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A maj Statistic for Set Partitions 

BRUCE E. SAGAN 

We propose a weighting of set partitions which is analogous to the major index for 
permutations. The corresponding weight generating function yields the q-Stirling numbers of 
the second kind of Carlitz and Gould. Other interpretations of maj are given in terms of 
restricted growth functions, rook placements and reduced matrices. The Foata bijection 
interchanging inv and maj for permutations also has a version for partitions. Finally, we 
generalize these constructions to an analog of Rawling's rmaj and to two new kinds of p, 
q-Stirling numbers. 

1. THE MAJOR INDEX OF A p ARTITION 

Versions of the q-Stirling numbers of the second kind were first introduced by 
Carlitz [1, 2] and Gould [7]. Later, Milne [10] showed that those of the second kind 
could be viewed combinatorially as generating functions for an inversion statistic on 
partitions. It is well known that the q-binomial coefficients describe the distribution of 
two statistics on permutations: the inversion number (inv) and the major index (maj). 
Thus it is natural to hope for an analog of maj for partitions. The purpose of this paper 
is to describe such an analog and some of its properties. 

The rest of this section is devoted to basic definitions. In Sections 2 and 3 we will 
discuss other interpretations of the major index in terms of restricted growth functions, 
rook placements and reduced matrices, as has been done by Milne [10], Garsia and 
Remmel [5], Wachs and White [13] and Leroux [8] for various versions of the inversion 
number. Since both inv and maj have the same distribution, there should be a bijection 
interchanging the two. Foata [3] gave such a map for permutations and we present the 
partition analog in Section 4. Next, we generalize both statistics using Rawlings' rmaj 
[11]. Section 6 considers joint distributions, yielding two new kinds of p, q-Stirling 
numbers. Finally, we end with some comments. 

Let !J = {l, 2, ... , n }. The set of all partitions of !J into k disjoint subsets or blocks 
will be denoted S(!J, k). Thus the ordinary Stirling numbers of the second kind are 
S(n, k) = IS(!J, k)I, where I· I denotes cardinality. The blocks of ;r E S(!J, k) will be 
written as capital letters separated by slashes, while elements of the blocks will be set 
in lower case. Furthermore, we will always put ;r = B ii B2/ • • • I Bk in standard form 
with 

min B 1 <min B2 <···<min Bk. 

Let d; be the number of elements b EB; such that b >min B;+i· The descent multiset 
of ;r is 

where id. means that i is repeated d; times. Thus each element of B; that is greater than 
the minimum of the next block contributes an i to Des ;r. The major index of ;r is just 
the sum of the decents: 

maj ;r = ,L 

0195-6698/91/010069 + 11 $02.00/0 

ieDesJr 

= ld1 + 2d2 + ... + (k - l)dk-1· 
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For example, if 
Jr=138/2/467/59 (1) 

then Des Jr= { {l, 1, 3, 3}} = {{12
, 32

}} and maj Jr= 1+1+3 + 3 = 8. 
Now define a; to be the number be B; with b >min B;-i and let 

~ 1r = { {2ai, 3a,, • • • ' ka•}} 

be the dual descent multiset of Jr e S(tz, k). Since Jr is in standard form, a;= IB;I for 
i ;;:.: 2. The dual major index is then defined to be 

~ 1r = 2: (i -1). 
ieDe'sn 

In the example above,~ Jr= 1+2 + 2 + 2 + 3 + 3 = 13. 
Let N = {O, 1, 2, ... } be the natural numbers and let q be an indeterminate. If k e N 

then the q-analog of k is 
[k] = 1 + q + q2 + ... + qk-1. 

The q-Stirling numbers of the second kind are defined inductively for n, k e N by 

S[n, k] = {~[n -1, k-1] + [k]S[n -1, k] 
n,k 

if n, k;;:.: 1 

if n = 0 or k =O 
(2) 

where {Jn,k is the Kronecker delta. These polynomials were first studied by Carlitz [1, 2] 
and then Gould [7]. 

