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Abstract

Stirling numbers, which count partitions of a set and permutations in the symmetric group,
have found extensive application in combinatorics, geometry, and algebra. We study analogues
and q-analogues of these numbers corresponding to the Coxeter group of type B. In particular,
we show how they are related to complete homogeneous and elementary symmetric polynomi-
als; demonstrate how they q-count signed partitions and permutations; compute their ordinary,
exponential, and q-exponential generating functions; and prove various identities about them.
Ordered analogues of the q-Stirling numbers of the second kind have recently appeared in con-
jectures of Zabrocki and of Swanson–Wallach concerning the Hilbert series of certain super
coinvariant algebras. We provide conjectural bases for these algebras and show that they have
the correct Hilbert series.
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1 Introduction

Let Z and N be the integers and nonnegative integers, respectively. If n ∈ N. then we will be
interested in two intervals of integers, namely

[n] = {1, 2, . . . , n} and ⟨n⟩ = {−n,−n+ 1, . . . , n− 1, n}.

If n ∈ Z and q is a variable then we let

[n]q =
1− qn

1− q
,

[n]q! = [n]q[n− 1]q · · · [1]q,
[n]q!! = [n]q[n− 2]q[n− 4]q · · · ,

where the double factorial ends at [1]q or [2]q depending on whether n is odd or even, respectively.
Note that if n < 0 then [n]q! = [n]q!! = 1 because both are the empty product. Note also that if
n ≥ 0 then

[n]q = 1 + q + q2 + · · ·+ qn−1.

We will often drop the subscript q in such notation if there can be no confusion about whether [n]
denotes the polynomial or the set.

1.1 Classical q-Stirling numbers

The purpose of the present work is to give a comprehensive treatment of the Stirling numbers in
type B and their q-analogues. We begin by defining the various classical Stirling numbers in type
A and their q-analogues recursively. Each recursion in this paper will always have n ∈ N and k ∈ Z
with the same boundary condition when n = 0. We start with the Stirling numbers of the second
kind, which arise more frequently in the context of q-analogues.
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Definition 1.1. The (type A) Stirling numbers of the second kind are S(n, k) for n ∈ N and k ∈ Z
defined by the initial condition S(0, k) = δ0,k (Kronecker delta) and for n ≥ 1,

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k). (1)

It is well known that S(n, k) is the number of partitions of the set [n] into k non-empty subsets
called blocks. These partitions are in bijection with subspaces of dimension n−k in the intersection
lattice of the type An−1 Coxeter group.

We will be primarily interested in q-analogues of Stirling numbers. There are in fact two
standard q-analogues of the Stirling numbers of the second kind, which differ by a q-shift. We will
call the (type A) q-Stirling numbers of the second kind the polynomials S[n, k] in the variable q
obtained by replacing (1) with

S[n, k] = S[n− 1, k − 1] + [k]S[n− 1, k]. (2)

Sometimes S[n, k] = q(
k
2)S[n, k] is also encountered, which replaces (1) with

S[n, k] = qk−1S[n− 1, k − 1] + [k]S[n− 1, k]. (3)

Some of the work related to q-Stirling numbers concerns the following ordered analogue.

Definition 1.2. The (type A) ordered q-Stirling numbers of the second kind are

So[n, k] = [k]!S[n, k],

and S
o
[n, k] = [k]!S[n, k].

When q = 1, So(n, k) counts the number of ordered set partitions of [n] with k blocks.
We now recall the Stirling numbers of the first kind and their q-analogue.

Definition 1.3. The (signless, type A) Stirling numbers of the first kind are c(n, k) for n ∈ N and
k ∈ Z defined by the initial condition c(0, k) = δ0,k and for n ≥ 1,

c(n, k) = c(n− 1, k − 1) + (n− 1)c(n− 1, k). (4)

Their signed counterparts are
s(n, k) = (−1)n−kc(n, k).

Combinatorially, c(n, k) counts the number of elements in the symmetric group of permutations
of [n] which have k cycles in their disjoint cycle decomposition. The (signless, type A) q-Stirling
numbers of the first kind are the polynomials c[n, k] obtained by replacing (4) with

c[n, k] = c[n− 1, k − 1] + [n− 1]c[n− 1, k]. (5)

Their signed counterparts are s[n, k] = (−1)n−kc[n, k].
Stirling numbers of both kinds have been extensively studied in combinatorics and have inter-

esting applications in algebra and geometry. See the texts of Sagan [Sag20] or Stanley [Sta97] for
more information. We next review the literature on q-Stirling numbers.

3



1.2 Existing q-Stirling literature

The q-analogues above have been frequently studied, especially those of the second kind. In the
history which follows, we will sometimes make no distinction between the two different variants of
the S[n, k]. The second kind q-Stirlings first appeared in the work of Carlitz on abelian fields [Car33]
and q-Bernoulli polynomials [Car48]. Then Gould [Gou61] studied q-Stirling numbers of the first
and second kinds, defining them in terms of elementary and complete homogeneous symmetric
polynomials. The q-Stirling numbers of the first kind also appeared in the work of Gessel [Ges82]
on a q-analogue of the exponential formula.

By weighting the blocks of a partition, Garsia [Gar80] was the first to show that S[n, k] can be
considered as the generating function for a statistic on set partitions, and Rawlings [Raw81] general-
ized this approach. Milne [Mil82] showed that restricted growth functions (which are equinumerous
with set partitions) could be used to give two statistics, one for each version of S[n, k], both of
which are similar to the inversion statistic on permutations. Wachs and White [WW91] built on
Milne’s work, giving two more inversion-like statistics on restricted growth functions with the same
distribution. There is also an analogue of the major index for these Stirling numbers as shown by
Sagan [Sag91].

Ehrenborg and Readdy [ER96] interpreted the S[n, k] in terms of juggling sequences and then
Ehrenborg [Ehr03] used this interpretation to evaluate various determinants whose entries are these
polynomials. Other work on q-Stirling numbers of the second kind has been done by Garsia and
Remmel [GR86] and by Leroux [Ler90].

In fact, in Carlitz’s original paper [Car33], the sum which arises in the context of Stirling

numbers is actually for S
o
[n, k] and he has to divide by 2(

k
2)[k]! to get the quantity in which he

is interested. Zeng and Zhang [ZZ94] used analytic means to prove a formula relating the S
o
[n, k]

and a q-analogue of the q-exponential numbers. A connection between the ordered polynomials
and ordered set partitions was obtained by Steingŕımsson in a 2001 preprint which was finally
published in 2020 [Ste20]. There he gave eight statistics analogous to the ones of Wachs and
White. He also made a number of conjectures and posed an open problem (to find a combinatorial
proof of Zeng and Zhang’s identity) which spurred a number of other authors to work on ordered set
partitions [IKZ06, IKZ08b, KZ09, KZ02, RW15, Wil16]. See Ishikawa, Kasraoui, and Zeng [IKZ08a]
for a survey.

Haglund, Rhoades, and Shimozono [HRS18] showed that there is a connection between ordered
set partitions, generalized coinvariant algebras, and the Delta Conjecture (see the recent proof
of the rise version [DM21]). In related work, Zabrocki [Zab19] conjectured that the tri-graded
Hilbert series of the type A superdiagonal coinvariant algebra has coefficients which are the So[n, k].
Swanson and Wallach [SW21] made a corresponding conjecture in type B. This led them to
conjecture that an alternating sum involving these ordered Stirling numbers equals one. We prove
this as Theorem 5.5.

1.3 Stirling numbers in type B and their q-analogues

The Stirling numbers in type B have appeared sporadically in the literature over the last several
decades. They can be defined as follows.

Definition 1.4. The type B Stirling numbers of the second kind are defined by replacing (1) with

SB(n, k) = SB(n− 1, k − 1) + (2k + 1)SB(n− 1, k). (6)

The ordered version of SB(n, k) is

So
B(n, k) = (2k)!!SB(n, k).
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The (signless) type B Stirling numbers of the first kind are defined by replacing (4) with

cB(n, k) = cB(n− 1, k − 1) + (2n− 1)cB(n− 1, k), (7)

with the signed version being
sB(n, k) = (−1)n−kcB(n, k).

The reason for calling these “type B” is because the SB(n, k) and sB(n, k) are the Whitney
numbers of the second and first kind for the intersection lattice LBn of the hyperplane arrangement
of the Coxeter group Bn, as follows from the work of Zaslavsky [Zas81]. See also Section 3.3.

The SB(n, k) appear implicitly in the work of Dowling [Dow73] on certain lattices and, as already
mentioned, in that of Zaslavsky [Zas81] concerning signed graphs. They were defined explicitly by
Dolgachev and Lunts when studying representations of Weyl groups [DL94] and Reiner [Rei97]
in his work on noncrossing partitions for classical reflection groups. An analogue of the sB(n, k)
appears implicitly in a formula of Shephard and Todd [ST54] for the characteristic polynomial
of the intersection lattice of an arbitrary finite complex reflection group. Neither they, nor their
q-analogue defined below, have been explicitly defined elsewhere to our knowledge. See Section 3
for combinatorial interpretations of SB(n, k) and cB(n, k) involving signed set partitions and signed
permutations.

Our primary interest lies in the following q-analogues of the preceding type B Stirling numbers.

Definition 1.5. The type B q-Stirling numbers of the second kind are defined by replacing (1) with

SB[n, k] = SB[n− 1, k − 1] + [2k + 1]SB[n− 1, k]. (8)

The ordered version of SB[n, k] is

So
B[n, k] = [2k]!!SB[n, k].

The (signless) type B Stirling numbers of the first kind are defined by replacing (4) with

cB[n, k] = cB[n− 1, k − 1] + [2n− 1]cB[n− 1, k], (9)

with the signed version being
sB[n, k] = (−1)n−kcB[n, k].

As far as we know, the SB[n, k] have only appeared once before (in their ordered form) in the
previously cited paper of Swanson and Wallach. We will have more to say about this in Sections 5
and 6. As we were preparing this article, we became aware that Bagno, Garber, and Komatsu [BGK]
were also studying type B analogues of the Stirling numbers. Their primary tool is the use of signed
analogues of restricted growth functions (RGFs) as opposed to working with signed partitions and
permutations as we do here. Interestingly, their type B analogue of the s(n, k) differs significantly.
They also use a statistic on RGFs for SB[n, k] which, when translated into the language of signed
partitions, is different from ours although the two can be related by a simple bijection. They also
consider a variant where the elements of the interval [r] appear in different blocks or cycles for some
fixed r. The overlapping results between our two papers are Theorem 2.1 (b) and (d), as well as
Theorem 4.1 (a).
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1.4 Summary of results

Here we summarize some of our main results. See the following sections for more details, references,
and additional results. In Section 2, we show

� SB[n, k] = hn−k([1], [3], . . . , [2k + 1]) and

tn =
n∑

k=0

SB[n, k](t− [1])(t− [3]) · · · (t− [2k − 1]),

� cB[n, k] = en−k([1], [3], . . . , [2n− 1]) and

n∑
k=0

cB[n, k]t
k = (t+ [1])(t+ [3]) · · · (t+ [2n− 1]),

where h and e are complete homogeneous and elementary symmetric polynomials. Along the way,
we prove a new identity, Theorem 2.2, for the h polynomials.

