Note

A relative of the Thue-Morse sequence

Jean-Paul Allouche ${ }^{\text {a }}$, André Arnold ${ }^{\text {b }}$, Jean Berstel ${ }^{\text {c }}$, Srećko Brlek ${ }^{\text {d }}$, William Jockusch ${ }^{\text {e }}$, Simon Plouffe ${ }^{\text {d }}$, Bruce E. Sagan ${ }^{\mathrm{f}, *}$
${ }^{a}$ C.N.R.S. U.R.A. 0226. Math., Université Bordeaux 1, F-33405 Talence cedex, France
${ }^{\text {b }}$ LaBRI, Universite Bordeaux I, F-33405 Talence cedex. France'
${ }^{\text {© LITP }}$, IBP , Universitée Paris VI, F-75252 Paris 05. France
${ }^{\text {d }}$ Département de Mathématiques et Informatique, UQAM, Montréal, Canada H3C 3P8
${ }^{\text {e}}$ Department of Mathematics. University of Michigan, Ann Arbor, M1 48109, USA
${ }^{\mathrm{f}}$ Department of Mathematics, Michigan State University. East Lansing, MI 48824-1027. USA

Received 1 September 1992

Abstract

We study a sequence, \boldsymbol{c}, which encodes the lengths of blocks in the Thue-Morse sequence. In particular, we show that the generating function for c is a simple product.

Keywords: Generating function; Thue-Morse sequence

Consider the sequence

$$
c: c_{0}, c_{1}, c_{2}, c_{3}, \ldots=1,3,4,5,7,9,11,12,13, \ldots
$$

defined to be the lexicographically least sequence of positive integers satisfying $n \in c$ implies $2 n \notin c$. In fact, the lexicographic minimality of c makes it possible to replace the previous 'implies' with 'if and only if.' Equivalently, \boldsymbol{c} is defined inductively by $c_{0}=1$ and

$$
c_{k+1}= \begin{cases}c_{k}+1 & \text { if }\left(c_{k}+1\right) / 2 \notin c, \tag{1}\\ c_{k}+2 & \text { otherwise }\end{cases}
$$

for $k \geqslant 0$. This sequence was the focus of a problem of Kimberling in [7]. (In fact, he looked at the sequence $4 c_{0}, 4 c_{1}, 4 c_{2}, \ldots$) The solution was given by Bloom [4]. Our Corollary 7 answers essentially the same question. Related results have recently been announced by Tamura [9].

[^0]At the 4è Colloque Séries Formelles et Combinatoire Algébrique (Montréal, June 1992) Plouffe and Zimmermann [8] posed the following problem. Show that the generating function for c is

$$
\begin{equation*}
\sum_{k \geqslant 0} c_{k} x^{k}=\frac{1}{1-x} \prod_{j \geqslant 1} \frac{1-x^{2 e_{j}}}{1-x^{e_{j}}}=\frac{1}{1-x} \prod_{j \geqslant 1}\left(1+x^{e_{j}}\right) \tag{2}
\end{equation*}
$$

the sequence of exponents being

$$
e: e_{1}, e_{2}, e_{3}, e_{4}, \ldots=1,1,3,5,11,21,43, \ldots
$$

where $e_{1}=1$ and

$$
e_{j+1}= \begin{cases}2 e_{j}+1 & \text { if } j \text { is even, } \tag{3}\\ 2 e_{j}-1 & \text { if } j \text { is odd }\end{cases}
$$

for $j \geqslant 1$. They found this conjecture by using a method that goes back to Euler. First they assumed that the generating function was of the form

$$
\prod_{j \geqslant 0} \frac{1-x^{a_{j}}}{1-x^{b_{j}}}
$$

for a certain pair of sequences a_{j}, b_{j}. Then they took the logarithm to convert the product into a sum. Finally they used Möbius inversion to determine the candidate sequences. Details of this procedure can be found in the text of Andrews [2, Theorem 10.3].

The purpose of this note is to prove (2). Before doing this, however, we will show that c has a number of other interesting properties. Chief among these is the fact that \boldsymbol{c} is closely related to the famous Thue-Morse sequence, \boldsymbol{t}. See the survey article of Berstel [3] for more information about t.

First we need to have a characterization of the integers in the sequence c.

Proposition 1. If n is any positive integer then $n \in c$ if and only if $n=2^{2 i}(2 j+1)$ for some nonnegative integers i and j.

Proof. Every positive integer n can be uniquely written in the form $n=2^{k}(2 j+1)$ where $k, j \geqslant 0$. We will proceed by induction on k.