Next, Milne [9] introduced the dual q-Stirling numbers of the second kind which are 
given by the recurrence and initial conditions 

S[n, k] = {f- 1
S[n -1, k- 1] + [k]S[n -1, k] 

n,k 

if n, k;;:.: 1 

if n = 0 or k = 0. 
(3) 

It is not hard to show that 
S[n, k] = q<~>s[n, k]. 

Various authors [9, 5, 13] use S and S to refer to the q-Stirling numbers defined by 
equations (3) and (2) respectively. Our reasons for reserving the simpler S notation for 
equation (2) are twofold: they appeared first historically and they also arise more 
naturally from analogs of various permutation statistics. 

The connection between our versions of maj and the q-Stirling numbers is as follows. 

THEOREM 1.1. If n, k e N then: 

(i) S[n, k] = L qmajn; 
neS(n,k) 

__....._ 

(ii) S[n, k] = L qmajn. 
neS(o,k) 

PROOF. As will be our custom in the rest of this paper, we will only prove the first 
half of the theorem, leaving the dual version to the reader. 

It is easy to see that the sum in item (i) satisfies the same boundary conditions as 
S[n, k]. To verify the recursion, consider Jr e S(tz, k) and the partition Jr' obtained by 
deleting the n from Jr. 

If { n} is a singleton block of Jr= B 1/ 8 2/ • • • I Bk then, because of the standard form, 
we must have Bk= {n }. Thus Jr' E S(n - 1, k - 1) and maj Jr= maj Jr 1

• Suppose, on 
the other hand, that n is strictly contained in some block B; of Jr. Then Jr' E S(n - 1, k) 



and 

Thus 

A maj for partitions 

. _ { maj tr' + i 
maJ tr - . , 

maJ tr 

ifl~i<k 

ifi = k. 

k-1 L qmajn = L qmajn' + L L qmajn'+i. 

neS(o,k) n'eS(n-l,k-1) i=O n'eS(!!=],k) 

71 

Since [k] can be factored out of the second sum on the right, we are done. D 

2. RESTRICTED GROWfH FUNCTIONS 

Partitions can be modeled using restricted growth functions [10, 13]. The major 
index can then be reinterpreted in this setting. 

Let w = w 1w2 • • • wn be a sequence (or word) of positive integers. We say that w is a 
restricted growth (RG) function of length n if w1 = 1 and 

w-~ max w-+ 1 
I •~j<i I 

for all i, 2 ~ i ~ n. For example, 

w=121343314 (4) 

satisfies this restriction. 
Let RG(n, k) stand for the set of all restricted growth functions of length n such that 

max w = k. It is easy to construct a bijection 

f: S(o, k)-RG(n, k). 

If tr E S(o, k) then /(tr)= w, where W; = j whenever i E Bi. The partition (1) 
corresponds to the RG function (4) under this map. 

In what follows, we adopt the notation of White and Wachs [13]. Consider 
w E RG(n, k ). Suppose that the leftmost occurrence of j Ek is in position ii of w and let 

L(w) = {i 1 , iz, ... , id. 

Our example RG function has 

L(w) = {l, 2, 4, 5}. 

If w corresponds to tr via the bijection f then L( w) is just the set of minima of the 
blocks of tr. 

Next, define two inversion vectors, lb( w) and ls( w ), the jth components of which are 
given by 

lbi(w) = l{i E L(w): i <j and W; > wi}I, 

lsi(w) = l{i E L(w): i <j and W; < wi}I. 

Here I, b and s stand for 'left', 'bigger' and 'smaller' respectively. Continuing our 
running example, 

lb( w) = 0 0 1 0 0 1 1 3 0, 

ls( w) = 0 1 0 2 3 2 2 0 3 . 

Finally, the major index and dual major index of a word, w, are defined by 

majw= L wi, ~w= L (wi-1). 
lb;( w )>O lo;( w )>O 
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Interestingly, since wi - 1 = lsi( w ), r;~ is identical to the ls inversion statistic of [13] 
(see Section 4). Computing these two statistics for the word in (4), we obtain 

maj w = 1 + 3 + 3 + 1 = 8, 

~ (J.) = 1 + 2 + 3 + 2 + 2 + 3 = 13. 

