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A special case of the Abel polynomials counts rooted labeled forests. This interpretation is
used to obtain a combinatorial procf of the formula expressing x" as a sum of these
polynonzials.

Dedicated to Frank Harary and his exceptional intuition

Various polynomials can be associated with combinatorial structures. For
example, one instance of the Abel polynomials is the generating functicn for
forests of labeled rooted trees. Specifically, if A,(a, x):=x(x—an)""' is the nth
Abel polynomial, then

A= An(=1, 1) = 3 tux® (1)
k=0

where t, is the number of forests on n labeled vertices consisting of k rooted
trees. This is equivalent to the statement that t, = ($-D)n"* which has been
proved by various people, e.g., [3, 5]. Mullin and Rota [6] asked if (1) could be
demonstrated combinatorially and this was done by Frangon [1]. However such a
proof for the inverse formula:

- é__:o (;’)(—kr"*Ak x) 2

was still lacking.

In [4] we showed that identities like (1) and {2) can be proved in a combinator-
ial manner by associating with the given polynomials a partially ordered set
(poset). One identity follows by summing over the poset and the other by Mobius
inversion. The purpose of this note is to describe such a poset for the Abel
polynomials and hence provide a combinatorial proof of (2).

Let &, be the set of all forests on n vertices consisting of labeled rooted trees.
To describe a paviial order on %, we need only specify which forests cover a given
Fe%, (in a poset, x covers y if x>y and there is no z with x>z >y). Lei E(F)
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be the set of edges of F and R(F) be the set of roots of F. For every pair
vy, vs€ R(F) there are two forests, F; and F,, covering F. This pair of forests is
defined by E(F,)=E(F)U{v,v:} and R(F)=R(F)—{v;}; i=1,2. The Hasse
diagram for the poset %, is displayed in Fig. 1.

Define two functions f, g: %, — Q[x] by f(F) = A,(x) and g(F) = x*® where
k(F) is the number of components of F. If 0e %, is the unique forest with no
edges, then

A=Y tuxk=Y Y xt= Y xk®

k=0 k Fe%, Fe®,
k(F)=k
or
f0)= 3. a(F). A3)
Fe®,

Siuce the ideal I ={F, e %, | F, = F} is isomorphic to %), (3) implies that for all
Fe#,

f(BYy=3 g(F).

Fy=F
F,e%,

Hence by Mobius inversion,

x"=g)= ¥ w@ PfF= T

Fed, Fed,

w0, F)A (%), (4)

where p(0. F) is defined inductively by n(0,0)=1, (0, F) = —Ypen(®. F') (see
Rota [7] for details about Mébius functions). By way of example, the value of
u(0, F) is indicated next to F itself in Fig. 1.

To simplify (4), we must evaluate the Mobius functions for the poser &,. If
Fe%, is composed of rooted trees Ty, T, ..., T;, then the interval [0, F] is
isomorphic to the direct product [0, T,1x[0, To]x - - - x[0, T, ] in the natural way
and (0, F) = (0, T)) w0, Ty) - - - w0, T). Hence it suffices to calculate u(f), T)
where T is a single rooted tree. First we must describe the elements of 0, T1.

Given a tree T and vertices v, w in T, we let v—w denote the unique path from
vtowin T. Let T have root r. The depth of a vertex v, depth v, is the length of
r-v (depth r =0). We will always measure depth with respect to the maximal tree
T of [0, T). If u is on v-w we write v—u~w. The subtree corresponding to v in T.
T(v). is the subtree induced by all vertices w in T such that r—v-w.

Lemma 1. Given F,e[0, T1, consider any tree T, < F, with root r\, and any v#r,
in Ty, then

(a) depth r; <depth v,

(b} T\(v) = T(v).
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Fig. 1. %; and its Mobius function. Roots are circied and «(F) is directly to the right of F.
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Proof. (a) Assume that depth v=<<depth r,. Without loss of generality we may
assume that depth v is minimal among all v € T,. Hence r-v-r, since otherwise
v—ry contains other vertices of T, of smaller depth.

If v=r, then r is rot a root in F;. But R(F;)2 R(T) so that r is not a root in T,
a contradiction. If v#r, then the minimality of depth v guarantees that r-v
contains an edge uv € E(T)— E(T,). However we can only add an edge to F, if it
connects two roots and v is not a root. Hence we will never be able to add uv to
F; in order to create T, another contradiction.