In Section 3, we provide combinatorial interpretations of the SB[n, k] and cB[n, k] (and hence
also the case q = 1) in terms of certain statistics on signed partitions and signed permutations,
respectively; see Theorems 3.7, 3.10, and 3.17. In particular, we show that cB(n, k) counts the
number of signed permutations with k pairs of “negative cycles.”

In Section 4, we prove a variety of additional generating function identities, including the
following:

∞∑
n=0

So[n, k]
xn

[n]!
=

1

q(
k
2)

k∑
i=0

(−1)k−iq(
k−i
2 )
[
k
i

]
expq([i]x),

∞∑
n=0

So
B(n, k)

xn

n!
= ex(e2x − 1)k,

∞∑
n=0

So
B[n, k]

xn

[n]!
=

1

qk2

k∑
i=0

(−1)k−iq2(
k−i
2 )
[
k
i

]
q2
expq([2i+ 1]x).

We also provide identities involving (bivariate) generating functions for c[n, k] and cB[n, k]. In each
case, they satisfy a first or second order linear q-difference equation.

In Section 5, we prove the alternating sum identities

n∑
k=0

(−q)n−kSo[n, k] = 1 =

n∑
k=0

(−q)n−kSo
B[n, k],

answering the conjecture in [SW21] in the affirmative. See Theorem 5.5 and Theorem 5.9. We pro-
vide both algebraic demonstrations and combinatorial proofs based on sign-reversing involutions.
Replacing −q with −qm in the above sums conjecturally gives the graded Euler characteristic of
certain generalized exterior derivative complexes on super coinvariant algebras. Our sign-reversing
involutions more strongly give divisibility properties for these conjectured graded Euler character-
istics. Furthermore, we conjecture bases for the type A and B super coinvariant algebras whose
Hilbert series naturally give rise to So[n, k] and So

B[n, k] with our inversion-style statistics. See
Section 6 for details. We end with a section of comments and many questions and open problems.
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2 Symmetric polynomials

Certain properties of the Stirling numbers follow from the fact that they can be expressed in terms
of elementary and complete homogeneous symmetric polynomials. We will derive some of them,
including their ordinary generating functions, in this section. Further information about symmetric
polynomials can be found in the books of Macdonald [Mac15], Sagan [Sag01], or Stanley [Sta99].

2.1 Ordinary generating functions

Let x = {x1, . . . , xn} be a set of commuting variables. The degree k elementary symmetric polyno-
mial, denoted ek(n) = ek(x1, . . . , xn), is the sum of all degree k square-free monomials in x1, . . . , xn.
The degree k complete homogeneous symmetric polynomial hk(n) = hk(x1, . . . , xn) is the sum of all
degree k monomials in these variables. For example

e2(3) = x1x2 + x1x3 + x2x3

and
h2(3) = x1x2 + x1x3 + x2x3 + x21 + x22 + x23.

By considering which monomials contain the variable xn and which do not, it is easy to derive the
following recursions for n ≥ 1:

ek(n) = ek(n− 1) + xnek−1(n− 1) (10)

and
hk(n) = hk(n− 1) + xnhk−1(n). (11)

Let t be a variable. The following generating functions are well known and easy to prove directly
from the definitions above:

En(t) :=
n∑

k=0

ek(n)t
k =

n∏
i=1

(1 + xit) (12)

and

Hn(t) :=
∑
k≥0

hk(n)t
k =

n∏
i=1

1

1− xit
. (13)

The next result is a type B analogue of the following facts from the literature in type A:

(a) c[n, k] = en−k([1], [2], . . . , [n− 1]).

(b) S[n, k] = hn−k([1], [2], . . . , [k]).

(c)

n∑
k=0

c[n, k]tk = t(t+ [1])(t+ [2]) · · · (t+ [n− 1]).

(d)
∑
n≥k

S[n, k]tn =
tk

(1− [1]t)(1− [2]t) · · · (1− [k]t)
.

Theorem 2.1. Let n ∈ N and k ∈ Z.

(a) cB[n, k] = en−k([1], [3], . . . , [2n− 1]).

(b) SB[n, k] = hn−k([1], [3], . . . , [2k + 1]).
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(c)

n∑
k=0

cB[n, k]t
k = (t+ [1])(t+ [3]) · · · (t+ [2n− 1]).

(d)
∑
n≥k

SB[n, k]t
n =

tk

(1− [1]t)(1− [3]t) · · · (1− [2k + 1]t)
.

Proof. Parts (a) and (b) follow easily by comparing the recursions for the symmetric polynomials
with those for the Stirlings and using induction. Parts (c) and (d) are obtained by combining the
first two parts with the generating functions (12) and (13).

2.2 Falling factorials

We will need a result about symmetric polynomials which, while not difficult to prove, we have not
been able to find in the literature. Given a variable t and k ∈ N the corresponding (type A) falling
factorial is

t↓k= t(t− 1)(t− 2) · · · (t− k + 1).

It is well known that for the type A Stirling numbers we have

tn =
n∑

k=0

S(n, k)t↓k . (14)

To generalize this identity to symmetric polynomials in a set of variables x, let

t↓xk= (t− x1)(t− x2) · · · (t− xk).

Theorem 2.2. For n ∈ N,

tn =

n∑
k=0

hn−k(k + 1) t↓xk .

Proof. Induct on n, where the base case is easy to verify. For the induction step we use equation (11)
and pull off a factor from the falling factorial to get∑

k

hn−k(k + 1) t↓xk =
∑
k

hn−k(k) (t− xk)t↓xk−1 +
∑
k

xk+1hn−k−1(k + 1) t↓xk

= t
∑
k

hn−k(k) t↓xk−1 −
∑
k

xkhn−k(k) ↓xk−1

+
∑
k

xkhn−k(k) t↓xk−1

= t
∑
k

h(n−1)−k(k + 1)t↓xk

= t · tn−1

completing the proof.

Clearly equation (14) follows from the previous theorem by setting xi = i− 1 for 1 ≤ i ≤ n+1.
More generally, define the (type A) q-falling factorial to be

(t; q)↓k= t(t− [1])(t− [2]) · · · (t− [k − 1]).

Setting xi = [i− 1] in the previous theorem gives:
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Corollary 2.3. For n ∈ N

tn =
n∑

k=0

S[n, k](t; q)↓k .

Now define the type B q-falling factorial to be

(t; q)↓Bk = (t− [1])(t− [3]) · · · (t− [2k − 1]).

Setting xi = [2i− 1] for 1 ≤ i ≤ k + 1 immediately gives an analogous type B result.

Corollary 2.4. For n ∈ N

tn =

n∑
k=0

SB[n, k](t; q)↓Bk ,

2.3 Inverse matrices

For our matrix identity, we need a new result about symmetric polynomials. Given a generating
function f(t) =

∑
n≥0 ant

n we define the coefficient extraction function to be

[tn]f(t) = an.

A special case of the following can be found in the book of Sturmfels [Stu08, p. 12].

Theorem 2.5. We have

∑
a+b=N

(−1)aea(n)hb(m) =

{
(−1)NeN (xm+1, . . . , xn) n ≥ m,

hN (xn+1, . . . , xm) n ≤ m.

Proof. From the generating functions in (12) and (13) we obtain∑
a+b=N

(−1)aea(n)hb(m) = [tN ]En(−t)Hm(t)

= [tN ]
(1− x1t)(1− x2t) · · · (1− xnt)

(1− x1t)(1− x2t) · · · (1− xmt)
.

If n ≥ m then we are finding the coefficient of tN in (1− xm+1t)(1− xm+2t) · · · (1− xnt) which
is the desired signed elementary symmetric polynomial. The case n ≤ m is similar.

Define two infinite matrices with rows and columns indexed by n ∈ N and k ∈ N, respectively,
by

E = [(−1)n−ken−k(n)]n,k≥0

and
H = [hn−k(k + 1)]n,k≥0.

Note that both E and H are lower uni-triangular. Let I be the N× N identity matrix.

Theorem 2.6. We have
EH = I
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Proof. Since E and H are both lower uni-triangular, so is their product. Therefore we only need
to evaluate the entry (EH)n,k when n > k. But

(EH)n,k =
∑
i≥0

(−1)n−ien−i(n)hi−k(k + 1)

which is the sum in the previous theorem with N = n − k and m = k + 1. So we are in the first
case and the sum equals (−1)n−ken−k(xk+2, . . . , xn) = 0 since there are only n− k− 1 variables in
the elementary symmetric polynomial.

Specialization of xi = [2i− 1] immediately gives the following result.

Corollary 2.7. If sB = [sB[n, k]]n,k≥0 and SB = [SB[n, k]]n,k≥0 then sBSB = I.

Note that setting xi = i − 1 in the previous theorem gives the well-known result that sS = I
where s = [s(n, k)]n,k≥0 and S = [S(n, k)]n,k≥0.

3 Combinatorial interpretations

We will now give combinatorial interpretations of the SB[n, k] and cB[n, k] (and hence also the
case q = 1) in terms of certain statistics on signed partitions and permutations, respectively. The
lattice of signed partitions ordered by refinement is isomorphic to the intersection lattice LBn for
the hyperplane arrangement of the Coxeter group Bn. We will rederive the fact that sB(n, k) and
SB(n, k) are the Whitney numbers of the first and second kind, respectively, for LBn , as well as
proving a new result expressing the Möbius function of LBn in terms signed permutations.

3.1 Signed partitions

Definition 3.1. Let S be a set and ρ = {S1, . . . , Sk} be a set partition of S, so the Si are nonempty
subsets whose disjoint union in S. We call the Si blocks and write ρ = S1/ . . . /Sk ⊢ S, removing
the set braces from the Si themselves.

Definition 3.2. A signed or type B partition is a partition of the set ⟨n⟩ of the form

ρ = S0/S1/S2/ . . . /S2k

satisfying

1. 0 ∈ S0 and if i ∈ S0 then −i ∈ S0, and

2. for i ≥ 1 we have S2i = −S2i−1,

where −S = {−s : s ∈ S}. Call the blocks S2i and S2i−1 paired. We write ρ ⊢B ⟨n⟩ and let
SB(⟨n⟩, k) denote the set of all type B partitions of ⟨n⟩ with 2k + 1 blocks.

For readability, we will sometimes use an overline to represent a negative sign and group the
paired blocks together separated by a forward slash, while vertical slashes separate pairs. Finally,
set braces and commas may be removed.

Example 3.3. To illustrate, an element of SB(⟨7⟩, 2) is

ρ = 0113366 | 4/4 | 257/257.

10



Note that we may write the elements of any block in any order, reverse the order of any pair,
and rearrange the pairs amongst themselves without changing the type B partition.

Let |S| = {|s| : s ∈ S}, so that |S2i| = |S2i−1| for i ≥ 1. For all i we let

mi = min |Si|.

We will always write signed partitions in standard form which means that

1. m2i ∈ S2i for all i, and

2. 0 = m0 < m2 < m4 < · · · < m2k.

Example 3.4. The standard form of our example type B partition above is

ρ = 0113366 | 257/257 | 4/4

with m0 = 0, m1 = m2 = 2, and m3 = m4 = 4.

Definition 3.5. An inversion of ρ ⊢B ⟨n⟩ written in standard form is a pair (s, Sj) satisfying

1. s ∈ Si for some i < j, and

2. s ≥ mj .

Let Inv ρ be set of inversions of ρ and inv ρ = #Inv ρ where the hash tag denotes cardinality.