These are the same as the values obtained for the partition in (1). This is not an 
accident. 

THEOREM 2.1. Let f: S(tJ, k)-RG(n, k) be the bijection above. Then for any 
;reS(!J, k): 
(i) majf(;r) = maj ;r; 

(ii) ~f(;r) =~Jr. 

PROOF. If f(;r) = w, then lbi( w) > 0 iff wi + 1 occurs to the left of wi. By definition 
of the function f, this corresponds to i = wi being in the descent set of Jr. Thus the 
constructions for maj ;r and maj w coincide. D 

Combining this result with Theorem 1.1 we obtain another pair of generating 
functions for the q-Stirling numbers. The ~ond half of this corollary was first noted in 
[10] using the inversion interpretation of maj. 

COROLLARY 2.2. If n, k EN then: 

(i) S[n, k] = L qmajw; 

weRG(n,k) 
.........., 

(ii) S[n, k] = L qma1w. 
weRG(n,k) 

3. ROOK PLACEMENTS AND REDUCED MATRICES 

An n-stairstep board is a generalized chess-board consisting of n columns, where 
column i has length i - 1, 1 ~ i ~ n, and all the columns rise from the same baseline 
(see Figure 1). A rook placement, p, is a way of placing non-attacking rooks on such a 
board, i.e. putting no two rooks in the same row or column. Let 

SS(n, k) 

denote the set of all placements of n - k rooks on the n-stairstep board. Figure 1 gives 
an example of an element of SS(9, 4), where a rook is indicated by an R. 

--
R 

R 

R 

R 

I R 

FIGURE 1. A rook placement. 
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It is well known that ISS(n, k)I = S(n, k). We will show this with a bijection due to 
Wachs and White [13]. Define 

g: S(tJ, k)- SS(n, k) 

as follows. If ;r E S(tJ, k) then construct p = g(;r) by placing rooks from left to right on 
the columns of the n-staircase board, i.e. starting with column 1 and ending with 
column n. In column j, if j is a minimum of a block of ;r, then leave the column empty. 
If j E B; is not a minimum, then place a rook in the ith available square from the 
bottom of column j (a square is available if it is not attacked by a previously placed 
rook). The reader can check that the rook placement in Figure 1 corresponds to the 
partition in equation (1) under the map g. It is easy to show that this function is well 
defined and bijective. 

We can now interpret our maj statistics in terms of rook placements. Given 
p E SS(n, k), delete all squares of the board which are strictly to the right of any rook. 
In Figure 2 we have indicated this process by putting a dot in each deleted square. For 
any rook R E p we let its height be 

hR = number of undeleted squares below and including R. 

Reading from left to right, the rooks in Figure 2 have heights 1, 3, 3, 1 and 4. 
The major index of p is now defined as 

majp= L hR, 
Rep 

where the sum is over all rooks on the board that are not at the top of their columns. 
Thus, in our example 

maj p = 1 + 3 + 3 + 1 = 8 

as usual. 
Also, if C is a column of p then the height of C is 

h -{hR -1 
c - number of undeleted squares in C 

The associated dual major index of p is 

~p= L he. 
Cep 

R 

R • 

I R • • • • 
FIGURE 2. Deleting squares. 

if C contains rook R 

else 

~ 

R 

• • 
• • 
R • 
• • 
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The placement of Figure 2 has 

~ p = 0 + 1 + 0 + 2 + 3 + 2 + 2 + 0 + 3 = 13. 

The next theorem should hardly come as a surprise. 

THEOREM 3.1. Let g: S(y, k)-SS(n, k) be the bijection above. Then for any 
1r E S(y, k): 
(i) maj g(;r) = maj ;r; 

(ii) ~ g(;r) =~:Tr. 