If $k=0$, then n is odd. But then $n / 2$ is not an integer, and so n is in the sequence by definition (1).

Now assume that $k \geqslant 1$ and that the proposition holds for all powers less than k of 2 . If $k=2 i$ is even, then by induction we have $2^{2 i-1}(2 j+1) \notin c$. So $n=2^{2 i}(2 j+1) \in c$ by (1). On the other hand, if $k=2 i+1$ is odd, then induction implies $2^{2 i}(2 j+1) \in c$. Thus $n=2^{2 i+1}(2 j+1) \notin c$ as desired.

Let χ be the characteristic function of c, i.e.,

$$
\chi(n)= \begin{cases}1 & \text { if } n \in \boldsymbol{c}, \\ 0 & \text { otherwise }\end{cases}
$$

Restating the previous proposition in terms of χ yields the next result.
Lemma 2. The function χ is uniquely determined by the equations

$$
\begin{aligned}
& \chi(2 n+1)=1 \\
& \chi(4 n+2)=0 \\
& \chi(4 n)=\chi(n) .
\end{aligned}
$$

Another way of obtaining the sequence $\chi(n)$ for $n \geqslant 1$ is as follows. Starting from the sequence

$$
101 \bullet 101 \bullet 101 \bullet 101 \bullet \ldots
$$

defined on the alphabet $\{0,1, \bullet\}$, fill in the successive holes with the successive terms of the sequence itself, obtaining:

$$
101110101011101 \text { • } \ldots
$$

Iterating this process infinitely many times (by inserting the initial sequence into the holes at each step), one gets a 'Toeplitz transform' which is nothing but our sequence χ. The proof of this fact is easily obtained using Lemma 2 . See the article of Allouche and Bacher [1] for more information about Toeplitz transformations.

The connection with the Thue-Morse sequence can now be obtained. This sequence is

$$
\boldsymbol{t}: t_{0}, t_{1}, t_{2}, t_{3}, \ldots=0,1,1,0,1,0,0,1, \ldots
$$

defined by the conditions

$$
\begin{aligned}
& t_{0}=0 \\
& t_{2 n+1} \equiv t_{n}+1 \quad(\bmod 2), \\
& t_{2 n}=t_{n}
\end{aligned}
$$

We will need a lemma relating t and χ. All congruences in this and any future results will be $\bmod 2$.

Lemma 3. For every positive integer, n, we have

$$
\chi(n) \equiv t_{n}+t_{n-1} .
$$

Proof. This is a three case induction based on Lemma 2 and the definitions of χ and t. We will only do one of the cases as the others are similar.

$$
\begin{aligned}
t_{4 n}+t_{4 n-1} & \equiv t_{2 n}+t_{2 n-1}+1 \\
& \equiv t_{n}+t_{n-1}+2 \\
& \equiv \chi(n) \\
& =\chi(4 n) .
\end{aligned}
$$

Define d_{k} to be the first difference sequence of c_{k}, i.e., $d_{k}=c_{k}-c_{k-1}$, for $k \geqslant 0$ $\left(c_{-1}=0\right)$. So d is the sequence

$$
d_{0}, d_{1}, d_{2}, d_{3}, d_{4}, \ldots=1,2,1,1,2,2,2,1,1,2,1, \ldots
$$

Note that from the definition of c in (1), the value of d_{k} is either 1 or 2 . Write the Thue--Morse sequence in term of its blocks

$$
\boldsymbol{t}=011010011 \cdots=0^{d_{0}^{\prime}} 1^{d_{1}} 0^{d_{2}^{\prime}} 1^{d_{3}^{\prime}} \ldots
$$

defining a sequence d_{k}^{\prime}. It is this sequence that is related to our original one via the difference operator.

Theorem 4. For all $k \geqslant 0$ we have $d_{k}=d_{k}^{\prime}$.
Proof. Since both sequences consist of 1's and 2's, we need only verify that the 1's appear in the same places in both. It will be convenient to let $c_{k}^{\prime}=\sum_{i \leqslant k} d_{i}^{\prime}$. We now proceed by induction on k, assuming that $d_{i}=d_{i}^{\prime}$ for $i \leqslant k$. Then, from the definitions,

$$
\begin{equation*}
d_{k+1}=1 \Leftrightarrow \chi\left(c_{k}+1\right)=1 . \tag{4}
\end{equation*}
$$

