obtained from Theorem 3.2.
Also note that for h ≤ k the poset Πn,k,h has 0̂ = 1̂ if and only if n < h. Thus

χ(Πn,k,h, 1) =

{
1 if n < h
0 if n ≥ h

which gives the second factor.

We can specialize this theorem to get the well known generating functions for
the characteristic polynomial in the case of the Bn and Dn hyperplane arrange-
ments

Corollary 3.7 We have the generating functions

F (L(B), x, t) = (1 + 2x)(t−1)/2 for L(Bn) = Πn,2,1

F (L(D), x, t) = (1 + 2x)(t−1)/2(1 + x) for L(Dn) = Πn,2,2.

We can also get a nice formula involving χ(Πn,k,h) itself.

Corollary 3.8 For 1 ≤ h ≤ k we have the expansion

χ(Πn,k,h, t) =
h−1∑
i=0

(
n

i

) n−i∑
j=1

2n−i−jSk−1(n− i, j){t− 1}j,

and the divisibility relation

{t− 1}d(n−h+1)/(k−1)e | χ(Πn,k,h, t).

Proof. Again, the second relation follows easily from the first. We could derive
the expression for χ from Theorem 3.6 with a demonstration similar to that of
Corollary 3.4. Instead, we will give a combinatorial proof based on Theorem 2.3.

It suffices to show that a polynomial equation holds for positive odd t = 2s+1,
so consider the cube Qt. The arrangement A consists of all subspaces containing
points with at least k coordinates equal in absolute value or at least h coordinates
equal to zero. Thus Qt \ A contains those points x = (x1, . . . , xn) in Qt with at
most k−1 of the numbers |x1|, . . . , |xn| equal to any given value and at most h−1
zero coordinates.

Let Ai,j ⊆ Qt \A consist of all those points with exactly i zero coordinates and
exactly j different nonzero coordinate absolute values. So it suffices to show that

|Ai,j| =
(
n

i

)
2n−i−jSk−1(n− i, j){t− 1}j.
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First, there are
(
n
i

)
ways to choose the zero coordinates in x. Next, we can choose

the absolute values of nonzero coordinates in s(s− 1) · · · (s− j + 1) = 2−j{t− 1}j
ways. Once these j values have been chosen, we can distribute them among the
n− i nonzero coordinates in Sk−1(n− i, j) ways, since a value can be repeated at
most k−1 times. Finally, there are 2n−i ways to sign the nonzero coordinates after
choosing their absolute values.

4 Shellability, homotopy type and homology

In this section we will determine the homotopy type of Πn,k,h for h < k. Since these
lattices turn out to be homotopic to wedges of spheres, their homology groups are
free and we will derive a formula for the corresponding Betti numbers. We will do
this by applying Theorem 2.4. First, however, we will need to cite some general
results about shellings.

Consider posets P and P ′ with covers labeled by totally ordered sets L and L′,
respectively. A cover isomorphism is a function f : P → P ′ such that

1. f is an isomorphism of posets and thus induces a bijection f : C(P )→ C(P ′),
furthermore

2. f induces a well-defined order-preserving bijection f̂ : L → L′ given as
follows: If l ∈ L labels a cover, c, and f(c) = c′ with label l′ then f̂(l) = l′.

The next result can be obtained immediately from the definitions.

Lemma 4.1 Let f : P → P ′ be a cover isomorphism. Then the labeling L of
P is a lexicographic shelling if and only if the labeling L′ of P ′ is a lexicographic
shelling.

Now let P1, P2 be cover-labeled posets with labelings λ1 : C(P1) → L1 and
λ2 : C(P2)→ L2. The product labeling of the poset product P = P1×P2 by L1∪L2

is

λ((a, b)→ (c, b)) = λ1(a→ c)

λ((a, b)→ (a, d)) = λ2(b→ d).

A useful lemma concerning products is as follows.

Lemma 4.2 (Björner and Wachs [4]) Let P = P1×P2 have the product label-
ing λ and fix a linear extension of L1 ∪ L2. If
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1. L1 ∩ L2 = ∅ and

2. λ1, λ2 are lexicographic shellings of P1, P2, respectively,

then λ is a lexicographic shelling of P1 × P2.

