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A polyhedral proof of a wreath product identity

Robert Davis and Bruce Sagan

This paper is dedicated to the memory of Jeff Remmel. It concerns two
mathematical objects which he studied over his long and productive research

career: permutation statistics and wreath products.

In 2013, Beck and Braun proved and generalized multiple identi-
ties involving permutation statistics via discrete geometry. Namely,
they recognized the identities as specializations of integer point
transform identities for certain polyhedral cones. They extended
many of their proof techniques to obtain identities involving wreath
products, but some identities were resistant to their proof attempts.
In this article, we provide a geometric justification of one of these
wreath product identities, which was first established by Biagioli
and Zeng.

Keywords and phrases: Descent set, generating function, major in-
dex, polytope, wreath product.

1. Introduction

Let r, n ∈ Z>0 and let Zr and Sn denote the cyclic group of order r and
symmetric group on [n] = {1, . . . , n}, respectively. The wreath product of Zr

by Sn is defined as

Zr �Sn = {(ε, π) | ε ∈ [0, r − 1]n, π ∈ Sn}

where [0, r−1] = {0, 1, . . . , r−1}. It is often convenient to consider elements
of Zr �Sn as r-colored permutations, and write them in the window notation

(ε, π) = [π(1)ε1 . . . π(n)εn ].

When r = 2, the wreath product can be viewed as bijections f on {±1, . . . ,
±n} such that f(−i) = −f(i), called signed permutations. This set is also
referred to as the Coxeter group of type Bn, and as the hyperoctahedral group

arXiv: 1712.00839

711

http://www.intlpress.com/JOC/
http://arxiv.org/abs/1712.00839


712 Robert Davis and Bruce Sagan

because it is the symmetry group for the n-dimensional octahedron, that is,
the n-dimensional cross-polytope. Since the n-dimensional cross-polytope is
dual to the cube [−1, 1]n, the two have the same symmetry group.

In order to discuss certain statistics on wreath products, we define a
partial order on the set {00} ∪ {ij | i ∈ [n], j ∈ [0, r − 1]}. First, we will use
the convention that π(0) = 0 and ε0 = 0 for all (ε, π) ∈ Zr � Sn. We will
insist that jcj < kck if one of the three following conditions hold:

1. j < k and cj = ck = 0;
2. j > k and cj , ck > 0;
3. jcj < 00 for any cj > 0.

We will refer to this as the Biagioli-Zeng partial ordering, or simply the BZ
ordering, on Zr �Sn. In the case of r = n = 3, the BZ ordering is

32, 31 < 22, 21 < 12, 11 < 00 < 10 < 20 < 30.

This ordering allows us to define the descent set of (ε, π) ∈ Zr �Sn by

Des(ε, π) = {i ∈ [0, n− 1] | π(i)εi > π(i+ 1)εi+1}

and the descent statistic by des(ε, π) = |Des(ε, π)|. In particular, we let
Des(π) = Des(0, π) where 0 is the all-zero vector. So Des(π) is the ordinary
descent set of π as an element of Sn. An associated statistic is the major
index, defined as

maj(ε, π) =
∑

i∈Des(ε,π)

i.

We also define the color weight of (ε, π) ∈ Zr �Sn to be

col(ε, π) =

n∑
i=1

εi.

Since the color weight depends only on ε, we can similarly define the color
weight of ε ∈ Zn

r to be

col(ε) =

n∑
i=1

εi.

In [1], the authors created vast generalizations of many identities involv-
ing statistics on the group of permutations, on signed permutations, and, to
a more limited extent, on general wreath products. Their techniques involved
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recognizing the identities as specializations of integer point generating func-
tions for the cubes [0, 1]n and [−1, 1]n. Among the identities in which Beck
and Braun were interested is the following q, u-analogue, originally proven
by Biagioli and Zeng. Recall that for a variable q and nonnegative integer n,

[n]q =
1− qn

1− q
,

so that [n]q = 1 + q + · · ·+ qn−1 when n > 0 and [0]q = 0.

Theorem 1.1 (Equation (8.1), [2]). For any positive integers r, n,

(1)
∑
k≥0

([k + 1]q + u[r − 1]u[k]q)
ntk =

∑
(ε,π)∈Zr�Sn

qmaj(ε,π)tdes(ε,π)ucol(ε,π)∏n
j=0(1− qjt)

.