PROOF. If g(;r) = p, then b causes a descent in ;riff the rook R corresponding to b 
in p is not at the top of its column. In this case, b E B; exactly when hR = i, and the 
theorem follows. D 

The generating function version of this result is as follows: 

COROLLARY 3.2. If n, k EN then: 

(i) S[n, k] = L qmajp; 

peSS(n,k) 

(ii) S[n, k] = L qmajp. 

peSS(n,k) 

Other statistics on the n-staircase board, the distributions of which are given by the 
q-Stirling numbers, will be found in [5] and [13]. 

Another related method of viewing partitions is via row-reduced echelon matrices, as 
is done in Leroux [8]. Let RR(n, k) denote the set of all k x n row-reduced echelon 
matrices M such that: 
(1) every entry of Mis a 0 or a 1; 
(2) there is at least one 1 in every row and exactly one 1 in every column. 

It is easy to construct a bijection 

h: S(!J, k)-RR(n, k). 

If M = (m· ) = g(;r) then m· · = 1 iff j EB· in ;r. The I,/ I,/ I matrix corresponding to the 
partition in equation (1) is 

M~(~ 
0 1 0 0 0 0 1 

~) 1 0 0 0 0 0 0 
0 0 1 0 1 1 0 0 . 

0 0 0 1 0 0 0 1 

The fact that ;r is in standard form corresponds to the fact that M is row-echelon. 
The major index of the matrix m is 

majM= L i, 
m;,;=1 

where the sum is restricted to those 1 's which have another 1 strictly to their 
south-west, i.e. there exists m;'.i' = 1 with i' > i and j' <j. The dual version is 

~M= L i-l 
m;,;=1 

with no restrictions on the sum. 
It should be a simple matter for the reader to verify the next two results. 
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THEOREM 3.3. Let h: S(o, k)- RR(n, k) be the bijection above. Then for any 
;re S(o, k): 
(i) maj h(;r) = maj ;r; 
(ii) ~ h(;r) =~Jr. 

COROLLARY 3.4. If n, k E N then: 

(i) S[n, kJ = L qmajM; 
MeRR(n,k) 

(ii) S[n, kJ = L q~M. 
MeRR(n.k) 

4. THE FOATA BIJECTION 

After discussing inversion statistics on part1tJons, we introduce a bijection inter
changing inv and maj. This is the partition analog of a map of Foata (3). 

An inversion of ;r = B ii B2/ • • • I Bk is a pair (b, Bi), where b EB;, i < j, and 
b >min Bi. The inversion number of ;r, inv ;r is just the number of inversions in ;r. The 
partition 

;r = 13 8 I 2 I 4 6 7 I 5 9 =Bi/ Bzl B3/ B4 

has inversions (3, B2), (8, B2), (8, B3), (8, B4), (6, B4) and (7, B4) so inv ;r = 6. 
We could also define the dual inversion number, ~ ;r, to be the number of 

pairs (B;, b) with b E Bi, j > i, and b >min B;. However, it follows easily that 
~ ;r = ~ ;r so we have not gained anything new (cf. Section 2). Thus the results of 
this section and the next will apply only to statistics for S[n, k). 

It was noted in [10) that 

S[n, kJ = L qinvn. 

;reS(o.k) 

Thus inv and maj have the same distribution and it would be nice to have a direct 
combinatorial proof of this fact, i.e. a bijection F: S(o, k)-S(o, k) such that 
inv F(;r) = maj ;r for all ;r E S(o, k). 

Define F by induction on n. By default, Fis the identity when n = 1. If ;r E S(o, k) 
for n > 1, let ;r' be ;r with the n deleted. We construct a= F(n) from a'= F(;r') as 
follows. If ;r = B ii B2/ • • • I Bk with Bk = { n} then let 

a= a' with {n} added as a singleton block. 

If n is strictly contained in block B; then let 

{
k-i 

a = a' with { n} added in block k 
if 1 ~ i <k 

ifi = k. 

In practice, to find the image of a partition ;r under this map, we successively compute 
the image of the restriction of ;r to the intervals l, 2, ... , o. The process is best 
summarized in a table such as Table 1 for computing F(l 3 8 I 2 I 4 6 7 I 5 9). 