Finally, we will need to recall the shelling of Πn,k given in [4]. Any graph G
has an associated set partition

π(G) = B1/B2/ . . . /Bm

where each Bi is the vertex set of a component of G. We call Bi an l-block if
|Bi| = l. We also use the notation [n] = {1, 2, . . . , n}. Now define a labeling
λ : C(Πn,k) → [2]× [n], where the label set is given the lexicographic ordering, as
given in the following table.

Symbol Operation to obtain the cover G→ H λ(G→ H)
M Merge two nontrivial blocks Bi, Bj (1,maxBi ∪Bj)
C Create a new k-block B (2,maxB)
S Merge singleton {a} into a nontrivial block (2, a)

Here M, C and S stand for “merge”, “create” and “singleton” respectively.

Theorem 4.3 (Björner and Wachs [4]) The labeling rules M, C and S give a
lexicographic shelling of Πn,k.

For Πn,k,h there are additional covers involving unbalanced blocks. Let h < k
and define a labeling λ : C(Πn,k,h)→ [4]× [n] by

Symbol Operation to obtain the cover G→ H λ(G→ H)
UM Convert a nontrivial balanced block B to

unbalanced, or merge it with the unbalanced block (1,maxB)
UC Create a new unbalanced h-block B (2,maxB)
US Merge {a} into the unbalanced block (2, a)
BM Merge two nontrivial balanced blocks Bi, Bj (3,maxBi ∪Bj)
BC Create a new balanced k-block B (4,maxB)
BS Merge {a} into a nontrivial balanced block (4, a)

In this table U and B stand for “unbalanced” and “balanced”, respectively.
The main theorem of this section is the following

Theorem 4.4 The labeling rules UM–BS give a lexicographic shelling of Πn,k,h for
h < k.
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Proof. Let [G,H] be an interval in Πn,k,h and consider a nontrivial component K of
H. We also let K stand for the graph in Πn,k,h obtained from H by breaking every
component with vertices in [n] \ V (K) into singletons. Let GK denote the graph
obtained from G by the same operation. Then we have the poset isomorphism

[G,H] ≡
∏
K

[GK , K]. (2)

Furthermore, if V (K) = {v1 < . . . < vm} then the map f : V (K) → [m] given by
vi 7→ i induces a map f : [GK , K]→ [G′K , 1̂] for some G′K . Here [G′K , 1̂] is in Πm,k

or Πm,k,h if K is balanced or unbalanced, respectively. If Πm,k is labeled by M-S
and Πm,k,h is labeled by UM-BS, then f is a cover isomorphism and (2) gives rise to
the product labeling. When H 6= 1̂, each factor of (2) is lexicographically shellable
according to the cover isomorphism lemma combined with either Theorem 4.3 for
the factors Πm,k or with induction on n for the factors Πm,k,h. The lemma on poset
products now applies to show that the given labeling satisfies conditions S1 and
S2 on intervals [G,H] for H 6= 1̂.

When H = 1̂, we must first identify an increasing chain C in [G, 1̂]. There will
be three cases depending on the form of G.

Case I: G has an unbalanced component. Say

π(G) = B0/B1/ . . . /Bm

where

B0 corresponds to the unbalanced component,
Bi, 1 ≤ i ≤ l, correspond to nontrivial balanced components, and
Bi, l < i ≤ m, correspond to trivial components.

Let
bi = maxBi for 1 ≤ i ≤ m. (3)

Without loss of generality we can list the Bi so that

b1 < . . . < bl and bl+1 < . . . < bm. (4)

Define a chain C by

C : G = G0 → G1 → . . .→ Gm = 1̂

where Gj, 0 ≤ j ≤ m, has an unbalanced component on the vertex set ∪i≤jBi and
balanced components on Bj+1, . . . , Bm. Thus

λ(C) : (1, b1) < . . . < (1, bl) < (2, bl+1) < . . . < (2, bm) (5)
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which is increasing.
Case II: G has nontrivial component(s) all of which are balanced. Say

π(G) = B1/ . . . /Bl/ . . . /Bm

with the same conventions as in Case I. Note that B0 does not exist and l ≥ 1.
Define C : G = G0 → G1 → . . . → Gm = 1̂ where Gj is as before but only for
j ≥ 1. So the first cover in C is the conversion of B1 from balanced to unbalanced.
Thus λ(C) is still given by (5) and is increasing.