This identity resisted the proof techniques of Beck and Braun. Never-
theless, a geometric proof does exist, and the purpose of this article is to
provide one.

2. Main proof

2.1. Monomial association

Examining the left side of Equation (1) for a fixed k leads one to believe
that there is some connection with hypercubes. Since there is a sum of
kr + 1 monomials being raised to the nth power, it suggests one should
be able to associate the lattice points of [0, kr]n with the monomials of
([k + 1]q + u[r − 1]u[k]q)

n in some manner. After doing so, multiplying by
tk and summing over all k will result in bijectively associating each lattice
point of the cone

cn([0, r]n) = {(αx, α) ∈ R
n+1 | x ∈ [0, r]n, α ∈ R}

with a monomial occurring on the left side of (1). This cone can, of course,
be constructed for any set S ⊂ Rn by replacing [0, r]n with S.

To simplify notation, let Cr,n = cn([0, r]n), and let ei be the i
th standard

basis vector in Rn+1. For a particular nonnegative integer k, consider the
points (v, k) ∈ Cr,n ∩ Zn+1 lying on the hyperplane xn+1 = k. For each
j = 0, . . . , kr and i = 1, . . . , n, set

m′(jei, k) =

{
qj if 0 ≤ j ≤ k,

q(j−1)mod k u�(j−1)/k� if k < j ≤ kr,
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Figure 1: The monomials m(v, k), with factors of t divided out, associated
to the lattice points in ([0, 2]2, 1), left, and([0, 2]2, 2), right.

where (j − 1)mod k is always chosen from [0, k − 1]. Note that m′ depends
on j but not on i. It follows easily from this definition that for any i we have

(2)

kr∑
j=0

m′(jei, k) = [k + 1]q + u[r − 1]u[k]q.

This association allows us to construct a map m : Cr,n ∩ Zn+1 → C[q, t, u]
defined by

m(v1, . . . , vn, k) =

(
n∏

i=1

m′(viei, k)

)
tk.

The cases of r = n = 2 and k ∈ {1, 2} are depicted in Figure 1, and the case
of r = 2, n = 3, k = 1 is depicted in Figure 2.

From the definition of m and equation (2) we have, for fixed k,∑
(v,k)∈([0,kr]n,k)∩Zn+1

m(v, k) = ([k + 1]q + u[r − 1]u[k]q)
ntk.

Summing over all k, we therefore have

(3)
∑
k≥0

([k + 1]q + u[r − 1]u[k]q)
ntk =

∑
(v,k)∈Cr,n∩Zn+1

m(v, k).

This provides us with a geometric interpretation of the left side of (1).
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Figure 2: The monomials m(v, k), with factors of t divided out, associated
to the lattice points in ([0, 2]3, 1). Monomials corresponding to lattice points
satisfying x1 = 0 are connected by thick lines; those corresponding to lattice
points satisfying x1 = 1 are connected by dashed lines; and those corre-
sponding to lattice points satisfying x1 = 2 are connected by dotted lines.

2.2. Cubical decomposition

Given ε = (ε1, . . . , εn) ∈ Zn
r , define the support of ε to be the set

supp(ε) = {i | εi > 0}.

The cube associated to ε is

Fε = (ε+ [0, 1]n) \

⎛
⎝ ⋃

i∈supp(ε)
{x ∈ R

n | xi = εi}

⎞
⎠ .
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Figure 3: The four cubes associated to the elements ε ∈ Z2
2 which decompose

[0, 2]2.

So, if ε 	= 0, then Fε is partially open. It is clear by construction that

[0, r]n =
⋃
ε∈Zn

r

Fε

and that the union is disjoint. See Figure 3 for the decomposition for n =

r = 2. This decomposition of the cube induces a decomposition of its cone,

namely,

(4) Cr,n = cn([0, r]n) =
⊎
ε∈Zn

r

cn(Fε).