But by the induction hypothesis, $c_{k}=\sum_{i \leqslant k} d_{i}=\sum_{i \leqslant k} d_{i}^{\prime}=c_{k}^{\prime}$. So, from Eq. (4),

$$
\begin{aligned}
d_{k+1}=1 & \Leftrightarrow \chi\left(c_{k}^{\prime}+1\right)=1 \\
& \Leftrightarrow t_{c_{k}^{\prime}+1}+t_{c_{k}^{\prime}} \equiv 1 \quad \text { (Lemma 3) } \\
& \Leftrightarrow t_{c_{k}^{\prime}+1} \neq t_{c_{k}^{\prime}} \\
& \Leftrightarrow d_{k+1}^{\prime}=1 \quad \text { (definitions). }
\end{aligned}
$$

Brlek [5] used the sequence \boldsymbol{d} in calculating the number of factors of \boldsymbol{t} of given length. The paper of de Luca and Varricchio [6] attacks the same problem in a different way.

Now if $n \in c$ then we will consider its $r a n k, r(n)$, which is the function satisfying $c_{r(n)}=n$. Note that $r(n)$ is not defined for all positive integers n. In order to obtain a formula for $r(n)$, we will need a definition. Let the base 2 expansion of n be

$$
n=\sum_{i \geqslant 0} \varepsilon_{i} 2^{i}
$$

with the $\varepsilon_{i} \in\{0,1\}$ for all i. Define a function s by

$$
s(n)=\sum_{i \geqslant 0}(-1)^{i} \varepsilon_{i} .
$$

In other words, $s(n)$ is the alternating sum of the binary digits of n.

Theorem 5. If $n \in c$ then

$$
\begin{equation*}
r(n)=(2 n+s(n)) / 3-1 . \tag{5}
\end{equation*}
$$

Proof. The proof will be by induction. From Proposition 1, $n \in c$ if and only if n is odd or $n=2^{2 i}(2 j+1)$ where $i>0$ and $j \geqslant 0$. To facilitate the induction, it will be convenient to split the odd numbers into two groups depending upon whether the highest power of 2 dividing $n+1$ is even or odd. So there will be three cases
(1) $n=2^{2 i}(2 j+1)$,
(2) $n=2^{2 i}(2 j+1)-1$,
(3) $n=2^{2 i-1}(2 j+1)-1$,
where $i>0$ and $j \geqslant 0$. The arguments are similar, so we will only do the first case.
So suppose n is even (remember that $i>0$). Thus $n+1$ is odd and, by Proposition 1, we have $n+1 \in c$. Since both n and $n+1$ are in c, the left-hand side of Eq. (5) satisfies $r(n+1)=r(n)+1$. So, by induction, it suffices to show that $r^{\prime}(n+1)=r^{\prime}(n)+1$ where $r^{\prime}(n)$ is the right-hand side of this equation. Moreover, n is a multiple of 4 , hence $s(n+1)=s(n)+1$ (write down their binary expansions). Thus

$$
\begin{aligned}
r^{\prime}(n+1) & =(2 n+2+s(n+1)) / 3-1 \\
& =(2 n+2+s(n)+1) / 3-1 \\
& =(2 n+s(n)) / 3 \\
& =r^{\prime}(n)+1 .
\end{aligned}
$$

As a straightforward corollaries we have the next two results.
Corollary 6. If $n \in c$ then

$$
r(n)=2 n / 3+\mathrm{O}(\log n)
$$

and $r(n)$ takes the value $2 n / 3$ infinitely often.
Corollary 7. For any nonnegative integer k

$$
c_{k}=3 k / 2+\mathrm{O}(\log k)
$$

and $c_{k}=3 k / 2$ infinitely often.

We shall now prove the identity (2). First we note a property of the exponents e_{j} which is a simple consequence of their definition (3).

Lemma 8. For $k \geqslant 2$, let $f_{k}=\sum_{2 \leqslant j \leqslant k} e_{j}$. Then

$$
f_{k}= \begin{cases}e_{k+1}-2 & \text { if } k \text { is even } \\ e_{k+1}-1 & \text { if } k \text { is odd } .\end{cases}
$$

Finally, we come to the proof. We restate the generating function here for easy reference.