Case III: G has only trivial components, i.e., G = 0̂. Let

C : 0̂ = G0 → G1 → . . .→ Gn−h+1 = 1̂

where Gj, 1 ≤ j ≤ n − h + 1 has an unbalanced component on [h + j − 1] and
{h+ j}, . . . , {n} are singletons. Thus

λ(C) : (2, h) < (2, h+ 1) < . . . < (2, n)

which is increasing.
We must verify condition S1 in the definition of a shelling. Let C ′ be any chain

different from C in [G, 1̂]. To show that C ′ is not increasing, it suffices to find an
inversion, i.e., a pair of labels λ1, λ2 such that λ1 ≥ λ2 but λ1 comes before λ2

in λ(C ′). The last cover of C ′ must come from an application of rule UM or rule
US and so must have a label (i, b) where i = 1, 2. If C ′ contains a cover coming
from one of the balanced labeling rules, then it has a previous label (j, c) where
j = 3, 4 and thus an inversion. So we can restrict ourselves to chains C ′ using only
UM–US. We now consider each of the three cases separately.

Case I. Since G already has an unbalanced component, we can’t use rule UC,
leaving only UM and US possible. If any application of US comes before a UM, then
some (2, b) forms an inversion with some (1, c). Otherwise λ(C ′) is a non-identity
permutation of λ(C) as given in (5) and hence contains an inversion.

Case II. Since G contains only balanced components, the first cover G0 → G′1
of C ′ must come from rules UC or UM. Let C ′′ be the portion of C ′ in the interval
[G′1, 1̂]. If C ′′ has an inversion, then we are done. Otherwise, from Case I, C ′′ must
be the unique increasing chain in [G′1, 1̂]. There are now two possibilities.

If G0 → G′1 is a UC cover then it has label (2, b) for some b. This implies that
the first cover of C ′′ must be UM, since G′1 has nontrivial balanced component B1,
and so has label (1, b1). Thus these two labels form an inversion.

If G0 → G′1 is a UM cover then it has label (1, bi) for some i, where the bi are
given by (3). Furthermore we must have 2 ≤ i ≤ l since i = 1 leads to C ′ = C. As
before, this implies that the first cover of C ′′ is UM with label (1, b1). Thus this
pair of labels forms an inversion by (4).
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Case III. Since G = 0̂, the first cover of C ′ must be of type UC. Let G′1, C
′′ be

as before and reason as in Case II to reduce to the situation where C ′′ is the unique
increasing chain in [G′1, 1̂]. Now G′1 has a unique nontrivial component which is
unbalanced on some vertex set B with |B| = h but B 6= [h]. (The case B = [h]
leads to C ′ = C.) Thus there is a singleton component b in G′1 with b < maxB.
Hence the label λ(0̂ → G′1) = (2,maxB) forms an inversion with the label (2, b)
in λ(C ′′). This completes the verification that C ′ contains an inversion.

Finally we must verify condition S2 in the definition of a shelling, showing that
λ(C) is lexicographically least. It suffices to show the following: If Gi → Gi+1 is
any cover in C and H is any element of Πn,k,h covering Gi then

λ(Gi → Gi+1) ≥ λ(Gi → H) implies H = Gi+1.

Case I. Consider G0 → G1 with label (1, b1). So λ(G0 → H) ≤ (1, b1) implies
λ(G0 → H) = (1, b) for some b ≤ b1. Thus G0 → H is a UM cover and this in
turn implies that b = bi for some i, 1 ≤ i ≤ l. Now (4) forces b = b1 and H = G1

as desired. Similar considerations apply for the covers Gi → Gi+1, 1 < i < l.
Now consider Gl → Gl+1 with label (2, bl+1). So λ(Gl → H) ≤ (2, bl+1) implies

Gl → H is a cover coming from some unbalanced rule. But Gl has only one
nontrivial component, K, which is unbalanced. Thus only rule US can apply and
λ(Gl → H) = (2, b) for some vertex label b ≤ bl+1. But bl+1 is the smallest vertex
label outside K, so b = bl+1 and H = Gl+1. Similar considerations apply for the
covers Gi → Gi+1, l < i < m.

Case II. The exact same reasoning as in Case I applies. One need only be
careful about which of the two possibilities in the UM rule is being used.