The cubes associated to ε ∈ Zn
r allow us to associate monomials accord-

ing to which lattice points lie inside of Fε. It will be easiest to obtain rational

function expressions for

∑
(v,k)∈cn(Fε)∩Zn+1

m(v, k)

by using relationships among the various ε ∈ Zn
r . First, we will see what

happens when supp(ε) = supp(ε′).

Lemma 2.1. If ε, ε′ ∈ Zn
r and supp(ε) = supp(ε′), then for any π ∈ Sn,

Des(ε′, π) = Des(ε, π).
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Consequently,

des(ε′, π) = des(ε, π)

maj(ε′, π) = maj(ε, π),

Also,

∑
(v,k)∈cn(Fε)∩Zn+1

m(v, k) =

⎛
⎝ ∑

(v′,k)∈cn(Fε′ )∩Zn+1

m(v′, k)

⎞
⎠ucol(ε)−col(ε′).

Proof. Suppose i ∈ Des(ε, π), so that π(i)εi > π(i + 1)εi+1 . This leads to
three cases:

1. εi, εi+1 > 0 and π(i) < π(i+ 1);
2. 0 = εi < εi+1;
3. 0 = εi = εi+1 and π(i) > π(i+ 1).

In each case it is straightforward to verify that replacing εi with ε′i and εi+1

with ε′i+1 preserves the descent, so that Des(ε, π) ⊆ Des(ε′, π). The reverse
containment follows by the same argument, swapping the roles of ε and ε′.

For the last equality of the lemma, since supp(ε) = supp(ε′) we have a
bijection

cn(Fε′) ∩ Z
n+1 → cn(Fε) ∩ Z

n+1

given by (v′, k) �→ (v, k) where v = v′ + k(ε− ε′). From the definition of m′

and m we see that under this correspondence m(v, k) = m(v′, k)ucol(ε)−col(ε′)

and the summation follows.

Next, we will obtain the desired rational function for special choices of
ε, where the previous lemma allows us to focus on such vectors which only
contain zeros and ones. For the proof, we will need to refine the cubes asso-
ciated to the ε. Recall that the (type A) braid arrangement is the hyperplane
arrangement

An =
⋃

1≤i<j≤n

{(x1, . . . , xn) ∈ R
n | xi = xj}.

Its complement in Rn, that is, Rn \ An, consists of the Weyl chambers

Wπ = {xπ(1) > · · · > xπ(n)},

which range over all π ∈ Sn. The intersectionsWπ∩[0, 1]n result in simplices,
some of whose faces have been removed. The descent set of permutations
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can be used to decompose [0, 1]n into the disjoint, partially-open simplices

Δπ = {x ∈ R
n
≥0 | 1 ≥ xπ(1) ≥ · · · ≥ xπ(n) ≥ 0, and

xπ(i) > xπ(i+1) if i ∈ Des(π)}

such that {Δπ}π∈Sn
is a unimodular triangulation of [0, 1]n. These facts fol-

low from arguments related to the theory of P -partitions; see [1, Remark 4.2]

for a treatment of this connection.

It will be helpful to establish the following notation: given ε = (ε1, . . . ,

εn) ∈ Zn
r , let

Gε = {((επ(1), . . . , επ(n)), π) ∈ Zr �Sn | π ∈ Sn}
= {[π(1)επ(1) . . . π(n)επ(n) ] | π ∈ Sn}.

In other words, the color associated to a letter stays fixed when ranging over

all elements in Gε.

Example 2.2. Suppose ε = (1, 0, 1). The set Gε is

Gε = {[11 20 31], [11 31 20], [20 11 31], [20 31 11], [31 11 20], [31 20 11]}.

Des[11 20 31] = {0, 2},
Des[11 31 20] = {0, 1},
Des[20 11 31] = {1, 2},
Des[20 31 11] = {1},
Des[31 11 20] = {0},
Des[31 20 11] = {0, 2}.

We will now relate the sum of weights of lattice points in Fε to the

generating function for maj and des over the corresponding Gε for a certain

(0, 1)-vector ε. Following the proof will be an example that illustrates the

techniques used.