While we have not specified the order of elements within each block, this does not affect which
pairs form inversions. Note that the second condition implies that any s causing an inversion must
be positive. Note also that in this condition it is not actually possible for s = mi because of the
partition being in standard form. However, we include it because when considering ordered set
partitions equality will be possible and such cases will need to be counted.

Example 3.6. Continuing our example,

Inv ρ = {(3, S1), (3, S2), (6, S1), (6, S2), (6, S3), (6, S4), (5, S2), (5, S3), (5, S4), (7, S3), (7, S4)}

so that inv ρ = 11.

The SB[n, k] count signed partitions by inversions. The next theorem is a type B analogue of
the result of Milne [Mil82] cited in the introduction for S[n, k]. See also Section 6.2 for a strongly
related interpretation involving the Hilbert series of a conjectural monomial basis.

Theorem 3.7. We have
SB[n, k] =

∑
ρ∈SB(⟨n⟩,k)

qinv ρ.

Proof. We proceed by induction on n where the base case is trivial. Given ρ ∈ SB(⟨n⟩, k) we can
remove n and −n to obtain a new partition ρ′.

If n (and thus −n) is in a singleton block then ρ′ ∈ SB(⟨n− 1⟩, k−1) and there is only one way
to construct ρ from ρ′. Furthermore, in this case the standardization condition forces S2k−1 = {−n}
and S2k = {n} in ρ. It follows that inv ρ = inv ρ′. So, by induction, such ρ contribute SB[n−1, k−1]
to the sum.

If n (and thus −n) is in a block with other elements, then ρ′ ∈ SB(⟨n− 1⟩, k). The possible ρ
giving rise to a fixed ρ′ are obtained by inserting n in one of the 2k+1 blocks of ρ′. And if n is put
in block Si then this adds inversions of the form (n, Sj) for all j > i. Furthermore the placement of
−n, wherever it is forced by that of n, does not contribute any inversions. So inv ρ = 2k− i+inv ρ′

where 0 ≤ i ≤ 2k. Thus the contribution of these ρ is [2k + 1]SB[n− 1, k] and we are done.
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Definition 3.8. The descent set of ρ ∈ SB(⟨n⟩, k) is the multiset

Des ρ = {{1n1 , 2n2 , . . . , (2k)n2k}}

where ni is the number of elements of Si−1 which are greater than mi. Define the major index of
ρ to be

maj ρ = 1 · n1 + 2 · n2 + · · ·+ 2k · n2k.

Note that this convention differs from the one for descents in a permutation in the symmetric
group since i is the index of the block containing the smaller integer. This could be fixed by
renumbering the blocks, but then the conventions above for S0 would become less natural.

Example 3.9. In our perennial example, descents are caused by the 3 and 6 in S0, the 5 in S1,
and the 7 in S2. Hence Des ρ = {{12, 21, 31}} and maj ρ = 1 · 2 + 2 · 1 + 3 · 1 = 7.

Just as with permutations in the symmetric group, inv and maj have the same distribution over
signed partitions.

Theorem 3.10. We have
SB[n, k] =

∑
ρ∈SB(⟨n⟩,k)

qmaj ρ.

Proof. We proceed as in the previous proof, keeping the same notation. When n and −n are in
singleton blocks, the same reasoning applies to show maj ρ = maj ρ′. So, as before, such ρ contribute
SB[n − 1, k − 1] to the sum. Now assume that n is inserted into a block of ρ′ and −n into the
companion block. If n is in Si then

maj ρ =

{
maj ρ′ if i = 2k,
i+ 1 +maj ρ′ if 0 ≤ i < 2k.

Thus the contribution of these ρ is [2k + 1]SB[n− 1, k] which finishes the proof.

It is possible to give a combinatorial proof of equation (14) by showing that when t is a positive
integer both sides count the set of functions f : [n] → [t]. We will now give a combinatorial proof
of Corollary 2.4 when q = 1 using similar ideas.

Definition 3.11. A type B function is any function f : ⟨n⟩ → ⟨p⟩ satisfying

f(−i) = −f(i) (15)

for all i ∈ ⟨n⟩. The kernel of f is the partition ker f of ⟨n⟩ whose blocks are the nonempty fibers
f−1(j) for j ∈ ⟨p⟩.

In particular, a type B function satisfies f(0) = 0, and if f(i) = 0, then f(−i) = 0. Hence the
definition of a type B function ensures that ker f is a type B partition.

Define the type B falling factorial to be

t↓Bk = (t; 1)↓Bk = (t− 1)(t− 3) · · · (t− 2k + 1).

The next result is the special case q = 1 of Corollary 2.4. But here we give a combinatorial proof
rather than relying on symmetric functions. We note that this result with essentially the same proof
below was also given in a paper of Bagno and Garber [BG22], but we include it for completeness.
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Theorem 3.12. For n ∈ N,
tn =

∑
k

SB(n, k)t↓Bk .

Proof. Since this is a polynomial identity, it suffices show that it holds when t is an odd positive
integer, say t = 2p + 1. We claim that in this case both sides of the identity count the number of
type B functions f : ⟨n⟩ → ⟨p⟩.

On the one hand, we can determine f by first choosing f(1), . . . , f(n), in which case f(−1), . . . , f(−n)
are determined by (15). And we know f(0) = 0. Since #⟨p⟩ = t, there are t ways to choose each
of the necessary values, for a total count of tn.

Alternatively, we can construct f by first picking a type B partition ρ = S0/S1/ . . . /S2k of
⟨n⟩ to be ker f and then injectively mapping the blocks of ρ into ⟨p⟩. Since 0 ∈ S0 we must have
f(S0) = 0. This leaves t − 1 choices for f(S1). Now f(S2) is determined by (15). There remains
t− 3 choices for f(S3), and so forth.

3.2 Signed permutations

We now turn to the Stirling numbers of the first kind. A permutation of a finite set S is a bijection
π : S → S. As usual, π can be factored into cycles c = (a1, a2, . . . , ak) where π(ai) = ai+1 with
subscripts taken modulo k. Let ⟨n⟩′ = ⟨n⟩ \ {0}.

Definition 3.13. A signed or type B permutation is a permutation π of ⟨n⟩′ satisfying

π(−i) = −π(i) (16)

for all i ∈ ⟨n⟩′.
This condition implies that any cycle c of π is of one of two types.

1. If c = (a1, a2, . . . , ak) does not contain both i and −i for any i ∈ ⟨n⟩′ then π also contains
−c = (−a1,−a2, . . . ,−ak). We say that c and −c are paired.

2. If c contains both i and −i for some i ∈ ⟨n⟩′ then c must have the form

c = (a1, a2, . . . , ak,−a1,−a2, . . . ,−ak).

We call such a cycle unpaired.

Finally, let cB(⟨n⟩′, k) be the set of all Bn permutations with 2k paired cycles.

We use the same conventions when writing signed cycle decomposition as for partitions, using
bars instead of negative signs and keeping paired cycles closer together than others.

Example 3.14. In the permutation

π = (1, 3, 1, 3) (4)(4) (2, 5, 7)(2, 5, 7) (6, 6)

the four cycles (4), (4), (2, 5, 7), and (2, 5, 7) are paired while the cycles (1, 3, 1, 3) and (6, 6) are
not. Since there are k = 2 cycle pairs, π ∈ cB(⟨7⟩′, 2).

We will use the absolute value and minimum notation for permutations exactly as we did for
partitions. Our standard form for a Bn permutation π = c1c2 . . . cℓ will be to list the cycles so that
the minima mi = min |ci| satisfy

13



1. m1 ≤ m2 ≤ . . . ≤ mℓ,

2. if mi = mi+1 then −mi ∈ ci and mi+1 ∈ ci+1,

3. each ci is listed with its ±mi last, with unpaired cycles ending in −mi.

Putting our example permutation is standard form gives

π = (3, 1, 3, 1) (5, 7, 2)(5, 7, 2) (4)(4) (6, 6).

Definition 3.15. Given π ∈ cB(⟨n⟩′, k) in standard form, we let w = w1w2 . . . w2n be the word
obtained by removing the parentheses from π. Define the set of inversions of π to be

Inv π = {(i, j) : i < j and wi > |wj |}

with corresponding inversion number

inv π = #Inv π.

Example 3.16. For our running example permutation, we have

w = 3, 1, 3, 1, 5, 7, 2, 5, 7, 2, 4, 4, 6, 6.

Hence Inv π is the set of pairs

(1, 2), (1, 4), (1, 7), (1, 10), (5, 7), (5, 10), (5, 11), (5, 12), (9, 10), (9, 11), (9, 12), (9, 13), (9, 14)

and inv π = 13.

Theorem 3.17. We have
cB[n, k] =

∑
π∈cB(⟨n⟩′,k)

qinv π.

Proof. As usual, we induct on n and only give details for the induction step. Take π ∈ cB(⟨n⟩′, k)
and remove n and −n to form π′.

If n and −n were both fixed points, then π′ ∈ cB(⟨n− 1⟩′, k − 1). Furthermore, standard form
forces the last two cycles of π to be (−n)(n) so that inv π = inv π′. Thus permutations in this case
give a contribution of cB[n− 1, k − 1] to the sum.

The other possibility is that n and −n are both in cycles of length at least two. If these cycles
are paired, then they remain paired cycles after these elements are removed. If both elements are
in the same unpaired cycle then, even if that cycle contains no other elements, upon removal π′

still has the same number of paired cycles. So in either case π′ ∈ cB(⟨n− 1⟩′, k).
Now consider all the ways ±n can be inserted in a given π′ in this case. Note that the position

of n determines the position of −n, and that −n can never cause any inversions. One possibility
is to adjoin the cycle (n,−n) to π which must be at the right end to be in standard form. Now n
causes no inversions either so inv π = inv π′. The other possibility is that n is inserted just before,
and in the same cycle as, any of the 2n − 2 elements of π′. (One must use the space before since
using the space after a final element in a cycle would make the result nonstandard.) If this element
is the ith from the right then inv π = i + inv π′ where 1 ≤ i ≤ 2n − 2. It follows that the total
contribution of this case is

(q0 + q1 + · · ·+ q2n−2)cB[n− 1, k] = [2n− 1]cB[n− 1, k]

which finishes the proof.

Letting q = 1 in the previous theorem gives the following result.

Corollary 3.18. The number of Bn permutations with 2k paired cycles is cB(n, k).
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3.3 The lattice of signed partitions

We now connect the SB(n, k) and sB(n, k) with the intersection lattice for the Coxeter group Bn.

Definition 3.19. Let P be a finite poset (partially ordered set) with a unique minimal element
0̂. Call P ranked if, for every x ∈ P , all maximal chains from 0̂ to x have the same length. This
length is called the rank of x and denoted rkx. The kth rank of P is

Rk(P, k) = {x ∈ P : rkx = k}

with corresponding Whitney number of the second kind

W (P, k) = #Rk(P, k).

The (one variable) Möbius function of P is the function µ : P → Z defined recursively by∑
x≤y

µ(x) = δ0̂,y.

This is a far-reaching generalization of the Möbius function in number theory. See [Sag20] or [Sta97]
for more details. The Whitney numbers of the first kind for P are

w(P, k) =
∑

x∈Rk(P,k)

µ(x).

If P has a unique maximal element 1̂ then we will use the notation

µ(P ) = µ(1̂).

Definition 3.20. For any finite set S we denote by ΠS the lattice of all set partitions of S ordered
by refinement so that ρ ≤ σ if every block of ρ is contained in some block of σ. Let ΠBn denote the
subposet of Π⟨n⟩ obtained by restricting the partial order to the type B partitions. We call ΠBn

the Bn partition lattice.