Case III. Consider G0 → G1 with label (2, h). Since G0 = 0̂, the cover G0 → H
must come from UC or BC. But λ(G0 → H) ≤ (2, h) rules out BC, so λ(G0 →
H) = (2, b) with b ≤ h. Also b = maxB where B is the vertex set of the unique
nontrivial component of H and |B| = h. Hence b = h and H = G. The covers
Gi → Gi+1, i ≥ 1, are handled as in the second paragraph of Case I.

This completes the verification of condition S2 and the proof of the theorem.

We now use Theorem 2.4 to calculate the Betti numbers of Πn,k,h by counting
decreasing chains in our shelling. First, however, we need a lemma about Stirling
numbers. Let c(t, t′) denote a signless Stirling number of the first kind, i.e., the
number of permutations of [t] that decompose into t′ disjoint cycles.

Lemma 4.5 We have
t∑

t′=0

2t
′
c(t, t− t′) = (2t− 1)!!
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Proof. This result follows easily by induction on t. However, we prefer to give a
combinatorial proof. The sum counts all permutations of [t] where the elements
of each cycle have been colored red or blue and the smallest element in each
cycle is always red. The double factorial counts all complete matchings of the set
{1, 2, . . . , t,−1,−2, . . . ,−t}.

Given a cycle (c1, c2, . . . , cm) with minimum c1 in a bicolored permutation we
construct a matching on {c1, . . . , cm,−c1, . . . ,−cm} as follows. If m = 1 then
match c1 to −c1. If m > 1 then match c1 to one of ±c2 where the sign is chosen
to be the same as c1’s (in this case positive) if c1, c2 are colored differently, or the
opposite sign (in this case negative) if c1, c2 are colored the same. Now match
whichever of ±c2 is unmatched to one of ±c3 using the same rule, and iterate
this process (subscripts being taken modulo m). It is easy to see that this results
in a matching and so applying the process to every cycle in a permutation gives
a complete matching. It is also easy to construct an inverse for this procedure,
proving that we have a bijection.

Note that any maximal chain in Πn,k,h has at most one cover that comes from
applying rule UC. Let Dl

n,k,h denote the number of decreasing maximal chains in
Πn,k,h of length l that have no UC cover. Thus we have l = n − t(k − 2) where t

is the number of covers of type BC. Note that 1 ≤ t ≤ bn/kc. Similarly, let D̂l
n,k,h

denote the number of decreasing maximal chains in Πn,k,h of length l that have
exactly one UC cover. In this case l = n− t(k− 2)− (h− 1), where t again counts
the BC covers and so 0 ≤ t ≤ b(n− h)/kc.

Theorem 4.6 Suppose that 1 ≤ h < k and k > 2. If l = n − t(k − 2) where
1 ≤ t ≤ bn/kc, then

Dl
n,k,h = 2n−t(2t− 1)!!

∑
0=i0≤...≤it=n−tk

t−1∏
j=0

(
n− jk − ij − 1

k − 1

)
(j + 1)ij+1−ij . (6)

If l = n− t(k − 2)− (h− 1) where 0 ≤ t ≤ b(n− h)/kc, then

D̂l
n,k,h =


(
n− 1

h− 1

)
if t = 0,

n−h∑
m=kt

(
n

m

)(
n−m− 1

h− 1

)
D
m−t(k−2)
m,k,h if t ≥ 1.

All other values of Dl
n,k,h and D̂l

n,k,h are zero.

Proof. Let us consider a chain C counted by Dl
n,k,h. Then λ(C) can be broken

into three consecutive parts.
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First comes a sequence of all labels with first coordinate 4. This corresponds to
a sequence of BC and BS covers which create k-blocks and merge singletons until
t nontrivial blocks have been formed. Note that no singletons are left after this
stage because if there were, then rule US would have to be used after conversion
of a block to unbalanced by UM, and C would not be decreasing. Let

ij = the number of singleton merges while there are ≤ j nontrivial blocks.

So 0 = i0 ≤ . . . ≤ it = n − tk. When creating the j + 1st nontrivial block we
must always use the largest remaining singleton (to maintain a decreasing chain)
together with k − 1 of the other n− jk − ij − 1 available singletons. The number
of balanced blocks on k elements is 2k−1. Thus

number of choices for the j + 1st BC cover = 2k−1

(
n− jk − ij − 1

k − 1

)
.