THEOREM 4.1. The map F:S(o,k)-S(o,k) defined above is a bijection. 
Furthermore, for all ;r E S(o, k); 
(i) maj ;r = inv F(n); 
(ii) inv ;r = maj F(n). 
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TABLE 1. 
The bijection F 

n 1r a 

1 1 
2 1/2 1/2 
3 13/2 13/2 
4 13/2/4 13/2/4 
5 13/2/4/5 13/2/4/5 
6 13/2/46/5 136/2/4/5 
7 13/2/467/5 1367/2/4/5 
8 138/2/467/5 1367/2/48/5 
9 138/2/467/59 1367/2/48/59 

PROOF. It is easy to verify that Fis bijective by constructing an inverse (just reverse 
each step in the construction of F). 

To prove (i), let a= F(;r) and induct on n. If ;r' and a' are as above, then 
maj ;r' = inv a' and maj ;r = maj ;r' + c, inv a' + d, where c, d depend on the place
ment of n. Thus it suffices to show that c = d. This follows directly from a case-by-case 
consideration of the definition of F. 
~~~~w~~~u. o 

5. THE rmaj STATISTIC 

The rmaj statistic of Rawlings [11) interpolates between the inversion number and 
the major index for permutations. The same can be done for partitions. 

Let r be a positive integer. The r-descent multiset of ;r E S(!J, k) is 

where C; is the number of elements b EB; such that b;;.: min B;+t + r. An r-inversion of 
;r is a pair (b, Bj) such that b EB;, i <j, and b >min Bi> b - r. We let rinv ;r denote 
the number of r-inversions of Jr. Finally, the r-major index of ;r is 

rmaj ;r = rinv ;r + 2: i. 
ierDesJt 

For example, if r = 2 and ;r = 1 3 8 I 2 I 4 6 7 I 5 9 then 2 des ;r = { { 1, 3}} caused by the 
8 and the 7; 2inv ;r = 2 because of the 2-inversions (3, 8 2) and (6, 8 4 ); thus 

2maj ;r = 2 + 1 + 3 = 6. 

Clearly rmaj reduces to maj when r = 1 and to inv when r ""'n. It turns out that rmaj 
has the same distribution as these two extreme cases. 

THEOREM 5.1. If n, k E N then 

S[n, k) = L qrmaj:r. 

:reS(IJ,k) 

PROOF. It is clear that the sum satisfies the same initial conditions as S[n, k ). For 
the recursion, let ;r' be ;r E S(o, k) with the n deleted. If { n} was a block, then 
;r' E S(n - 1, k - l) and rmaj ;r = rmaj ;r'. This yields the first term of (2). 
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If n is strictly contained in some block B; then ;r' E S(n - 1, k). Consider the largest 
index j such that min Bj ~ n - r. It follows from the definition of rmaj that 

. {rmaj ;r' + k - j + i 
rmaJ ;r = . 

rmaJ ;r' + k - i 

ifl~i<j 

if j ~ i ~ k. 

Since rmaj ;r' is increased exactly once by every integer from 0 to k - 1, the second 
term of (2) is obtained. D 

We can generalize the Foata bijection for partitions to one which exchanges rmaj 
and smaj for any integers r, s as follows. We will inductively define a map 
F,.: S(lJ, k )- RG(n, k) called the rmaj coding. When n = 1 we send ;r = 1 to w = 1. 
For n > 1 let ;r and ;r' be as usual with w' = F,.( ;r'). If { n} is a singleton of ;r then let 

w=w'k, 

where juxtaposition means concatenation. If n is strictly contained in some block of ;r 
then there is a unique integer d, 0 ~ d ~ k - 1, such that rmaj ;r = rmaj ;r' + d. Let 

w = w'(d + 1). 
For example, 

F;( 1 3 8 I 2 I 4 6 7 I s 9 ) = 1 2 2 3 4 2 4 2 1. 

It is interesting to note that the standard encoding of partitions by RG functions (the 
map f of Section 2) is not one of the F,.. 

The reader can easily verify the following theorem. In it, we compose functions right 
to left. 

THEOREM 5.2. The map F,.: S(TJ, k)-RG(n, k) is a well-defined bijection. 
Furthermore, if F,.(;r) = w then 

rmaj ;r = 2: (w; - 1). 
W;fL(w) 

Thus if a= F;1F,.(;r) then 
smaj a= rmaj ;r. 

6. JOINT DISTRIBUTIONS 