The Coxeter group Bn has reflecting hyperplanes xi = 0 and xi = ±xj where i, j ∈ [n] and xi is
the ith coordinate function. The corresponding intersection lattice, LBn , is the set of all subspaces
which are intersections of these hyperplanes ordered by reverse inclusion. Zaslavsky [Zas81] showed
that these subspaces are in bijective correspondence with certain signed graphs which are clearly
in bijection with signed set partitions of ⟨n⟩. It easily follows that LBn and ΠBn are isomorphic.

It will be useful to connect type B partitions and permutations. Given a signed permutation
π, its underlying signed set partition is ρ obtained by replacing every paired cycle by its underlying
subset, and taking the union of the sets underlying all paired cycles together with {0} to be the
zero block. The reader can verify that our recurring example π and ρ satisfy this relation. We let
B(ρ) be the set of type B permutations with underlying set ρ. The first and third parts of the next
result also follow from [Zas81].

Theorem 3.21. Fix n ∈ N and let µ be the Möbius function of ΠBn.

(a) For 0 ≤ k ≤ n, we have W (ΠBn , k) = SB(n, n− k).

(b) If ρ = S0/S1/S2/ . . . /S2k ∈ SB(⟨n⟩, k) then

#B(ρ) = (#S0 − 2)!!

k∏
i=1

(#S2i − 1)!

= (−1)n−kµ(ρ).
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(c) For 0 ≤ k ≤ n we have w(ΠBn , k) = sB(n, n− k).

Proof. To prove (a), if ρ is covered by σ in ΠBn , then there are two possibilities. One is that there
were two pairs of blocks S2i−1, S2i and S2j−1, S2j in ρ which were replaced in σ by a pair whose
component blocks are unions of one block from each of the given pairs. The other is that a pair
S2i−1, S2i was absorbed into the zero block. Note that in either case, the total number of blocks
decreases by two in passing from ρ to σ. Using this fact, the desired result now follows from an
easy induction on k.

For the first equality in (b), note that, for i ≥ 1, the number of ways to turn S2i into a cycle is
(#S2i−1)!. And once a cycle is put on S2i, the cycle on S2i−1 is fixed. So, letting #S0 = 2m+1, it
suffices to show that the number of ways to decompose S0 \ {0} into unpaired cycles is (2m− 1)!!.
But the count we seek is the number of signed permutations of ⟨m⟩′ which have no paired cycles. By
Corollary 3.18 and Theorem 2.1(a) with q = 1, this is cB(m, 0) = em(1, 3, . . . , 2m−1) = (2m−1)!!.

We now prove (c) and the second equality in (b) simultaneously by induction on n. From the
description of the covering relations in part (a) we see that the interval [0̂, ρ] in ΠBn is isomorphic
to a product of posets, with one poset for S0 and one for each pair S2i−1, S2i for 1 ≤ i ≤ k. For
i ≥ 1, the partitions contained in S2i form the lattice ΠS2i . And once a partition σ of S2i is chosen,
then S2i−1 must be partitioned so that each block is the negative of some block of σ. For the zero
block, the partitions contained in S0 contribute the lattice ΠBm . Thus we have the isomorphism

[0̂, ρ] ∼= ΠBm ×ΠS2 ×ΠS4 × · · · ×ΠS2k

and, since µ(P ×Q) = µ(P )µ(Q),

µ(ρ) = µ(ΠBm)
k∏

i=1

µ(ΠS2i). (17)

It is well known that µ(ΠS) = (−1)#S−1(#S−1)!. And we can assume by induction that for m < n
we have µ(ΠBm) = (−1)m(2m− 1)!!. Plugging these values into (17) proves the second equality in
(b) as long as ρ < 1̂. Furthermore, from the proof of (a), the ρ at rank k of ΠBn are exactly those
signed partitions of ⟨n⟩ with 2(n− k) + 1 blocks. It follows that for ρ < 1̂, the sum of the µ values
of these partitions is exactly (−1)kcB(n, n− k) = sB(n, n− k).

To handle the case ρ = 1̂, we use the definition of µ and the previous paragraph to give

µ(1̂) = −
∑
ρ<1̂

µ(ρ) = −
∑
k<n

sB(n, n− k).

On the other hand, plugging in q = 1 and t = −1 to Theorem 2.1(c) and multiplying both sides by
(−1)n gives

n∑
k=0

sB(n, k) = 0.

Comparing the last two displayed equations and using Theorem 2.1(a) when q = 1 and k = 0 yields

µ(1̂) = sB(n, 0) = (−1)nen(1, 3, . . . , 2n− 1) = (−1)n(2n− 1)!!

which finishes this case and the proof.
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4 Exponential and q-exponential generating functions

We now derive exponential and q-exponential generating functions for the Stirling numbers and
q-Stirling numbers of types A and B. We give combinatorial proofs for the former using the theory
of species. See the book of Bergeron, Labelle, and Leroux [BLL98] or [Sag20, Chapter 4] for more
information. For the latter, we use the theory of q-difference equations. Existence and uniqueness
of solutions of linear q-difference equations with constant coefficients is given explicitly in [AM12,
Thm. 2.11]. A general existence and uniqueness result for q-difference equations is given in [AM12,
Thm. 2.1]. Basic properties of q-derivatives such as their definition and the q-product rule are
summarized in [AM12, §1.3].

Our q-exponential generating function identities do not seem to be known for the Stirling
numbers even for S[n, k] and s[n, k]. Consequently, we will provide full proofs of these results in
type A and then just sketch whatever changes are needed for type B.

4.1 Exponential generating functions

The following identities are well known; see e.g. [DLMF, §26.8(ii)], [OEI22, A008275], and [OEI22,
A008277]. ∑

n≥0

S(n, k)
xn

n!
=

1

k!
(ex − 1)k,

∑
n,k≥0

S(n, k)tk
xn

n!
= et(e

x−1),

∑
n≥0

c(n, k)
xn

n!
=

1

k!

(
ln

1

1− x

)k

,

∑
n,k≥0

c(n, k)tk
xn

n!
=

1

(1− x)t
.

The type B analogues are as follows. The first is stated (without proof) in [OEI22, A039755].
The last two are stated (again, without proof) in [OEI22, A028338], though effectively using The-
orem 2.1(c) as a definition.

Theorem 4.1. We have

(a)
∑
n≥0

SB(n, k)
xn

n!
=

1

2kk!
ex(e2x − 1)k.

(b)
∑
k,n≥0

SB(n, k)t
k x

n

n!
= ex

√
et(e2x−1).

(c)
∑
n≥0

cB(n, k)
xn

n!
=

1

k!
√
1− 2x

(
log

1√
1− 2x

)k

.

(d)
∑
k,n≥0

cB(n, k)t
k x

n

n!
=

(
1√

1− 2x

)1+t

.

17



Proof. We will only prove (a) and (c) since then (b) and (d) follow by summing on k.
For (a) note there is a bijection between type B partitions S0/ . . . /S2k and ordered pairs of the

form (T0, S2/S4/ . . . /S2k) where T0 is the (possibly empty) set of positive integers in S0. This is
because the other elements of S0 are −S0 ⊎ {0} and S2i−1 = −S2i for all i.

By the conventions for the S2i, its smallest element is positive and the others can be signed
arbitrarily. Consider the species S such that S(L) is all sets obtained from a set of nonempty
integers L by arbitrarily signing every element of L except the smallest. The number of such sets
is 2#L−1 with corresponding exponential generating function∑

n≥1

2n−1x
n

n!
=

1

2
(e2x − 1).

So, by the Product Rule for exponential generating functions [Sag20, Theorem 4.4.2(b)], the expo-
nential generating function for ordered k-tuples of such sets is (e2x − 1)k/2k. We must divide by
k! to remove the order. For T0, we use the species T (L) = {L} which has exponential generating
function ex since #T (L) = 1 for all L. Now using the Product Rule again completes the proof of
(a).

To prove (c), consider a type B permutation π and its underlying partition ρ. As in part (a),
we can reconstruct ρ from a pair (T0, S2/S4/ . . . /S2k). To recover the possible π associated with ρ
we must sign all but the smallest element of S2i and then put a cycle on these elements, where the
latter can be done in (n− 1)! ways if #S2i = n. This gives the exponential generating function∑

n≥1

(n− 1)!2n−1x
n

n!
=

1

2

∑
n≥1

(2x)n

n
= log

1√
1− 2x

.

On the other hand, if #T0 = n then the elements in T0⊎ (−T0) need to be turned into unpaired
cycles. By Theorem 2.1(a), this can be done in cB(n, 0) = (2n−1)!! ways which gives an exponential
generating function of∑

n≥0

(2n− 1)!!
xn

n!
=
∑
n≥0

(−1/2)↓n (−2)nx
n

n!
=
∑
n≥0

(
−1/2
n

)
(−2x)n =

1√
1− 2x

.

Using the Product Rule and dividing by k! to remove the order finishes the proof.

4.2 q-exponential generating functions

For our q-exponential generating functions, we will need the q-binomial coefficients[
n
k

]
=

[n]!

[k]![n− k]!
,

the q-exponential function

expq(x) =
∑
n≥0

xn

[n]!
,

the q-logarithm

− logq(1− x) =

∞∑
n=1

xn

[n]
,
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as well as the q-derivative

Dqf(x) =
f(qx)− f(x)

qx− x
.

See [AM12, §1.3] for a summary of q-calculus. It will also be convenient to find the q-exponential
generating functions for the ordered versions of the Stirling numbers of the second kind.

Theorem 4.2. We have

∑
n≥0

So[n, k]
xn

[n]!
=

1

q(
k
2)

k∑
i=0

(−1)k−iq(
k−i
2 )
[
k
i

]
expq([i]x), (18)

and ∑
n,k≥0

So[n, k]tk
xn

[n]!
=

∞∑
i=0

qiti

(1 + t)(q + t) · · · (qi + t)
expq([i]x).

Proof. To simplify the proof of the first equality, let

Ek =
∑
n≥0

So[n, k]
xn

[n]!
=
∑
n≥0

[k]!S[n, k]
xn

[n]!
.

From the recursion (2) we get that

So[n, k] = [k](So[n− 1, k − 1] + So[n− 1, k]) (19)

for n ≥ 1. Combining this with the q-derivative

Dqx
n = [n]xn−1

implies that
DqEk = [k](Ek + Ek−1) (20)

for all k ∈ Z with Ek = 0 for k < 0. This equation and induction on k give(
k∏

i=0

(Dq − [i])

)
Ek = 0.

Since Dq expq([i]x) = [i] expq([i]x), the theory of linear, constant-coefficient q-difference equations
now implies that

Ek =

k∑
i=0

cki expq([i]x) (21)

for certain cki which are constant with respect to x. So it suffices to show that

cki =
(−1)k−iq(

k−i
2 )

q(
k
2)

[
k
i

]
. (22)

Substituting (21) into (20) and using the linear independence of {expq([i]x)}i∈N gives

cki =
−[k]

qi[k − i]
ck−1
i
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for 0 ≤ i ≤ k − 1 which, after iteration, results in

cki =
(−1)k−i

qi(k−i)

[
k

k − i

]
cii. (23)

Comparing this with (22) and using the identity

i(k − i) +

(
k − i

2

)
=

(
k

2

)
−
(
i

2

)
, (24)

we see that we will be done if we can show cii = q−(
i
2) for i ≥ 0. Let us rewrite this as ckk = q−(

k
2)

and induct on k. Since Ek(0) = δ0,k, we see from (21) that c00 = 1 = q−(
0
2) and, for k ≥ 1,

k∑
i=0

cki = 0.