Each singleton merge while there are j + 1 nontrivial blocks present can be done
in 2j + 2 ways for a total of (2j + 2)ij+1−ij ways, until the creation of block j + 2.
Thus the total number of choices for this portion of the chain is∑

ij

∏
j

2k−1

(
n− jk − ij − 1

k − 1

)
(2j + 2)ij+1−ij

= 2n−t
∑
ij

∏
j

(
n− jk − ij − 1

k − 1

)
(j + 1)ij+1−ij . (7)

Next comes a sequence of labels with first coordinate 3, i.e., applications of rule
BM for merging nontrivial blocks. Suppose there are t′ merges starting from some
graph H with blocks A1/ . . . /At and ai = maxAi, 1 ≤ i ≤ t. Consider the ordinary
partition poset Πt,2 on the set {a1, . . . , at}, labeling each cover by maxBi∪Bj where
Bi, Bj are the two blocks merged. It is known from [14] that this is a shelling of
Πt,2. Let ΠH be the subposet obtained as the union of all chains in Πn,k,h starting
at H and only using BM covers. Then there is a function f : ΠH → Πt,2 given
by taking each H ′ ∈ ΠH and mapping it to the graph obtained by removing all
vertices except the ai and making all remaining edges positive. This function is
onto and label-preserving. The decreasing chains with t′ merges starting at H are
mapped onto the decreasing chains with t′ merges starting at 0̂ ∈ Πt,2. Since Πt,2

is shelled by the labeling, it contains c(t, t − t′) such chains. Furthermore, each
such chain has 2t

′
preimages. Thus by Lemma 4.5 the total contribution from this

portion of the chain C is ∑
t′

2t
′
c(t, t− t′) = (2t− 1)!! (8)
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Finally, we have covers coming from the unbalanced rules. But to use any such
rule, we must first create an unbalanced block which gives a label of the form (1, b).
Thus to maintain a decreasing chain, we can only use rule UM, first to create the
block and then to merge the rest of the blocks with it. This can only be done
in one way, namely in decreasing order of maxima. Hence Dl

n,k,h is given by the
product of (7) and (8) which agrees with formula (6).

To obtain the formula for D̂l
n,k,h when t ≥ 1, we follow the same argument as

before with two changes. At the end of the first sequence of BC and BS covers it is
no longer true that only nontrivial blocks are left. Suppose that the set of vertices
in nontrivial blocks is S ⊆ [n] where |S| = m, kt ≤ m ≤ n−h. Then there are

(
n
m

)
choices for S and D

m−t(k−2)
m,k,h ways to pick the deceasing chains once S is chosen.

We must also modify the final sequence of covers to begin with an application
of UC to create an unbalanced component, followed by some applications of US,
and ending with some of UM. The UC cover can be chosen in

(
n−m−1
h−1

)
ways since

the largest remaining singleton must be put in the unbalanced h-block. But the
US sequence and the UM sequence can each be done only in decreasing order of
maxima. Putting together the various counts finishes the t ≥ 1 case.

Finally we must consider what happens when t = 0. Since no balanced k-blocks
are created we must start with a UC cover, which can be done in

(
n−1
h−1

)
ways, and

follow by merging in all the singletons in decreasing order. This completes the
counting of the decreasing chains.

If P is a poset, then let β̃d(P ) be the reduced Betti number of the order complex
∆(P ) in dimension d (the rank of reduced homology with integer coefficients). We
will use the abbreviations β̃d(x, y) when P is an interval [x, y] and β̃dn,k, β̃

d
n,k,h when

P = Πn,k,Πn,k,h, respectively. In order to give the formulae for β̃dn,k,h it will be
convenient to have the Kronecker delta, δs,t, which equals 1 if s = t and 0 otherwise.
Combining Theorems 2.4 and 4.6 we immediately get the following result.

Theorem 4.7 If 1 ≤ h < k and k > 2 then Πn,k,h has the homotopy type of a
wedge of spheres, so its integral homology groups are free. In the case h 6= 1, k− 1
we have

d = n− 2− t(k − 2) with 1 ≤ t ≤ bn/kc ⇒ β̃dn,k,h = Dd+2
n,k,h

d = n− 2− t(k − 2)− (h− 1) with 0 ≤ t ≤ b(n− h)/kc ⇒ β̃dn,k,h = D̂d+2
n,k,h

In the case h = 1, k − 1 we have

d = n−2− t(k−2) with 1−δh,1 ≤ t ≤ b(n+1−δh,1)/kc ⇒ β̃dn,k,h = Dd+2
n,k,h+D̂d+2

n,k,h.