(b) Since T, € T we have T(v)< T(n). As both T,(v) and T(v) are connected,
to prove T,(v) = T(v) we need only show that both trees have the same vertex set.
So suppose that we T(v)— T,{v) and consider v—~w. Following this path from v to
w, let xy be the first edge in T(v) that is not in Ty(v). Hence xe T, and y¢ T,.
But x is not the root of T so, as before, we will never be able to add the edge xy
toF,, O

Note that condition (a) implies that R(F,) is completely determined by E(F,)
since cach tree T, & F| is rooted at the vertex of minimal depth in T. Hence to
specify a forest in [0, T] we need only specify its edge set.

Corollary 2. Given F,, F,<[0, T), then F,<F, if and only if E(F,)< E(F,).

Proof. The ‘only if’ part of the corollary follows immediately from the detinition
of the covering relation in %,. For the other implication we need only show that
we can connect pairs of roots in F, to obtain the rest of the edges in %, i.e. for
every uv € E(F,)— E(F,) we must show that u, ve R(F,).

Without loss of generality, let depth u =depth v —1 <o that r-u-v. I u¢ R(F,),
then T(u}c F, by Lemma 1(b). This implies that uv e E(F,), contrary to our
assumption. However, if v¢ R(F;), then the tree of F, containing v hus root r,
with depth r)<depth v by Lemma 1(a). Hence uv lies on r;~v and is thus in
E(F,), another contradiction. O

Coroliary 3. The interval [0, T] is a lattice with, for all F,, F,e[0, T],
F, v F, = the forest in [0, T] with edge set E(F))UE(F,),
F\AF, = the forest in [0, T] with edge set E(F,) N E(F,).

Proof. This result follows from Corollary 2 and the fact that U and N are the
meet and join for subsets of a set. The details are similar to what we have proved
in full above and are omitted. O

We are now in a position to calculate (0, T) for any tree Te &,. In what
follows an endpoint is a vertex of degree one, an endline is an edge incident with
en endpoint, and a bush is a tree all of whose edges are endlines containing the
root,
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Proposition 4. For any Te %,

N (1" if Tis a bush,

w0, )= { 0 otherwise.
Proof. Consider first the case where T is a bush with root r. Given any subset
Sc E(T) there is a forest F,e[0, T] with E(F;)=S. Merely root the tree
determined by S at r. Since all the isolated points must be roots, we can add edges
to F; until we obtain T.

In fact these are the only elements of [0, T] since given F,<[0, T] we have
E(F;)< E(T) and, by Lemma 1(a), r must be a root since depta v =1 for v#r
Hence there is a bijection between [0, T] and the boolean algebra on |E(T)|
elements. By Corollaries 2 and 3 this bijection is an isomorphism of lattices, and
so in this case

w(0, T) = (=1)F M= (-1)"",

If T is not a bush, consider the atoms (elements covering 0) of [0, T]. Each
atom, F,, consists of n —~ 1 isolated roots and a single edge which we claim must be
an endline r;v with endpoint v, Clearly anv such foresi can be completed to T by
adding edges. Conversely, if F,e[0, T] with unigize edge r,v, then depth r, <
depth ». Thus Ty(v)=v = T() so v must be an endpoint.

Now if T is not a bush, then some edge of T is not an endline. It follows that
this edge is not in any atom and, by Corollary 3, that T is not the join of the
atoms of [0, T]. Invoking Hall’s theorem [2: 7 p. 349] we see that (0, )=0. O

Corollary 5. For all Fe &,

r o [=DRE i Fis a forest of bushes,
w0, )= { 0 otherwise.

Applyine this last result to (4), we see that x" is expressible as:

n
=YY DA
k=0 k(F)=k
F a forest of bushes

But the number of forests on n vertices consisting of k bushes is easily seen tc be
(M)k"~*. The number of choices for the roois is (}) and k"™ counts the nuraber of
ways to connect the remaining n— k vertices to those roots. Equation (2) follows
at once.

Note added in proof

David Reiner [8] has also discovered the poset %,. The computation of its
Mobius function in this note is new.
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