This equation determines ckk in terms of the cki for i < k. And the latter are known to have the
desired form by equation (23) and induction. So it suffices to prove that

0 =

k∑
i=0

(−1)k−i

qi(k−i)+(i2)

[
k

k − i

]
=

1

q(
k
2)

k∑
i=0

(−1)k−iq(
k−i
2 )
[

k
k − i

]
=

1

q(
k
2)

k∑
i=0

(−1)iq(
i
2)
[
k
i

]
.

But this last sum is seen to be zero by substituting t = −1 into the q-Binomial Theorem

k−1∏
i=0

(1 + qit) =

k∑
i=0

q(
i
2)
[
k
i

]
ti. (25)

For the second equality in the statement of the theorem, we multiply (18) by tk and sum to get

∑
n,k≥0

[k]!S[n, k]tk
xn

[n]!
=

∞∑
k=0

tk

q(
k
2)

k∑
i=0

(−1)k−iq(
k−i
2 )
[
k
i

]
expq([i]x)

=

∞∑
i=0

1

q(
i
2)

( ∞∑
k=i

(−1)k−i

qi(k−i)

[
k
i

]
tk

)
expq([i]x)

=

∞∑
i=0

qiti

(1 + t)(q + t) · · · (qi + t)
expq([i]x),

where the second equality uses equation (24), and the third is a form of the Negative q-Binomial
Theorem as in Exercise 8(b) from Chapter 3 of [Sag20] substituting −t for t and 1/q for q.

The proof of the next result is similar to the one just given. So we will only mention the
highlights.

Theorem 4.3. We have∑
n≥0

So
B[n, k]

xn

[n]!
=

1

qk2

k∑
i=0

(−1)k−iq2(
k−i
2 )
[
k
i

]
q2
expq([2i+ 1]x),

and ∑
n,k≥0

So
B[n, k]t

k xn

[n]!
=

∞∑
i=0

q2i+1ti

(q + t)(q3 + t) · · · (q2i+1 + t)
expq([2i+ 1]x).
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Proof. Let Fk be the first sum. Using the recursion (8) and the fact that So
B[n, k] = [2k]!!SB[n, k]

we see that
So
B[n, k] = [2k]So

B[n− 1, k − 1] + [2k + 1]So
B[n− 1, k]

for n ≥ 1, This in turn implies that for k ∈ Z

DqFk = [2k + 1]Fk + [2k]Fk−1 (26)

and Fk = 0 for k < 0. Thus Fk satisfies the linear q-difference equation(
k∏

i=0

(Dq − [2i+ 1])

)
Fk = 0.

So we can write

Fk =
k∑

i=0

dki expq([2i+ 1]x)

for certain constants dki . To show that the dki have the correct form, one uses (26) and iteration to
get

dki =
(−1)k−i

q(2i+1)(k−i)

[
k

k − i

]
q2
dii.

The analogue of (24) is

(2i+ 1)(k − i) + i2 = k2 − 2

(
k − i

2

)
, (27)

which implies that we must show dkk = q−k2 . This is accomplished recursively using the q-Binomial
Theorem (25) as before with the substitutions t = −1 and q2 for q.

The bivariate generating function is now obtained by summing over k and using the previous
version of the Negative q-Binomial Theorem with substitutions −t/q for t and 1/q2 for q.

For the q-Stirling numbers of the first kind we will need to use a version of the chain rule.
Unfortunately, no such analogue exists for Dq(g(f)). But Gessel [Ges82] defined a q-analogue of
composition which does obey a q-chain rule. Given an q-exponential generating function f(x) with
f(0) = 1, define its kth symbolic power recursively by f [0] = 1 and

Dqf
[k] = [k]f [k−1]Dqf.

Note that x[k] = xk, so that when q = 1 we have f [k] = fk for k ≥ 0. Given g =
∑

n≥0 gnx
n/[n]!,

Gessel then defines a q-analogue of functional composition to be

g[f ] =
∑
n≥0

gn
f [n]

[n]!
.

Again, when q = 1 we have g[f ] = g(f). Gessel’s q-analogue of the chain rule states that

Dq(g[f ]) = (Dqg)[f ]Dqf. (28)

The first result of the next theorem was also obtained by Johnson [Joh96, (4.12)].
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Theorem 4.4. We have ∑
n≥0

c[n, k]
xn

[n]!
=

(− logq(1− x))[k]

[k]!
,

and ∑
n,k≥0

c[n, k]tk
xn

[n]!
= expq[−t logq(1− x)].

Proof. Let Ck =
∑

n≥0 c[n, k]x
n/[n]!. The usual manipulations and the recursion (5) give the

q-difference equation

DqCk =
Ck−1

1− x

for k ∈ Z with Ck = 0 for k < 0. The formula for Ck now follows from a simple induction on k
using the definition of symbolic power. And the bivariate generating function is a consequence of
the definition of q-composition.

Unfortunately, for the cB[n, k] we were only able to derive a differential equation for the desired
q-exponential generating function. We will have more to say about this in Section 7.3.

5 Ordered analogues and identities

In this section we will prove alternating sum identities as well as divisiblity results for the ordered
q-Stirling numbers of the second kind. The former will prove two conjectures of Swanson and
Wallach [SW21]. Our main tools will be the use of sign-reversing involutions. These results and
their demonstrations are new even in type A so, as in the previous section, the type B proofs will
only be sketched.

5.1 Alternating sums

We first need a combinatorial interpretation for the So[n, k]. These polynomials count ordered set
partitions of [n] into k blocks which are sequences of nonempty sets ω = (S1/S2/ . . . /Sk) such that
⊎iSi = [n]. Note the use of parentheses to denote a sequence rather than a family of sets. The set
of these sequences is denoted So([n], k). We define the inversion statistic exactly the same as for
unordered signed partitions using Definition 3.5, letting

Invω = {(s, Sj) : s ∈ Si for some i < j and s ≥ minSj} (29)

and invω = #Invω. Using a similar proof to that of Theorem 3.7, one can show the following.

Theorem 5.1. For n, k ≥ 0 we have

So[n, k] =
∑

ω∈So([n],k)

qinvω.

Definition 5.2. We now define the maps which will make up our involution in type A. Given
an ordered partition ω = (S1/S2/ . . . /Sk), suppose M = maxSi. Say that ω is splittable at M if
#Si ≥ 2. In that case the splitting map σM is defined by

σM (ω) = (S1/ . . . /Si−1/{M}/Si − {M}/Si+1/ . . . /Sk).

We define ω to be mergeable at M if
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1. Si = {M}, and

2. M > maxSi+1.

If these conditions hold then one can apply the merging map µM where

µM (ω) = (Si/ . . . /Si−1/Si ⊎ Si+1/Si+2/ . . . /Sk).

Example 5.3. The ordered set partition ω = (246/8/35/1/7) is splittable for M = 6 and 5, and

σ6(ω) = (6/24/8/35/1/7).

On the other hand, ω is only mergeable for M = 8 and

µ8(ω) = (246/358/1/7).

Note that if ω is splittable at M , then σM (ω) is mergeable at M and µMσM (ω) = ω. The same
statement holds with the roles of σM and µM reversed. Merge and split maps have been useful in
a number of areas, including the computation of antipodes in Hopf algebras as shown by Benedetti
and Sagan [BS17]. We can now define the involution we will use for our first alternating sum.

Definition 5.4. Define ϕ : ⊎kSo([n], k) → ⊎kSo([n], k) as follows. Given ω ∈ So([n], k), find the
largest M (if any) such that ω is either splitable or mergeable at M = maxSi. Note that, because
of the restriction on #Si for these two operations, it can not be both. Let

ϕ(ω) =


σM (ω) if ω is splittable at M ,

µM (ω) if ω is mergeable at M ,

ω if no such M exists.

We see that ϕ is an involution because of the remarks at the end of the last paragraph and the fact
that the largest splittable or mergeable M is preserved by splitting or merging at this value.

Theorem 5.5. For n ≥ 0, we have

n∑
k=0

(−q)n−kSo[n, k] = 1.

Proof. Define the sign of ω ∈ So([n], k) to be

sgnω = (−1)n−k. (30)

The involution ϕ is sign-reversing on partitions which are not fixed since both σM and µM change
the number of blocks of ω by 1.

By Theorem 5.1, we can write

n∑
k=0

(−q)n−kSo[n, k] =
∑

ω∈⊎kSo([n],k)

(sgnω)qn−k+invω. (31)

We claim that the terms for ω and ϕ(ω) in equation (31) will cancel each other since splitting adds
one inversion and one block whereas merging removes one inversion and one block, hence n−k+inv
is preserved by ϕ.
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To see that the claim holds when ϕ applies σM , note that since M is not the minimum of its
block all the inversions of ω will still be inversions of ϕ(ω). Furthermore, if M = maxSi then
splitting off M will cause a new inversion (M,Si −{M}). Thus inv ϕ(ω) = invω+1. Since ϕ is an
involution, it also follows that inv ϕ(ω) = invω − 1.

To complete the proof, it suffices to show that ω0 = (1, 2, . . . , n) is a fixed point of ϕ and the
only one since its contribution to (31) is 1. Clearly ω0 is fixed since it has no blocks of size at
least 2 and its block maxima are in increasing order. Conversely, if ω is a fixed point, then it can
have no blocks of size 2 since then one could apply σM . So ω is a sequence of singleton blocks
with increasing elements since otherwise µM could be applied. The sequence ω0 is the only ordered
partition with these two properties. This finishes the proof.

To prove the type B analogue of the previous theorem, we proceed in a similar manner. An
ordered signed partition of ⟨n⟩ is a sequence ω = (S0/S1/S2/ . . . /S2k) satisfying conditions (1) and
(2) in Definition 3.2. Note that no assumption is made about standard form. The set of such
partitions with 2k + 1 blocks is denoted So

B(⟨n⟩, k).
The definition of inversion in Definition 3.5 remains unchanged. But now it is possible to have

an inversion where s = mj if mj ∈ Sj−1 and −mj ∈ Sj . The usual arguments give us the following
result.

Theorem 5.6. For n, k ≥ 0 we have

So
B[n, k] =

∑
ω∈So

B(⟨n⟩,k)

qinvω.

Definition 5.7. The splitting and merging maps have two cases in type B. Consider ω =
(S0/ . . . /S2k) and M > 0 which is in a block with at least two elements. If M = maxS2i−1

for some i, then σM (ω) is the ordered signed partition formed by removing M and −M from
their blocks and adding a block pair −M/M immediately to the left of what remains of S2i−1. If
M = maxS2i for some i, then σM (ω) is obtained by removing M and −M from their blocks (which
will be the same if i = 0) and adding a block pair M/−M immediately to the right of the remains
of S2i.

Now suppose that M is in a singleton block, which implies that the same is true of −M . If the
block pair is S2i−1/S2i = −M/M and M > max |S2i+1| then add M to S2i+1 and −M to S2i+2 to
form µM (ω). If the block pair is S2i−1/S2i = M/−M and M > max |S2i−2| then µM (ω) is obtained
by adding M to S2i−2 and −M to the same block if 2i− 2 = 0 or to the block to its left otherwise.