Furthermore, these are exactly the cases when β̃dn,k,h 6= 0.
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Note that when h = k− 1 then the parameter t counts the total number of times a
nontrivial block is formed, rather than just the number of formations of balanced
k-blocks. It is interesting to compare this result to the one in [5] on the reduced
Betti numbers in the type An case. We will also need this result in the next section
when we compute the ranks of cohomology groups.

Theorem 4.8 (Björner and Welker [5]) If 2 < k ≤ n then Πn,k has the homo-
topy type of a wedge of spheres, so its integral homology groups are free. Further-
more, β̃dn,k 6= 0 if and only if d = n− 3− t(k − 2) for some t, 1 ≤ t ≤ bn/kc and
in that case

β̃dn,k = (t− 1)!
∑

0=i0≤...≤it=n−tk

t−1∏
j=0

(
n− jk − ij − 1

k − 1

)
(j + 1)ij+1−ij .

Although there does not seem to be a nice closed form expression for β̃dn,k,h,
things simplify in high and low dimensions. The following corollary is an easy
computation using Theorems 4.6 and 4.7 so its proof is omitted.

Corollary 4.9 We have the following particular values for β̃dn,k,h in high dimen-
sions.

h 6= 1, k − 1 ⇒ β̃n−kn,k,h = 2n−1

(
n− 1

k − 1

)
,

h 6= k − 1 ⇒ β̃n−h−1
n,k,h =

(
n− 1

h− 1

)
,

h = k − 1 ⇒ β̃n−kn,k,h = 2n−1

(
n− 1

k − 1

)
+

(
n− 1

k − 2

)
We have the following particular values for β̃dn,k,h in low dimensions.

h 6= 1 & n
k

= q ∈ Z ⇒ β̃2q−2
n,k,h = 2n−q(2q − 1)!!

q−1∏
j=0

(
n− jk − 1

k − 1

)
h 6= k − 1 & n−h

k
= r ⇒ β̃2r−1

n,k,h =

(
n

n− h

)
2n−r(2r − 1)!!

r−1∏
j=0

(
n− jk − 1

k − 1

)
Furthermore, if h 6= 1, k − 1 then for any d = n− 2− t(k − 2), 1 ≤ t ≤ bn/kc, we
have the divisibility relation

2n−bn/kc
(
n− 1

k − 1

) ∣∣∣β̃dn,k,h .
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5 Cohomology of the complement

If A is a subspace arrangement in Rn then we let M(A) = Rn\∪A be the manifold
obtained by removing the subspaces from R

n. In particular, let Mn,k,h = M(Bn,k,h).
The fundamental result linking the homology of the lattice L(A) and cohomology
of the manifold M(A) is as follows. Here H̃(0̂, x) denotes the reduced homology
of the interval [0̂, x] viewed as an order complex.

Theorem 5.1 (Goresky-MacPherson [7]) Let A be a subspace arrangement
with intersection lattice L and manifold M . Then for all dimensions d

H̃d(M) ≡
⊕
x∈L\0̂

H̃codimx−2−d(0̂, x).

Since the Goresky-MacPherson formula involves the homology of intervals in
L we will have to investigate their structure in Πn,k,h. They turn out to be poset
products so the next result, whose proof can be found in Björner and Welker [5],
will be useful.

Proposition 5.2 Suppose that x < x′ in poset P , y < y′ in poset Q and consider
the interval [(x, y), (x′, y′)] ∈ P ×Q.

1. If ∆(x, x′) and ∆(y, y′) are both homotopy equivalent to wedges of spheres,
then so is ∆((x, y), (x′, y′)).

2. If H̃d(x, x
′) and H̃d(y, y

′) are free for all d then so is H̃d((x, y), (x′, y′)) and

H̃d((x, y), (x′, y′)) ≡
⊕

p+q=d−2

H̃p(x, x
′)⊗ H̃q(y, y

′).

