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A special case of the Abel polynomials counts rooted labeled forests. This hlterpretation is 
used to obtain a combinatorial procf of the formula expressing x" as a sum of these 
polynomials. 

Dedicated to Frank Harary and his exceptional intuition 

Various polynomials can be associated with combinatorial structures. For 
vx~mple, one instance of the Abel  polynomials is the generating function for 
f~rests of ~abeled rooted trees. Specifically, if An(a, x ) :=x(x -  an) "-t is the nth 
Abel polynomial, then 

A~(x):=A,(-1,  x ) =  ~.. t~kx k (1) 
k ~ O  

~vhere t~ i~5 the number  of  forests on n labeled vertices consisting of k rooted 
trees. This is equivalent to the statement that t~ = (~_-])n n-k which has been 
proved by various people, e.g., [3, 5]. MuUin and Rota  [6] asked if (1) could be 
demonstrated combinatorially and this was done by Fran~on [1]. However  such a 
I, roof for  the inverse formula: 

k = 0  

v~as still lacking. 

In [4] we showed that identities like (1) and (2) can be proved in a combinator- 
ial alanner by associating with the given polynomials a partially ordered set 
(p~set). One  identity follows by summing over  the poset and the other by M6bius 
iraversion, The purpose of this note is to describe such a poset for the Abel 
polynomials and hence provide a combinatorial proof of (2). 

Let  ~:a be the set of all forests on n vertices consisting of labeled rooted trees. 
To describe a p=¢:ial order on ~:, we need only specify which forests cover a ~ven  
F E  ~ ,  (in a poset, x covers y if x > y and there is no z with x > z > y), Le~ E(F) 
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be the set of edges of F and R(F)  be the set of roots of F. For  every pair  
vt, v2,~ R(F), there are two forests, F~ and F2, covering F. This pair  of forests is 
defined by E(F~)=E(F)U{v~v2} and R(F~)=R(F)-{v~.}; i = 1 , 2 .  The  Hasse 
diagram for the poset ~:2 is displayed in Fig. 1. 

Define two functions t, g: ~ ,  ~ Q[x] by f(F) = Ak(v)(x) and g(F) = x k(r~ where 
k(F) is the number  of components  of F. If 6 e ~ ,  is the unique forest with no 

edges, then 

A°(x)-- E to x E x E x 
k(F)=k 

O r  

f(6)= ~ ~:(F). (3) 
F ~  ,~,, 

Si;:ce the ideal IF = {Fi ~ ~;,, [ Fi I> F} is isomorphic to ~k(F~, (3) implies that for all 

F e  ~,,, 

f(F)--- ,S :~(F,). 
F ~ F  

Hence by IVltbiu:~ inversion, 

x " - - g ( 0 ) =  ~ a(6, F)f(F)= ~.. Iz(O,F)Ak,F~(x), (4) 

where /x(0. F) is defi~ned inductively by p,(0, 0) = 1, it(6, F) = --~F,<Hx(5, F') (see 
Rota [7] for details about M6bius functions). By way of example,  the value of 
~(6,  F) is indicated next to F itself in Fig. 1. 

To  simplify (4), wc must evaluate the M6bius functions for the poser ~ , .  If 
FE~ : ,  is composed of rooted trees T~, "/'2 . . . . .  "irk, then the interval [0, F ]  is 
isomorphic to the direct product [0, T t ] x [ 0 ,  T 2 ] × " "  ×[6,  T~] in the natural way 
and ~(6,  F) = tL(6, TO ~(6, T2)" • • ~(6,  Tk). Hence  it suffices to calculate ~(6,  T) 
where T is a single rooted tree. First we must describe the elements  of [0, T]. 

Given a tree T and vertices v, w in T, we let v - w  denote the unique path f rom 
v to w in T. Let T have root r. The  depth of a vertex v, depth v, is the length of 
r -v  (depth r = 0). We will always measure depth with respect to the maximal tree 
7" of [6, T]. If u i,; on v - w  we write v -u -w .  The subtree corresponding to v in T, 
T(vL is the subtree induced by all vertices w in T such that r -v-w.  

Lemma 1. Given Fi ~ [0, T], consider any tree T~ c_ Ft with root rl, and any v ~  rl 
in "r l, then 

(a) depth r~ < d e p t h  v, 
(b} Tl(v) = T(v]. 
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Proof .  (a) Assume that  dep th  v ~<depth r~, Wi thout  loss of general i ty  we may 

assume that  depth  v is minimal among all v e Tt.  Hence  r-v-r t  siz~ce otherwise 
v-r~ contains o ther  vertices of T~ of smal ler  depth.  

I~ o = r, then r is ~ot a root  in F~. But  R(FO D R(T)  so that  r is not  a roo t  ~r~ T, 
a contradiction.  If v#r ,  then the minimali ty of  dep th  v guarantees  that  r-v 
comains an edge ~r ~ E ( T ) - E ( T t ) .  However  we can only add an edge to F t  if it 
connects two roots  and v is not a root.  Hence  we will never  be able to add uv to 
F~ in o rder  to create T, another  contradict ion.  