Example 5.8. Here are examples of splitting (the forward arrows) and merging (the reverse arrows)
to illustrate all of the possible cases.

(41014 | 23/23) M=4←→ (101 | 4/4 | 23/23),

(54045 | 236/236 | 1/1) M=6←→ (54045 | 23/23 | 6/6 | 1/1),

(54045 | 236/236 | 1/1) M=6←→ (54045 | 6/6 | 23/23 | 1/1).

The map ϕ : ⊎kSo
B(⟨n⟩, k)→ ⊎kSo

B(⟨n⟩, k) is defined exactly as in Definition 5.4 for the type A
case, merely substituting the signed splitting and merging maps. As in the previous case, it is easy
to see that ϕ is an involution.

24



Theorem 5.9. For n ≥ 0 we have

n∑
k=0

(−q)n−kSo
B[n, k] = 1.

Proof. A sign is assigned to ω ∈ So
B(⟨n⟩, k) using (30) again. Now the proof continues in much the

same manner as that of Theorem 5.5 using the previous theorem in place of Theorem 5.1 and with
unique fixed point ω0 = (0, 1, 1, 2, 2, . . . , n, n).

Note that Theorems 5.5 and 5.9 can be given algebraic proofs by setting t = 1 and then
substituting xi = −q[i− 1] or xi = −q[2i− 1], respectively, in Theorem 2.2.

5.2 Divisibility

The following two results are about divisibility in the ring Z[q]. They are analogues of Theorem 5.5
and Theorem 5.9 for larger powers of q. Algebraically, the results here follow immediately from the
corresponding ones in the previous subsection by using the fact that

qm(n−k) ≡ qn−k (mod qm − q)

for m ≥ 1 and n > k. We will also show how they can be proved combinatorially using the
sign-reversing involutions already developed.

Theorem 5.10. For m ≥ 1 and n ≥ 0 we have

n∑
k=0

(−1)n−kqm(n−k)So[n, k] ≡ 1 (mod qm − q).

Proof. Let Σ be the sum under consideration. Then clearly Σ has constant term 1 so that Σ− 1 is
divisible by q. We must also show that it is divisible by qm−1 − 1.

By Theorem 5.1, we can write

Σ =
∑

ω∈⊎kSo([n],k)

(sgnω)qm(n−k)+invω

where the sign is given by (30). Recall that ω = (1, 2, . . . , n) is the only fixed point of the involution
ϕ on So([n], k) and that its contribution to the previous sum is 1. So we need only modify the
demonstration of Theorem 5.5 by showing that, for non-fixed points ω ∈ So([n], k) of ϕ, the sum
of the contributions of ω and ϕ(ω) is divisible by qm−1 − 1.

We will just give details when ϕ applies µM . But then ϕ(ω) has k − 1 blocks and, as proved
in the proof of Theorem 5.5, inv ϕ(ω) = invω − 1. So, up to sign, the contribution of these two
ordered set partitions is

qm(n−k)+invω − qm(n−k+1)+invω−1 = (1− qm−1)qm(n−k)+invω

as desired.

The type B analogue of the previous result is obtained by modifying the proof of Theorem 5.9
similarly to how we just modified the demonstration of Theorem 5.5. So we omit the details.

Theorem 5.11. For n ≥ 0 we have

n∑
k=0

(−1)n−kqm(n−k)So
B[n, k] ≡ 1 (mod qm − q).
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6 Coinvariant algebras

In this section we will propose analogues of the Artin basis for certain super coinvariant algebras
in types A and B. If these sets can be shown to be bases, then it will follow that the corresponding
bigraded Hilbert series can be expressed in terms of ordered q-Stirling numbers. Since our bases
are new even in type A, we will deal with that case first and then move on to type B.

6.1 Type A coinvariants

Consider the kth power sum symmetric polynomial

pk(n) = xk1 + xk2 + · · ·+ xkn.

Definition 6.1. The type A coinvariant algebra is the finite-dimensional commutative algebra

Rn =
Q[x1, . . . , xn]

⟨pk(n) : k ∈ [n]⟩

where Q is the rational numbers. This algebra is graded by degree and we let (Rn)d denote the dth
graded piece. We will not make a distinction in our notation between a polynomial in Q[x1, . . . , xn]
and its representative in Rn.

There is a standard basis for Rn. We will use it as a model for our bases in the super coinvariant
algebras we consider.

Definition 6.2. The Artin basis for Rn is

An = {xm1
1 xm2

2 · · ·x
mn
n : 0 ≤ mi ≤ i− 1 for i ∈ [n]}.

The next result follows immediately from the fact that An is a basis for Rn. See ?? for further
history and details.

Theorem 6.3. The coinvariant algebra Rn has Hilbert series

Hilb(Rn; q) :=
∑
d≥0

dim(Rn)d qd = [n]!.

There is an alternative description of An in terms of compositions which will be useful in the
sequel. A weak composition of d with n parts is a sequence of nonnegative integers α = (α1, . . . , αn)
where |α| :=

∑
i αi = d. The diagram of α consists of n columns lying on the same line with αi

boxes in column i for i ∈ [n]. See the diagram on the left in Figure 1 for an example. We will
also use the partial order on compositions with n parts given by α ≤ β if αi ≤ βi for all i ∈ [n],
equivalently, if the diagram of α is contained in the diagram of β. This relation is also illustrated
in Figure 1. Every composition α = (α1, . . . , αn) has an associated monomial

xα = xα1
1 xα2

2 · · ·x
αn
n

of degree d = |α|. The Artin basis can be described as

An = {xα : α ≤ (0, 1, . . . , n− 1)}.

We call (0, 1, . . . , n− 1) the staircase.
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≤

Figure 1: The diagram of α = (0, 1, 2, 1, 3) contained in the staircase (0, 1, 2, 3, 4)

There is a third description of An involving permutations in the symmetric group Sn. As usual,
an inversion of a permutation π = π1 . . . πn written in one-line notation is a pair (i, j) with i < j
and πi > πj . Let

invi π = #{j : (i, j) is an inversion of π}.

The inversion composition of π ∈ Sn is

I(π) = (inv1(π), inv2(π), . . . , invn(π)).

Clearly I(π) ≤ (0, 1, . . . , n− 1). In fact, it is well-known and easy to prove that the map

I : Sn → {α : α ≤ (0, 1, . . . , n− 1)}

is a bijection. It follows that
An = {xI(π) : π ∈ Sn}.

6.2 Type A super coinvariants

We now turn our attention to super coinvariant algebras. Let θ1, . . . , θn be anticommuting variables
so that

θiθj = −θjθi
for all i, j ∈ [n]. Note that because of anticommutivity we have

θ2i = 0 (32)

for all i ∈ [n]. We also assume that the θi and xj commute with each other. Define the kth super
power sum polynomial to be

spk(n) = xk1θ1 + xk2θ2 + · · ·+ xknθn.

Definition 6.4. The type A super coinvariant algebra is the finite-dimensional algebra

SRn =
Q[x1, . . . , xn, θ1, . . . , θn]

⟨pk(n), spk−1(n) : k ∈ [n]⟩
.

This algebra is bi-graded where we let (SRn)d,e denote the graded piece with monomials which are
of degree d is the x’s and degree e in the θ’s.

Zabrocki [Zab19] has conjectured a description for the tri-graded Frobenius characteristic of
the super-diagonal coinvariant algebra of Sn involving two sets of commuting and one set of anti-
commuting variables. Specialized to SRn, it becomes the following which explains our interest in
this algebra.

27



α(T ) =

ϵ(T ) = (1, 1, 2, 1)

T = {2, 4, 6, 7, 9}

Figure 2: The compositions α(T ) and ϵ(T ) when n = 9 and T = {2, 4, 6, 7, 9}

Conjecture 6.5. We have

Hilb(SRn; q, t) :=
∑
d,e≥0

dim(SRn)d,e qdte =
∑
k≥0

So[n, k]tn−k.

We will now propose an analogue of the Artin basis for SRn. Note that by (32), nonzero θ
monomials must contain at most one copy of each θi. So such monomials are indexed by subsets
T ⊆ [n] and we let

θT = θt1θt2 · · · θtk
where T = {t1 < t2 < · · · < tk}. Letting

[a, b] = {a, a+ 1, . . . , b}

for a, b ∈ Z, we will only need T ⊆ [2, n] for our proposed basis. Given such a subset we define the
α-sequence of T , α(T ), to be the composition constructed recursively by letting α1(T ) = 0 and, for
i ∈ [2, n],

αi(T ) = αi−1(T ) +

{
0 if i ∈ T ,
1 if i ̸∈ T .

The diagram of an example of α(T ) will be found in Figure 2.

Definition 6.6. The super Artin set for SRn is

SAn = {xαθT : T ⊆ [2, n] and α ≤ α(T )}.

A different description of this set was independently discovered by a group of mathematicians
associated with the Fields Institute including Nantel Bergeron, Shu Xiao Li, John Machachek,
Robin Sulzgrüber, and Mike Zabrocki [Zab].

Conjecture 6.7. The set SAn is a basis for SRn.

This conjecture has been verified using Macaulay2 [GS] for n ≤ 6. While the classical Artin
basis is the standard monomial basis for any monomial order with x1 > x2 > · · · > xn (see [SW21,
§5]), calculations by the Fields Institute group have shown that under reasonable assumptions the
same cannot be true of SAn.

It will be convenient to think of α(T ) as an elongated version of the staircase. For example, the
composition in Figure 2 is the staircase (0, 1, 2, 3) stretched out by adding a column of length 0, a
column of length 1, two columns of length 2, and a column of length 3. Formally, suppose T ⊆ [2, n]
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with #T = n− k. We then define the associated expansion composition ϵ(T ) = (ϵ1(T ), . . . , ϵk(T ))
where

ϵj(T ) = #{i ∈ T : αi(T ) = j − 1}.

Returning to our example, we have ϵ(T ) = (1, 1, 2, 1) corresponding to the bold line segments in
the diagram for α(T ). Note that |ϵ(T )| = n− k.

Proposition 6.8. Conjecture 6.7 implies Conjecture 6.5.

Proof. Assume that SAn is a basis for SRn. For fixed T ⊆ [2, n] with #T = n− k, the description
of the expansion composition ϵ(T ) = (ϵ1, ϵ2, . . . , ϵk) shows that the monomials in SAn whose theta
component is θT contribute

[1]ϵ1+1[2]ϵ2+1 · · · [k]ϵk+1 = [k]![1]ϵ1 [2]ϵ2 · · · [k]ϵk

to the q-grading in Hilb(SRn; q, t). Summing over all such T gives a contribution of

[k]!hn−k([1], [2], . . . , [k]) = So[n, k].

Since θT has degree tn−k for these T , the proof is complete.

There is also a way to express the elements of SAn by using inversions in type A ordered set
partitions ω = (S1/S2/ . . .) of [n], for which we write ω |= [n]. Given s ∈ [n] we define

invs ω = #{Sj : (s, Sj) ∈ Invω} (33)

where Invω is defined by (29). From this we get the inversion composition

η(ω) = (inv1 ω, inv2 ω, . . . , invn ω). (34)

We also need the set

T (ω) = {t ∈ [n] : t ∈ Si for some i and t > mi} (35)

where mi = min |Si|. Note that the absolute value is not needed here since all elements of Si

are positive. Also, it is impossible for 1 ∈ T (ω). But this description will permit us to use
the exactly the same definition in type B where the absolute value is needed and 1 ∈ T (ω) is
possible. For example, if ω = (S1/S2/S3) = (25/136/4) then inv2 ω = 1 because of S2, inv5 ω = 2
because of S2 and S3, inv6 ω = 1 because of S3, and invs ω = 0 for all other values of s, so that
η(ω) = (0, 1, 0, 0, 2, 1). Furthermore, T (ω) = {3, 5, 6}.