Finally, we need some notation. Suppose G ∈ Πn,k,h has π(G) = B0/B1/ . . .
where B0 is the block of the unbalanced component. We permit B0 = ∅. Recall
from the isomorphism of Corollary 2.2 that G corresponds to a certain subspace,
that we will also denote by G. To make our formulas more compact, it will be
convenient to assume that if n = 0 then Π0,k,h consists of a single element and

β̃d0,k,h =

{
1 if d = −2,
0 else.

Theorem 5.3 Suppose 1 ≤ h < k and k > 2. Consider G ∈ Πn,k,h having an
unbalanced component of size a0 ≥ 0 and nontrivial balanced components of size
a1, . . . , am ≥ k.
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1. codimG =
∑m

i=0 ai −m.

2. [0̂, G] ∼= Πa0,k,h × Πa1,k × · · · × Πam,k.

3. [0̂, G] has the homotopy type of a wedge of spheres and so its homology groups
are free.

4. β̃d(0̂, G) =
∑

p0+···+pm=d−2m

β̃p0

a0,k,h
β̃p1

a1,k
· · · β̃pmam,k.

5. β̃d(0̂, G) is nonzero if and only if

d =
m∑
i=0

ai−m−2−t(k−2) where m+(1−δh,1)(1−δa0,0) ≤ t ≤
m∑
i=0

⌊ai
k

⌋
,

or when a0 6= 0, h 6= 1, k − 1 and

d =
m∑
i=0

ai−m−2−t(k−2)−(h−1) where m ≤ t ≤
⌊
n− a0

k

⌋
+

m∑
i=1

⌊ai
k

⌋
.

Proof. The first two items follow from Zaslavsky’s Theorem 2.1 characterizing
Πn,k,h. Number 3 comes from combining Theorems 4.7, 4.8, Proposition 5.2 and
item 2. Similarly number 4 is an application of Proposition 5.2 to item 2. Note
that when a0 = 0 then β̃p0

a0,k,h
only permits a term to be nonzero when p0 = −2.

In this case p1 + · · · + pm = d − 2(m − 1) which is what is needed to correctly
apply Proposition 5.2. Finally, the d values giving nonzero Betti numbers can be
extracted by using item 4 and the bounds in Theorems 4.7 and 4.8. In particular,
one must have pi = ai−2−ti(k−2) or pi−ai−2−ti(k−2)−(h−1) as appropriate
and then the restrictions on the ti will give the bounds on t =

∑m
i=0 ti.

Now let ρdn,k,h, ρ̃
d
n,k,h denote the ranks of Hd(Mn,k,h), H̃

d(Mn,k,h), respectively.

Theorem 5.4 Suppose 1 ≤ h < k and k > 2. For each G ∈ Πn,k,h let a0 ≥ 0
be the size of its unbalanced component and let a1, . . . , am ≥ k be the sizes of its
nontrivial balanced components.

1. The groups Hd(Mn,k,h) are free.

2. ρ̃dn,k,h =
∑

G∈Πn,k,h\0̂

∑
q0+···+qm=d

β̃a0−2−q0
a0,k,h

β̃a1−3−q1
a1,k

· · · β̃am−3−qm
am,k

.
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3. ρdn,k,h 6= 0 if and only if

d = t(k − 2) where 0 ≤ t ≤
⌊n
k

⌋
or when h 6= 1, k − 1 and

d = t(k − 2) + (h− 1) where 0 ≤ t ≤
⌊
n− h
k

⌋
.

Proof. The first two items follow from Theorem 5.1 together with numbers 3
and 4 of Theorem 5.3, respectively. To get the sum, we make the substitutions
p0 = a0 − 2 − q0 and pi = ai − 3 − qi for i ≥ 1. The restrictions for the nonzero
ranks are gotten by applying the bounds in Theorems 4.7 and 4.8 to the summation
formula just proved.

Again, the general form of ρ̃dn,k,h is messy, but there is a nice low-dimensional
case.

Corollary 5.5 Suppose 1 ≤ h < k and k > 2.

h 6= 1, k − 1 ⇒ ρ̃k−2
n,k,h =

n∑
i=k

2i
(
n

i

)(
i− 1

k − 1

)
,

h = 1 ⇒ ρ̃k−2
n,k,1 = 2n

n∑
i=k

(
n

i

)(
i− 1

k − 1

)
,

h = k − 1 ⇒ ρ̃k−2
n,k,k−1 =

n∑
i=k

(
n

i

)[
2i
(
i− 1

k − 1

)
+

(
i− 1

k − 2

)]
.