Proposition 2.3. Suppose ε = (1, . . . , 1, 0, . . . , 0) where there are l copies

of 1 so that col(ε) = l. Then

∑
(v,k)∈cn(Fε)∩Zn+1

m(v, k) =

∑
(γ,π)∈Gε

qmaj(γ,π)tdes(γ,π)ucol(ε)∏n
j=0(1− qjt)

.
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Proof. It is clear from the definition of m that

(5)
∑

(v,k)∈cn(Fε)∩Zn+1

m(v, k) = ul
∑
k≥0

[k]lq[k + 1]n−l
q tk.

The coefficient of qrtk in the above series therefore has the interpretation as
the number of compositions α = (α1, . . . , αn) of r (where parts equal to zero
are allowed) such that the first l parts are at most k − 1 and the remaining
n− l parts are at most k.

Now, note that the permutation

ρ = l(l − 1) . . . 21(l + 1)(l + 2) . . . n

satisfies

ρπ(i) =

{
l + 1− π(i) if π(i) ≤ l

π(i) if π(i) > l

for any π ∈ Sn. Based on the BZ ordering of the letters in Zr �Sn, we can
conclude that for all π ∈ Sn, and setting γ = (επ(1), . . . , επ(n)),

Des(γ, π) =

{
Des(ρπ)  {0} if 0 ∈ Des(γ, π),

Des(ρπ) if 0 /∈ Des(γ, π).

Recall that the set of all (γ, π) constructed this way is exactly Gε.
From the discussion following Lemma 2.1, we know that for a particular

composition α of the type we have been considering, there is exactly one
π ∈ Sn for which

(6) k − ερπ(1) ≥ αρπ(1) ≥ αρπ(2) ≥ · · · ≥ αρπ(n) ≥ 0,

where αρπ(i) > αρπ(i+1) if i ∈ Des(ρπ). With this choice of π, we may
construct a partition λ = (λ1, . . . , λn) of r − maj(γ, π) into n parts (again
allowing zeros), with each part at most k − des(γ, π), by setting

λi = αρπ(i) − |Des(ρπ) \ [i− 1]|.

Notice that for a fixed π, this map is a bijection between all compositions
α satisfying (6) and partitions λ of r−maj(γ, π) into n parts, each at most
k − des(γ, π).

Thus, the sum on the right-hand side of (5) can be computed by first
computing the generating function for the partitions corresponding to a fixed
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π, and then summing all of these generating functions. By our construction,
the generating function for a fixed π is

qmaj(γ,π)tdes(γ,π)∏n
j=0(1− qjt)

.

Summing over all (γ, π) ∈ Gε gives the claimed result.

Example 2.4. Consider ζ = (1, 1, 0). The set Gζ is

Gζ = {[11 21 30], [11 30 21], [21 11 30], [21 30 11], [30 11 21], [30 21 11]}.

Notice that
Des[11 21 30] = {0, 1},
Des[11 30 21] = {0, 2},
Des[21 11 30] = {0},
Des[21 30 11] = {0, 2},
Des[30 11 21] = {1, 2},
Des[30 21 11] = {1}.

By setting ρ = 213, then

Des[11 21 30] = Des(213)  {0} = {0, 1},
Des[11 30 21] = Des(231)  {0} = {0, 2},
Des[21 11 30] = Des(123)  {0} = {0},
Des[21 30 11] = Des(132)  {0} = {0, 2},
Des[30 11 21] = Des(321) = {1, 2},
Des[30 21 11] = Des(312) = {1}.

We also need to consider the generating functions obtained by permuting
the entries of ε.

Lemma 2.5. Let ε, ε′ ∈ Zn
r such that ε′ is a permutation of the entries of

ε. There is a (maj, des, col)-preserving bijection between Gε and Gε′. Conse-
quently,∑

(γ,π)∈Gε

qmaj(γ,π)tdes(γ,π)ucol(ε) =
∑

(γ,π)∈Gε′

qmaj(γ,π)tdes(γ,π)ucol(ε
′).

Proof. Since the sets

{1ε1 , 2ε2 , . . . , nεn}
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and

{1ε′1 , 2ε′2 , . . . , nε′n}

are totally ordered, there is a unique order-preserving bijection ω between

them. So, consider the map Ω : Gε → Gε′ defined by

Ω([π(1)ε1 . . . π(n)εn ]) = [ω(π(1)ε1) . . . ω(π(n)εn)].