Proposition 6.9. We have
SAn = {xη(ω)θT (ω) : ω |= [n]}.

Proof. It suffices to define a weight-preserving bijection from the pairs (T, α) appearing in Def-
inition 6.6 to the ω |= [n]. Given (T, α) we construct ω inductively as follows. We start with
ω = (1) and insert the numbers 2, 3, . . . , n in order according to the following rules when it comes
to inserting k.

1. If k ∈ T then put k in the existing block of ω so that exactly αk new inversions result.

2. If k ̸∈ T then make k a new block of ω so that exactly αk new inversions result.
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It is routine to verify that this is a well defined map and to describe its inverse, so those details are
left to the reader.

Example 6.10. The reader will note how the proof just given mirrors the standard combinatorial
demonstration that ∑

π∈Sn

qinv π = [q]!.

To illustrate the construction in the proof of this result suppose that n = 5, T = {3, 5}, and
α = (0, 1, 0, 2, 1). The sequence of ordered partitions constructed is

(1), (2/1), (2/13), (4/2/13), (4/25/13).

For example, when 4 is inserted into (2/13), then, since 4 ̸∈ T , it will appear as a singleton block.
And since α4 = 2 it must be the first block to cause two inversions. Similarly, when 5 is inserted
then 5 ∈ T forces this element into one of the existing blocks. And if 5 is to cause one new inversion
then it must be in the second block from the right. The α-sequence of T is simply the sequence of
the maximal number of inversions one could possibly cause at each step.

Our inv statistic, or equivalently Steingŕımsson’s ros [Ste20], effectively numbers the possible
insertion positions “from right to left” starting at 0. One may get equidistributed variations on the
inv statistic by changing this numbering scheme. Using the left-to-right order yields Steingŕımsson’s
los [Ste20], or equivalently (in the unordered case) Cai–Readdy’s wgt [CR17] which is Wachs–
White’s ls up to a q-shift [WW91].

6.3 Type B super coinvariants

We now consider coinvariant algebras in type B.

Definition 6.11. The type B coinvariant algebra is the finite-dimensional, graded, commutative
algebra

RBn =
Q[x1, . . . , xn]

⟨p2k(n) : k ∈ [n]⟩
.

The analogue of the Artin basis in this context is as follows.

Definition 6.12. The type B Artin basis for RBn is

Bn = {xα : α ≤ (1, 3, . . . , 2n− 1)}.

We call the composition (1, 3, . . . , 2n− 1) the double staircase and it is displayed in Figure 3 for
n = 4. Again, the Artin basis trivializes the computation of the Hilbert series.

Theorem 6.13. The coinvariant algebra RBn has Hilbert series

Hilb(RBn; q) = [2n]!!.

Swanson and Wallach [SW21] considered the type B super coinvariant algebra where one adds
anticommuting variables θ1, . . . , θn which again commute with the xj ’s.

Definition 6.14. The type B super coinvariant algebra is the finite-dimensional, bigraded, algebra

SRBn =
Q[x1, . . . , xn]

⟨p2k(n), sp2k−1(n) : k ∈ [n]⟩
.
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Figure 3: The double staircase (1, 3, 5, 7)

β(T ) =

ϕ(T ) = (1, 2, 1, 0, 1)

T = {1, 3, 4, 6, 9}

Figure 4: The compositions β(T ) and ϕ(T ) when n = 9 and T = {1, 3, 4, 6, 9}

As for the super coinvariant algebra in type A, the Hilbert series is only conjectural.

Conjecture 6.15 ([SW21]). We have

Hilb(SRBn; q, t) =
∑
k≥0

So
B[n, k]t

n−k.

We have a set of elements of SRBn which, if they form a basis, will verify the previous conjecture.
To define the analogue of the α-sequence, it will be convenient to use the notation χ(S) which is 1
if the statement S is true, or 0 if it is false. Let the β-sequence of T ⊆ [n] to be the composition
defined recursively by β1(T ) = χ(1 ̸∈ T ) and

βi(T ) = βi−1(T ) + χ(i ̸∈ T ) + χ(i− 1 ̸∈ T )

for i ∈ [2, n]. Figure 4 contains an example.
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Definition 6.16. The super Artin set for SRBn is

SABn = {xαθT : T ⊆ [n] and α ≤ β(T )}.

We conjecture that SAB is, in fact, a basis.

Conjecture 6.17. The set SABn is a basis for SRBn.

Similar to type A, the composition β(T ) can be considered as an expansion of the double stair-
case. Let T ⊆ [n] with #T = n−k. The type B expansion composition is ϕ(T ) = (ϕ0(T ), . . . , ϕk(T ))
where

ϕj(T ) = #{i ∈ T : βi(T ) = 2j}.

Figure 4 also lists the expansion composition for the given n and T . So ϕj(T ) is just the number
of columns of β(T ) of height 2j. It is not hard to see that removing all the even height columns
from β(T ) leaves a copy of the double staircase (1, 3, . . . , 2k − 1) and thus |ϕ(T )| = n− k.

Proposition 6.18. Conjecture 6.17 implies Conjecture 6.15.

Proof. Suppose T ⊆ [n] with #T = n− k. The discussion of ϕ(T ) = (ϕ0, . . . , ϕk) just given shows
that the monomials in SABn whose theta component is θT have a factor of [2k]!! from the columns
corresponding to the double staircase, and a factor of [1]ϕ0 [3]ϕ1 · · · [2k + 1]ϕk from the column of
even length. Summing over all such T gives a contribution of

[2k]!!hn−k([1], [3], . . . , [2k + 1]) = So
B[n, k].

to the q-grading. Now the fact that θT has degree tn−k for these T completes the proof.

For the description of SAB in terms of ordered set partitions ω we will use the same notation
as in type A. This will cause no confusion because it will be clear from context whether the
necessary functions are being applied to a partition which is type A or type B. We write ω |= ⟨n⟩ if
ω = (S0/S1/S2/ . . .) is an ordered set partition of ⟨n⟩. The definitions (33), (34), and (35) carry over
to type B without change. For example, if we have ω = (011 | 4/4 | 23/23) then η(ω) = (0, 0, 1, 3)
and T (ω) = {1, 3}.

Proposition 6.19. We have

SABn = {xη(ω)θT (ω) : ω |= ⟨n⟩}.

Proof. As in typeA, it suffices to define a weight-preserving bijection from the pairs (T, α) appearing
in Definition 6.16 to the ω |= ⟨n⟩. Given (T, α) we construct ω by starting with ω = (0) and inserting
the numbers ±1,±2, . . . ,±n in order according to the following rules. Note that the position of k
forces the position of −k so that either both are in the zero block or −k is in the block paired to
the one containing k.

1. If k ∈ T then put k in the existing block of ω so that exactly αk new inversions result. (The
forced insertion of −k will not cause any new inversions in this case.)

2. If k ̸∈ T then make k and −k a new pair of blocks of ω so that exactly αk new inversions
result.

As before, details that this map is well defined and invertible are straightforward and so omitted.
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Example 6.20. Suppose that n = 3, T = {2, 3}, and α = (0, 1, 2). We start with ω = (0). Since
1 ̸∈ T , we must add 1 and 1 as separate blocks. And α1 = 0 means that no inversions are to be
created so that now

ω = (0 | 1/1).

We have 2 ∈ T so it must be placed in a block with other elements. And it must create α2 = 1
new inversion. This forces 2 into the block with 1 and also 2 into the block with 1 resulting in

ω = (0 | 12/12).

Finally, 3 ∈ T so T will go into one of the existing blocks. It must create α3 = 2 inversions and so
must reside in the zero block. It follows that 3 is also in S0 and we finally have

ω = (033 | 12/12).

7 Comments and open questions

In this section we collect various comments and open questions raised by the present work.

7.1 Complex reflection groups

If G is any complex reflection group, then one can define Stirling numbers of the first and second
kind for G using the Whitney numbers of the first and second kind, respectively, for G’s intersection
lattice analogous to Theorem 3.21 in type B. It follows from the work of Shephard and Todd [ST54]
that the Stirling numbers of the first kind can be expressed as elementary symmetric polynomials in
the coexponents ofG. For the Stirling numbers of the second kind, the situation is more complicated
and this approach is explored in [SS].

7.2 Major index for signed permutations and super coinvariant bases

We showed in Definition 3.2 that SB[n, k] can be viewed as the generating function for both an
inversion and a major index statistic on signed partitions. By contrast, only an inversion generating
function was given for cB[n, k] in Theorem 3.17. It would be interesting to find a major index
analogue for permutations in type B.

In another direction, the Artin basis in type A has a well-known “major index analogue,” the
Garsia–Stanton basis  ∏

i∈Des(π)

xπ(1) · · ·xπ(i) : σ ∈ Sn

 .

See [GS84]. Adin–Brenti–Roichman [ABR05] gave a type B analogue of the Garsia–Stanton basis
using the flag-major index of Adin–Roichman [AR01]. It would be interesting to give conjectured
super coinvariant extensions of these bases in types A and B.

7.3 q-difference equations

The generating function

C =
∑
n,k≥0

c[n, k]tk
xn

[n]!
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in Theorem 4.4 satisfies the first-order linear q-difference equation

DqC −
tC

1− x
= 0 (36)

where C(0, t) = 1. The classical solution of y′+p(x)y = 0 given by y = exp
(
−
∫
p(x) dx

)
generalizes

to q-difference equations using Gessel’s q-composition and q-chain rule. In particular, if DqY +
P (x)Y = 0, then Y = exp

[∫
P (x) dqx

]
, where we have used the q-antiderivative. From (36),

C = exp[−y logq(1− x)].
Now consider

CB =
∑
n,k≥0

cB[n, k]t
k xn

[n]!
.

Using manipulations similar to those in the proof of Theorem 4.4, one may show CB obeys the
following second-order linear q-difference equation.

Lemma 7.1. We have

x2q2(1− q)D2
qCB + (1− q(1 + q)x)DqCB − (1 + t)CB = 0 (37)

where CB(0, t) = 1.

When q = 1, this becomes a first order differential equation with solution (1 − 2x)−(1+t)/2, giving
an alternate proof of Theorem 4.1(d).

We are unaware of techniques which allow us to solve general second-order linear q-differential
equations in terms of well-known operations. However, we may rewrite (37) as a first order equation
using the q-pre-composition operator Q(F (x)) = F (qx):

DqCB − qxDq(1 +Q)CB − (1 + t)CB = 0.

If we replace Q with q (i.e. post-multiply by q rather than pre-multiply by q), we may solve
the resulting q-differential equation using the methods of the previous paragraph, which may be
considered as a “first approximation” of CB. More explicitly, we have

(1− q(1 + q)x)DqC̃B − (1 + t)C̃B = 0

where

C̃B = expq

[
− 1 + t

q(1 + q)
logq[1− q(1 + q)x]

]
.

When q = 1, we again recover Theorem 4.1(d). Since a wide variety of special functions satisfy
second order linear differential equations, solving (37) in a recognizable way would be interesting.