Proof. We will only do the case h 6= 1, k − 1 as the others are similar. By
Theorem 4.8, a factor in the sum for ρ̃dn,k,h which corresponds to the ith balanced
block will be nonzero only when ai − 3− qi = ai − 3− ti(k − 2). So we must have
qi = ti(k − 2) for some ti ≥ 1, 1 ≤ i ≤ m. Now q0 + · · · qm = d = k − 2 forces
q0 = t0(k − 2) where t0 ≥ 0. Thus by Theorem 4.7 we see that G has exactly one
nontrivial component which is unbalanced when t0 = 1 and balanced when t1 = 1.
In the unbalanced case, if a0 = i then there are

(
n
i

)
ways to choose the component

and β̃i−ki,k,h = 2i−1
(
i−1
k−1

)
by Corollary 4.9. Thus the total contribution of these G is

n∑
i=k

2i−1

(
n

i

)(
i− 1

k − 1

)
. (9)

23



In the balanced case there are 2i−1
(
n
i

)
ways to choose the component. Furthermore

β̃i−k−1
i,k =

(
i−1
k−1

)
by a specialization of Theorem 4.8. Thus the balanced graphs give

the same total contribution as the unbalanced ones, and doubling (9) gives our
formula.

There is another way to derive the formula for ρ̃k−2
n,k,1 in this corollary. Since the

arrangement Bn,k,1 contains the coordinate hyperplanes its complement naturally
decomposes into 2n parts, one for each orthant. This way one easily sees that
Mn,k,1 has the homotopy type of the disjoint union of 2n copies of the complement
of An,k. Thus we derive that for all d

ρdn,k,1 = 2nρdn,k

where ρdn,k is the rank of Hd(Mn,k). These ranks were computed in [5]. In partic-

ular, for k > 2 we get the previous corollary’s formula for ρ̃k−2
n,k,1.

6 Remarks

We end with some comments and questions raised by this work.
(1) In Section 3 we always assumed that 1 ∈ T when exploring the combina-

torics of Πn,T and Πn,T,V since this was the case of interest to us. However, this
restriction is not necessary. One can assume that T is arbitrary and add a 0̂ to the
poset if 1 6∈ T . Linusson [9] has derived expressions for the generating functions
that we considered in this generality for Πn,T and Πn,T,V .

(2) We should explain the reasons for the restrictions that appear on k and h
in our results from Sections 4 and 5. The inequality k > 2 is not really necessary.
But when k = 2 the Betti number is nonzero only in dimension n − 2 and is
given by a sum of many descending chain counts since the equations n = d+ 2 =
n − t(k − 2) = n − t(k − 2) − (h − 1) put no restriction on t. The sum is, of
course, much messier than the well-known value β̃n−2

n,2,1 = (2n− 1)!!. The reason for
this is that shelling rules UM-BS are complicated precisely because they must take
care of arrangements where the subspaces are not hyperplanes. If the subspaces
do have codimension one then easier techniques are available.

On the other hand, the restriction h < k is forced on us by the fact that UM-
BS do not give a shelling when h = k, i.e., for L(Dn,k). The problem is that the
longest chains in [0̂, 1̂] no longer start with the creation of an unbalanced block,
but instead must start by forming a balanced one. And one of these chains must
be the unique increasing chain in order to obtain a lexicographic shelling. It seems
that completely different techniques will have to be developed to handle this case.
It would be interesting to either prove or disprove that the lattice is shellable when
h = k.
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(3) The topological results for Bn,k,h in Section 5 can be extended in the fol-
lowing ways. Using item 3 in Theorem 5.3 and the Ziegler-Živaljević Theorem [17]
one can conclude that the singularity link Sn−1 ∩ (∪Bn,k,h) has the homotopy type
of a wedge of spheres. Using Theorem 5.3 and the Goresky-MacPherson Theorem
(Theorem 5.1) one can compute the cohomology groups, which are torsion-free, of
the complement in Cn of the complexification BCn,k,h, for 1 ≤ h < k. The arguments
are completely parallel to those carried out for An,k in [5] so they will be omitted
here.
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