The p, q-Stirling numbers of the second kind were first introduced by Wachs and 
White [13) as a generating function for the joint distribution of two inv statistics. We 
can now consider bivariate distributions containing maj. 

Let p be another indeterminate and consider the two-variable generating function 

S(n, k)p,q = L pinvnqmajn. 

neS(11,k) 

This is a new p, q-analog of S(n, k) and reduces to S[n, k] if either p or q is 1. Of 
course, we could also obtain the S[n, k ]p,q from other pairs of statistics considered in 
this paper, e.g. using the ls and maj statistics on RG functions. 

The p, q-analog of k EN is 
[k)p,q = pk-1 + pk-2q + pk-3q2 + ... + qk-1_ 

Using the usual techniques, it is not hard to show the following: 

THEOREM 6.1. For n, k EN, 

[ k] 
= {S[n - 1, k - l]p.q + (1 + pq[k - l)p.q)S[n - 1, k)p.q 

Sn, p.q {J 
n,k 

if n, k ~ 1 

else. 



78 B. E. Sagan 

It follows from the previous theorem that S[n, k]p,q is symmetric in p and q. In fact, 
we have already given a bijective proof of this fact in Theorem 4.1. 

Other possible p, q-analogs include 

S[n, k]p.q = L pinv,.q~,. 
lfES(o,k) 

and 
S[n, k]p,q = L pmajlfq~,.. 

l<ES(o,k) 

The S[n, k]p,q are the polynomials considered in [13], while the S[n, k]p,q are new. The 
next theorem is routine. 

THEOREM 6.2. For n, k e N, 

S[ k] = {qk- 1.S[n -1, k - l]p.q + [k]p.qS[n -1, k]p.q 
n, p,q {j 

n,k 

and 

if n, k ;a:: 1 

else 

-[ k] = {qk- 1S[n -1, k - l]p,q + (p[k - l]pq + qk- 1)S[n -1, k]p.q 
Sn, p,q {j 

n,k 

if n, k ;a:: 1 

else 

where [k]pq = 1 + pq + (pq)2 + ... (pq)k- 1
• 

7. COMMENTARY 

There are other statistics the distributions of which are given by the q-Stirling 
numbers. The hard inversion statistics are discussed in [13]. They are so-called because 
it is not a simple matter to verify that they satisfy the recursions that define the 
q-Stirling numbers. For example, call a pair (B;, b) a hard inversion of ;r if b e Bi, 
i <j, and max B; > b. Letting hinv ;r be the number of hard inversions of ;r, we have 
the following non-trivial theorem: 

THEOREM 7.1 ([13]). If n, k EN then 

S[n, k] = L qhinvlf. 
lfeS(o,k) 

Wachs and White [personal communication] have also come up with a hard analog of 
the major index. 

The fact that we now have a notion of descent for a partition opens up many 
possibilities for future research. In particular, one can define partition analogues of the 
Eulerian numbers. These numbers have an associated Worpitsky identity, a skew-hook 
formula like the one of Foulkes [4] for permutations, etc. There are also q-Stirling 
numbers of the first kind as introduced in [7]. These polynomials have been given 
statistical interpretations using permutations by Gessel [6] and using rook placements 
by Garsia and Remmel [5]. Both approaches only use the inversion statistic, and the 
rook placement version is somewhat complicated. A maj statistic also exists for these 
q-Stirling numbers along with a simpler interpretation using double-staircase boards. 
We hope to present these results on partition Eulerian numbers and the q-Stirling 
numbers of the first kind in the future. 

Section 6 only begins to scratch the surface in terms of p, q-Stirling numbers. In 
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particular, it would be interesting to find p, q-analogs of various identities satisfied by 
the ordinary Stirling numbers, an area that is currently under research by the author. 
For more information on these polynomials, the reader can consult [8, 12, 13]. 
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