Since ε and ε′ are permutations of each other, Ω is col-preserving. Moreover,

| supp(ε)| = | supp(ε′)|, and this together with the fact that ω is order-

preserving proves that Ω is Des-preserving, and therefore is des- and maj-

preserving as desired.

Example 2.6. Recall ε = (1, 0, 1) from Example 2.2 and ζ = (1, 1, 0) from

Example 2.4. Since 31 < 11 < 20 and 21 < 11 < 30, we have

ω(31) = 21

ω(11) = 11

ω(20) = 30.

Comparing the descent sets from Example 2.2 and Example 2.4, we see that

Des[11 20 31] = DesΩ([11 20 31]) = Des[11 30 21],
Des[11 31 20] = DesΩ([11 31 20]) = Des[11 21 30],
Des[20 11 31] = DesΩ([20 11 31]) = Des[30 11 21],
Des[20 31 11] = DesΩ([20 31 11]) = Des[30 21 11],
Des[31 11 20] = DesΩ([31 11 20]) = Des[21 11 30],
Des[31 20 11] = DesΩ([31 20 11]) = Des[21 30 11].

We can now combine our previous results to provide the penultimate

step in our proof of Theorem 1.1.

Corollary 2.7. For every ε ∈ Zn
r ,

∑
(v,k)∈cn(Fε)∩Zn+1

m(v, k) =

∑
(γ,π)∈Gε

qmaj(γ,π)tdes(γ,π)ucol(ε)∏n
j=0(1− qjt)

.

Proof. Let ε′ ∈ Zn
r be ε rewritten in weakly decreasing order, and let ε =

(1, . . . , 1, 0, . . . , 0) where there are | supp(ε)| copies of 1. Using the definition
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of m and then Lemma 2.1,∑
(v,k)∈cn(Fε)∩Zn+1

m(v, k) =
∑

(v,k)∈cn(Fε′ )∩Zn+1

m(v, k)

=

⎛
⎝ ∑

(v,k)∈cn(Fε)∩Zn+1

m(v, k)

⎞
⎠ucol(ε

′)−col(ε).

By Proposition 2.3,

∑
(v,k)∈cn(Fε)∩Zn+1

m(v, k) =

∑
(γ,π)∈Gε

qmaj(γ,π)tdes(γ,π)ucol(ε)∏n
j=0(1− qjt)

.

Plugging this last equality into the previous one and then using Lemmas 2.1
and 2.5 in turn, we see

∑
(v,k)∈cn(Fε)∩Zn+1

m(v, k) =

(∑
(γ,π)∈Gε

qmaj(γ,π)tdes(γ,π)ucol(ε)∏n
j=0(1− qjt)

)
ucol(ε

′)−col(ε)

=

∑
(γ,π)∈Gε′

qmaj(γ,π)tdes(γ,π)ucol(ε
′)∏n

j=0(1− qjt)

=

∑
(γ,π)∈Gε

qmaj(γ,π)tdes(γ,π)ucol(ε)∏n
j=0(1− qjt)

,

as desired.

This bring us to the proof of the main theorem.

Geometric proof of Theorem 1.1. By Equations (3) and (4), the left hand
side of (1) is∑

k≥0

([k + 1]q + u[r − 1]u[k]q)
ntk =

∑
(v,k)∈Cr,n∩Zn+1

m(v, k)

=
∑
ε∈Zn

r

∑
(v,k)∈cn(Fε)∩Zn+1

m(v, k).

By Corollary 2.7, we can express this as

∑
ε∈Zn

r

∑
(v,k)∈cn(Fε)∩Zn+1

m(v, k) =
∑
ε∈Zn

r

∑
(γ,π)∈Gε

qmaj(γ,π)tdes(γ,π)ucol(ε)∏n
j=0(1− qjt)

.
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Instead of expressing the right-hand side as a double sum, we can simply
range over all elements of Zr � Sn. Recalling that col(ε, π) = col(ε) for a
given π, the right side of the above equation is

∑
(ε,π)∈Zr�Sn

qmaj(ε,π)tdes(ε,π)ucol(ε,π)∏n
j=0(1− qjt)

,

completing the proof.
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