7.4 Sign-reversing involutions

In Section 5.1 we gave combinatorial proofs of the alternating sums involving So[n, k] and So
B[n, k]

using sign-reversing involutions. We also showed how these equations were special cases of the sym-
metric function function identity in Theorem 2.2, where that result was demonstrated by algebraic
manipulation. Can Theorem 2.2 itself be proved by sign-reversing involution?
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7.5 Log concavity

Partially order R[x] by letting f(x) ≤ g(x) if g(x) − f(x) ∈ R+[x] where R+ is the nonnegative
reals. A sequence of polynomials (fk(x))k≥0 = f0(x), f1(x), f2(x), . . . is said to be x-log-concave if

fk(x)
2 ≥ fk−1(x)fk+1(x)

for all k > 0. Call the sequence strongly x-log-concave if

fk(x)fl(x) ≥ fk−1(x)fl+1(x)

for all l ≥ k > 0. Clearly strong x-log concavity implies x-log concavity. The converse is not true
in general, although it is well known that it does hold if the polynomials are all positive constants.
And in the case of a sequence of constants we say that it is just log-concave.

The following is a corollary of Theorem 2.6 in [Sag92].

Theorem 7.2. If the sequence x1, x2, x3, . . . is strongly x-log-concave then so are the following
sequences

(ek(n))n≥0 and (hk(n))n≥0

where k is fixed, as well as

(ek−j(n+ j))j≥0 and (ek−j(n+ j))j≥0

where both k and n are fixed.

All the definitions in the previous paragraph apply when there is a single variable q. It is easy
to see that the sequence [1]q, [2]q, [3]q, . . . is strongly q-log-concave. So any subsequence will be as
well. Combining this fact, the previous theorem, and parts (a) and (b) of Theorem 2.1 give the
following result.

Corollary 7.3. For fixed n, the sequences (SB[n, k])k≥0 and (cB[n, k])k≥0 are strongly q-log-
concave.

A condition that is implied by log concavity for positive integer sequences a0, a1, . . . , an is
unimodality which means that there is some index m such that

a0 ≤ a1 ≤ . . . ≤ am ≥ am+1 ≥ . . . ≥ an.

So, one may ask if the sequences of coefficients of the polynomials S[n, k], SB[n, k], c[n, k], or
cB[n, k] are unimodal or even log-concave for each particular choice of n, k. Using a brute-force
computation for n, k ≤ 50, we have the following conjecture.

Conjecture 7.4. For each n, k, the coefficients of S[n, k] and c[n, k] are log-concave and positive,
hence unimodal.

In type B, the coefficients are not necessarily even unimodal. The first counterexamples are as
follows:

SB[6, 4] = 15 + 24q + 34q2 + 38q3 + 43q4 + 42q5 + 43q6 + 38q7 + 35q8

+ 26q9 + 20q10 + 14q11 + 10q12 + 6q13 + 4q14 + 2q15 + q16

cB[7, 5] = 21 + 36q + 51q2 + 60q3 + 70q4 + 74q5 + 79q6 + 78q7 + 79q8

+ 74q9 + 71q10 + 62q11 + 56q12 + 44q13 + 35q14 + 26q15 + 20q16

+ 14q17 + 10q18 + 6q19 + 4q20 + 2q21 + q22
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A sequence a0, a1, a2, . . . is parity-unimodal if a0, a2, a4, . . . and a1, a3, a5, . . . are each unimodal.
See the article of Billey, Konvalinka, and Swanson [BKS20, §9] for additional instances of this
notion. Inspired by this definition, we say that such a sequence is parity log-concave if a0, a2, a4, . . .
and a1, a3, a5, . . . are each log-concave and similarly for parity unimodal.

Conjecture 7.5. For each n, k, the coefficients of SB[n, k] and cB[n, k] are parity log-concave and
positive, hence parity unimodal.

Another common property of a sequence a0, a1, a2, . . . , an is that it is symmetric meaning that
ak = an−k for all k ∈ [n]. From the examples above, it is clear that the Stirling polynomials do not
have symmetric coefficients, but there is a related condition that they seem to enjoy. A sequence is
bottom heavy if ak ≥ an−k for k < n/2. See the article of McConville, Sagan, and Smyth [MSS21]
as well as the references therein for more about the bottom heavy condition.

Conjecture 7.6. For each n, k, the coefficients of S[n, k], c[n, k], SB[n, k], and cB[n, k] are all
bottom heavy.

Both of the previous conjectures have been verified by computer for n, k ≤ 50. A property which
implies both bottom heaviness and unimodality is being bottom interlacing which means that

an ≤ a0 ≤ an−1 ≤ a1 ≤ . . . ≤ a⌊n/2⌋

where ⌊·⌋ is the floor function. Again, see [MSS21] for more information about this property. The
coefficients of c[n, k], S[n, k], cB[n, k], and SB[n, k] are not in general bottom interlacing. For
example,

S[4, 3] = 3 + 2q + q2

does not have this property.

7.6 Asymptotics

A sequence of real-valued random variables X1,X2, . . . is asymptotically normal if the sequence
of standardized random variables X ∗

1 ,X ∗
2 , . . . converges in distribution to the standard normal

distribution N (0, 1). More explicitly, this means that for all t ∈ R,

lim
n→∞

P
[
Xn − µn

σn
≤ t

]
=

∫ t

−∞

1√
2π

exp(−x2/2) dx.

In order for X ∗
i to be well-defined, we must assume Xi does not have the degenerate distribution

with variance 0 supported at a single point. This is only a minor inconvenience, since degenerate
distributions are normal with variance 0 and are “morally” if not technically asymptotically normal.

We say that a sequence of non-zero polynomials P1(q), P2(q), . . . with non-negative real coeffi-
cients Pn(q) =

∑
k≥0 an(k)q

k is asymptotically normal if the sequence of random variables defined
by P[Xn = k] = an(k)/Pn(1) is asymptotically normal. Informally, plotting the list of coefficients of
Pn(q) for large n must give a bell-shaped curve. See e.g. [BKS20, §2.4, §4.1] for further discussion
and an example.

The polynomials pn(q) =
∑

k≥0 c(n, k)q
k and Pn(q) =

∑
k≥0 S(n, k)q

k were shown to be asymp-
totically normal by Bender [Ben73] and by Harper [Har67], respectively. It is natural to ask for
asymptotic estimates of the coefficients of q-Stirling numbers analogous to these classic results,
which we have been unable to find in the existing literature. We content ourselves with the follow-
ing simple case whose proof is an easy application of Bender’s well-known result involving bivariate
generating functions.

36



Theorem 7.7. Fix k ∈ Z≥0. The coefficients of S[n, k] when k ≥ 2, and of SB[n, k] when k ≥ 1
are asymptotically normal as n→∞.

Proof. As we saw in Section 2.1, the generating functions are∑
n≥0

S[n, k]xn =
xk

(1− [1]x)(1− [2]x) · · · (1− [k]x)

and ∑
n≥0

SB[n, k]x
n =

xk

(1− [1]x)(1− [3]x) · · · (1− [2k + 1]x)
.

Each is of the form g(x, q)/P (x, q) where

1. P (x, q) is a polynomial in x with coefficients continuous in q,

2. P (x, 1) has a simple root at r = 1/k or r = 1/(2k + 1) with all other roots having larger
absolute value,

3. g(x, q) = xk is entire, and

4. g(r, 1) ̸= 0.

The distributions are non-degenerate for n large when k ≥ 2 in type A and when k ≥ 1 in
type B. The result follows from [Ben73, Ex. 3.1, p.95] (which inadvertently neglects the σ ̸= 0
condition).

A direct analogue of Theorem 7.7 for the q-Stirling numbers of the first kind would require
explicit expressions for

∑
n≥0 c[n, k]x

n/n! or
∑

n≥0 cB[n, k]x
n/n!, which we do not have. In a

complementary direction, the distributions of the coefficients of S[n, n−k], SB[n, n−k], c[n, n−k],
and cB[n, n − k] for fixed k as n → ∞ appear to be non-normal, e.g. when k = 1 the limiting
standardized disribution in each case is the triangle with density (2

√
2−x)/9 for −

√
2 ≤ x ≤ 2

√
2.

Based on computational data, the coefficients of the q-Stirling numbers of both kinds and in
both types all appear to be “generically asymptotically normal.” The following conjecture is one
way to make this intuition precise.

Conjecture 7.8. Suppose n, k → ∞ in such a way that k/n → α for some 0 < α < 1. Then the
coefficients of S[n, k], SB[n, k], c[n, k], and cB[n, k] are all asymptotically normal.

More strongly, the coefficients of S[n, k], SB[n, k], c[n, k], cB[n, k] appear to tend towards a “limit
shape.” See Figure 5 for an example with S[n, k]. Note that the slices for fixed k appear to be
parabolic near their maximum, consistent with asymptotic normality, at least for k not close to
0 or n. It would be interesting to find the limit shape precisely in each case. It would also be
very interesting to develop tools for proving limit shapes of the coefficients arising from recursions
similar to (2), perhaps by exploiting their q-difference equations.

7.7 Graded Euler characteristics

By [SW21], the alternating sums(
n∑

k=0

(−1)n−kqm(n−k)So[n, k]

)
− 1 and

(
n∑

k=0

(−1)n−kqm(n−k)So
B[n, k]

)
− 1
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Figure 5: Plots of log([q]jS[n, k]) as a function of k and j for n = 25 and n = 100∑n
k=0(−1)n−kq2(n−k)So[n, k]− 1 (n+ 1)st row of A050176

−6q7 − 14q6 − 14q5 + 14q3 + 14q2 + 6q + 1 1, 6, 14, 14, 14, 14, 6, 1
−7q8 − 20q7 − 28q6 − 14q5 + 14q4 + 28q3 + 20q2 + 7q + 1 1, 7, 20, 28, 14, 28, 20, 7, 1

Table 1: The n = 7 and n = 8 cases of (38) and the 8th and 9th rows of [OEI22, A050176].

are conjecturally graded Euler characteristics of chain complexes obtained by applying generalized
exterior derivatives to super coinvariant algebras in types A and B, respectively. When m = 1, the
complexes in question use classical exterior differentiation and are an algebraic analogue of the de
Rham complex. One of the main results of [SW21] shows that the complex is exact in this case,
and correspondingly the m = 1 alternating sums are 0.

The following specific alternating sum appears to exhibit significant structure.

Conjecture 7.9. The polynomial(
n∑

k=0

(−1)n−kq2(n−k)So[n, k]

)
− 1 (38)

is palindromic ignoring signs, with the same number of positive and negative coefficients, and where
the lower-degree half of nonzero coefficients are positive and the rest are negative.

The coefficients of (38) in fact appear to be slight variations on [OEI22, A050176]. See Table 1
for examples.
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ory and related topics, RIMS Kôkyûroku Bessatsu, B8, pages 99–113. Res. Inst. Math. Sci.
(RIMS), Kyoto, 2008.

[IKZ08b] Masao Ishikawa, Anisse Kasraoui, and Jiang Zeng. Euler-Mahonian statistics on ordered
set partitions. SIAM J. Discrete Math., 22(3):1105–1137, 2008.

[Joh96] Warren P. Johnson. Some applications of the q-exponential formula. In Proceedings of the
6th Conference on Formal Power Series and Algebraic Combinatorics (New Brunswick,
NJ, 1994), volume 157, pages 207–225, 1996.
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