Theorem 9. The generating function for \boldsymbol{c} is

$$
\sum_{k \geqslant 0} c_{k} x^{k}=\frac{1}{1-x} \prod_{j \geqslant 1}\left(1+x^{e_{j}}\right) .
$$

Proof. It suffices to show that if $k \geqslant 2$ then

$$
g_{k}(x)=\frac{1}{1-x}\left(1+x^{1}\right)\left(1+x^{1}\right)\left(1+x^{3}\right) \cdots\left(1+x^{e_{k}}\right)
$$

is the generating function for the sequence

$$
1,3,4,5,7, \ldots, c_{f_{k}}, 2^{k}, 2^{k}, 2^{k}, \ldots
$$

with $c_{f_{k}}=2^{k}-1$. The proof is an induction, breaking up into two parts depending on the parity of k. We will do the case where k is odd. (Even k is similar.) Now, by Lemma $8, g_{k}(x)\left(1+x^{e_{k+1}}\right)$ is the generating function for the sequence

$$
1,3, \ldots, c_{f_{k}}, 2^{k}+1,2^{k}+3, \ldots, 2^{k}+c_{f_{k}}, 2^{k+1}, 2^{k+1}, \ldots
$$

Using Proposition 1 and the fact that k is odd, we see that $2^{k}+1=c_{f_{k}+1}$ and $2^{k}+c_{f_{k}}=2^{k+1}-1=c_{f_{k}+1}$. So we want to show that

$$
c_{f_{k}+1}, c_{f_{k}+2}, \ldots, c_{f_{k+1}}=2^{k}+c_{0}, 2^{k}+c_{1}, \ldots, 2^{k}+c_{f_{k}} .
$$

But if $n<2^{k}$, then the highest power of 2 dividing n is equal to the highest power dividing $2^{k}+n$. Thus, by Proposition 1 again, $n \in \boldsymbol{c}$ if and only if $2^{k}+n \in \boldsymbol{c}$. This gives us the desired equality of the two sequences.

One possible generalization of \boldsymbol{c} is the sequence $\boldsymbol{c}^{(\alpha)}$ defined by $n \in c^{(x)}$ if and only if $\alpha n \notin c^{(x)}$. Thus c is the special case $\alpha=2$.

The following observation is a direct consequence of our definitions.

Proposition 10. If $\chi^{(x)}(n)$ is the characteristic function of $c^{(x)}$, then the sequence $\left(\chi^{(x)}(n)\right)$ is the unique fixed point of the morphism

$$
\begin{aligned}
& 1 \rightarrow 1^{x-1} 0, \\
& 0 \rightarrow 1^{x-1} 1
\end{aligned}
$$

which begins with 1 .
One can also see that $\boldsymbol{c}^{(\alpha)}$ satisfies analogs of many of our previous theorems. For example, if one defines $e_{1}^{(\alpha)}=1$ and

$$
e_{j+1}^{(x)}= \begin{cases}x e_{j}^{(x)}+1 & \text { if } j \text { is even, } \\ x e_{j}^{(x)}-1 & \text { if } j \text { is odd },\end{cases}
$$

for $j \geqslant 1$, then the following result is a generalization of Theorem 9 and has an analogous proof.

Theorem 11. The generating function for $\boldsymbol{c}^{(x)}$ is

$$
\frac{1}{1-x} \prod_{j \geqslant 1} \frac{1-x^{x e^{(9)}}}{1-x^{\left(e_{j}^{(e)}\right.}} .
$$

References

[1] J.-P. Allouche and R. Bacher, Toeplitz sequences, paperfolding, towers of Hanoi and progression-free sequences of integers, Ens. Math., 2e serie, 38, fascicule 3-4 (1992) 315-327.
[2] G. Andrews, q-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, in: Conf. Board of the Math. Sci. Regional Conf. Ser. in Mathematics, Vol. 66 (American Mathematical Society, Providence, RI, 1986).
[3] J. Berstel, Axel Thue's work on repetitions in words, in: P. Leroux and C. Reutenauer, eds., Séries Formelles et Combinatoire Algébrique, Publications du LACIM, Vol. 11 (Université du Québec à Montréal, 1992) 65-80.
[4] D.M. Bloom, Solution to problem E 2850, Amer. Math. Monthly 89 (1982) 599-600.
[5] S. Brlek, Enumeration of factors in the Thue-Morse word, Discrete Appl. Math. 24 (1989) 83-96.
[6] A. de Luca and S. Varricchio, Some combinatorial properties of the Thue-Morse sequence, Theoret. Comput. Sci. 63 (1989) 333-348.
[7] C. Kimberling, Problem E 2850, Amer. Math. Monthly 87 (1980) 671.
[8] S. Plouffe and P. Zimmermann, Quelques conjectures, preprint (1992).
[9] J. Tamura, Some problems and results having their origin in the power series $\sum_{n=1}^{+\infty} z^{[x n]}$ sum from 1 to infinity of z to the integral part of alpha times n, Reports of the Meeting on Analytic Theory of Numbers and Related Topics, Gakushuin Univ., 1992, 190-212.

[^0]: * Corresponding author.