(b) Since Tt ~ T we have T~(v) ~_ T(v). As both Tt(v) and T(v) are connected,  
to prove "/'~(v)= T(v) we need only show that  both  trees have the same ver tex set. 

So suppose that w e; T ( v ) -  T~(v) and consider  v-w. Fol lowing this path from v to 
w, let xy be the fi~st edge in T(v) that  is not in Tt(v). Hence  x e Tt and y d  T~. 
But x is not the root  of T~ so, as before,  we will never be able to add the edge xy 

to F~. [ ]  

Note that co;Idition (a) implies that R(F~) is comple te ly  de te rmined  by E(F~) 
since each tree T~ c.: F~ is rooted  at the vertex of minimal dep th  in /'. Hence  to 
specify a forest in [l~, T] we need only specify its edge set. 

Corol lary 2. Given Fl, F, ~ [0, T], then Fl <<- F2 i[ and only if E ( F t )  ~ U(F2). 

Proof .  The 'only if' part  of the corol lary follows immedia te ly  from the definit ion 
of the covering relation in ~:,. For  the o ther  i~mplication we need only show that  
we can connect p a i ~  of roots  in Ft to obtain the rest of the edges in 22, i.e. for 
every uv ~ E(F, . ) -  E(FI) we must show that u, v ~ R(F~). 

Without  loss of generali ty,  let depth  u = dep th  v - 1  ~o that  r-u-v.  If u~ R(Ft),  
then T(u)c_Fs  by Lemma l(b).  "l~is implies that u v e E ( F l ) ,  contrary to our  
assumption. However ,  if vd R(FO, then the tree of F~ containing v h~is root  r~ 

with depth r , < d e p t h  v by Lemma l(a).  Hence uv lies on r~ -v  an3 is thus in 
E(Fz), another  contradiction.  [ ]  

Coronary  3. The interval [0, 71"] is a lattice with, [or all F1, F2 ~ [(), T], 
F~ v F2 = the forest in [0, T] with edge set E(F1) U E(F2), 
F~ A F2 = the [orest in [(), T] with edge set E(F~) n E(Fz). 

Proof .  This result follows from Corol lary  2 and the fact that U and n are the  

meet and join for subsets of a set. The details  are similar to what we haw~ proved 
in full above and are omit ted.  [ ]  

We are now in a posit ion to calculate /z(0, T) for any tree T ~ : , .  In what  
follows an endpoint is a vertex of degree  one,  an endline is an edge incident  with 

z.n endpoint ,  and a bu~h is a tree all of whose edges are  endl ines  containing the 
root. 
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Proposition 4. For any T E ~;,, 

p , ( l~ ,T)={( - l~" - '  if  T is a buSh,otherwise.. 

Proof. Consider first the case where 7" is a bush with root r. Given any subset 
S c_E(T) there is a forest F I~[0 ,  T] 'with E(F1)=S.  Merely root the tree 
determined by S at r. Since all the isolated points must be roots, we can add edges 
to F~ until we obtain T. 

In fact these are the only elements ~)f [0, T] since given F1 ,=-[0, T] we have 
E(F~) c E(T)  and, by Lemma l(a), r must be a root since dept;h v = 1 for v ~ r. 
Hence there is a bijection between [13, T] and the boolean algebra on IE(T)I 
elements. By Corollaries 2 and 3 this bije,:tion is an isomorphism t~f lattices, and 
so in this case 

ix(0, T) = ( -1 )  IE(T~I = ( - 1 ) " - ' .  

If T is not a bush, consider the atoms (elements covering 13) of [13, T]. Each 
atom, F~, consists of n - 1 isolated roots and a single edge which we claim must be 
an endline r~v with endpoint v. Clearly any such forest can be completed to T by 
adding edges. Conversely, if F~[13, T] with unique edge rio , then depth r~ < 
depth v. Thus Tt(v )= v = T(v)  so v must be an endpointo 

Now if T is not a bush, then some edge of T is not an endline. It follows that 
this edge is not in any atom and, by Corollary 3, that T is not the join of the 
atoms of [13, T]. Invoking Hall 's theorem [2:7 p. 349] we see that ~(0, F) := 0. [] 

Corollary 5. For all F ~ ff;~, 

[( 1)"-k(F~ if F is a forest o[ bushes, 
~(0, F ) =  I. - 0 otherwise. 

Applying this last result to (4), we see that x" is expressible at.: 

x " =  ~ ~.. ( -  1)"-kAk (X). 
k = 0  k(F)=k 

F a forest of bushes 

But the number of forests on n vertices consisting of k bushes is easily seen t~) be 
(~)k "-k. The number of choices for the roots is (2) and k "-k counts the nunl~ber of 
ways to connect the remaining n - k vertices to those roots. Equation (2) follows 
at once. 

Note added in proof 

David Reiner [8] has also discovered the poset ~r.  The computation of its 

M6bius function in this note is new. 
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