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and at most r cycles. The second family is all graphs of the first family which
are connected and satisfy n ≥ 3r. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 270–282,

2006
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1. INTRODUCTION

Let G = (V, E) be a simple graph. A subset I ⊆ V is independent if there is no
edge of G between any two vertices of I. Also, I is maximal if it is not properly
contained in any other independent set. We let m(G) be the number of maximal
independent sets of G.

Around 1960, Erdős and Moser asked for the maximum value of m(G) as
G runs over all graphs with n vertices as well as for a characterization of the
graphs achieving this maximum. (Actually, they asked the dual question about
cliques in such graphs.) Shortly thereafter Erdős, and slightly later Moon and
Moser [5], answered both questions. The extremal graphs turn out to have most
of their components isomorphic to the complete graph K3. Wilf [10] raised the
same questions for the family of connected graphs. Independently, Fűredi [2]
determined the maximum number for n > 50, while Griggs, Grinstead, and
Guichard [3] found the maximum for all n as well as the extremal graphs. Many
of the blocks (maximal subgraphs containing no cutvertex) of these graphs are
also K3’s.

Since these initial articles, there has been a string of articles about the maxi-
mum value of m(G) as G runs over various families of graphs. In particular, graphs
with a bounded number of cycles have received attention. Wilf [10] determined the
maximum number of maximal independent sets possible in a tree, while Sagan [6]
characterized the extremal trees. These involve attaching copies of K2 to the end-
points of a given path. Later Jou and Chang [4] settled the problem for graphs and
connected graphs with at most one cycle. Here we consider the family of graphs
with n vertices and at most r cycles, and the family of connected graphs with n

vertices and at most r cycles where n ≥ 3r. The extremal graphs are obtained by
taking copies of K2 and K3 either as components (for all such graphs) or as blocks
(for all such connected graphs). We define the extremal graphs and prove some
lemmas about them in the next section. Then Section 3 gives the proof of our main
result, Theorem 3.1.

2. EXTREMAL GRAPHS AND LEMMAS

For any two graphs G and H , let G � H denote the disjoint union of G and H , and
for any nonnegative integer t, let tG stand for the disjoint union of t copies of G.
We will need the original result of Moon and Moser. To state it, suppose n ≥ 2 and
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let

G(n) :=




n
3K3 if n ≡ 0 (mod 3),

2K2 � n−4
3 K3 if n ≡ 1 (mod 3),

K2 � n−2
3 K3 if n ≡ 2 (mod 3).

Also let

G′(n) := K4 � n − 4

3
K3 if n ≡ 1 (mod 3).

Using the fact that m(G � H) = m(G)m(H) we see that

g(n) := m(G(n)) =




3
n
3 if n ≡ 0 (mod 3),

4 · 3
n−4

3 if n ≡ 1 (mod 3),

2 · 3
n−2

3 if n ≡ 2 (mod 3).

Note also that if n ≡ 1 (mod 3) then m(G′(n)) = m(G(n)).

Theorem 2.1 (Moon and Moser [5]). Let G be a graph with n ≥ 2 vertices. Then

m(G) ≤ g(n)

with equality if and only if G ∼= G(n) or, for n ≡ 1 (mod 3), G ∼= G′(n).

Note that G(n) has at most �n/3	 cycles. Therefore, the Moon–Moser Theorem
gives the maximum number of maximal independent sets for the family of all
graphs with n vertices and at most r cycles when r ≥ �n/3	. To complete the
characterization, we need only handle the cases where r < �n/3	. To make our
proof cleaner, we will assume the stronger condition that n ≥ 3r − 1.

For any positive integers n, r with n ≥ 3r − 1 we define

G(n, r) :=
{

rK3 � n−3r
2 K2 if n ≡ r (mod 2),

(r − 1)K3 � n−3r+3
2 K2 if n 
≡ r (mod 2).

Note that if n and r have different parity then G(n, r) ∼= G(n, r − 1). This dupli-
cation is to facilitate the statement and proof of our main result where G(n, r) will
be extremal among all graphs with |V | = n and at most r cycles. Further, define

g(n, r) := m(G(n, r)) =
{

3r · 2
n−3r

2 if n ≡ r (mod 2),

3r−1 · 2
n−3r+3

2 if n 
≡ r (mod 2).

For the connected case, we will use the result of Griggs, Grinstead, and Guichard.
We obtain the extremal graphs as follows. Let G be a graph all of whose components
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are complete and let Km be a complete graph disjoint from G. Construct the graph
Km ∗ G by picking a vertex v0 in Km and connecting it to a single vertex in each
component of G. If n ≥ 6 then let

C(n) :=




K3 ∗ n−3
3 K3 if n ≡ 0 (mod 3),

K4 ∗ n−4
3 K3 if n ≡ 1 (mod 3),

K4 ∗ (
K4 � n−8

3 K3
)

if n ≡ 2 (mod 3).

The graph C(14) is displayed in Figure 1. Counting maximal independent sets
by whether they do or do not contain v0 gives

c(n) := m(C(n)) =




2 · 3
n−3

3 + 2
n−3

3 if n ≡ 0 (mod 3),

3
n−1

3 + 2
n−4

3 if n ≡ 1 (mod 3),

4 · 3
n−5

3 + 3 · 2
n−8

3 if n ≡ 2 (mod 3).

Theorem 2.2 (Griggs, Grinstead, and Guichard [3]). Let G be a connected graph
with n ≥ 6 vertices. Then

m(G) ≤ c(n)

with equality if and only if G ∼= C(n).

To limit the number of cases in the proof of our main theorem we will only find
the maximum of m(G) for the family of all connected graphs when n ≥ 3r. Unlike
the arbitrary graphs case, this result, together with the Griggs–Grinstead–Guichard
Theorem, does not completely determine the maximum of m(G) for all n and r.
For example, when n = 10 the extremal connected graph given by the Griggs–
Grinstead–Guichard Theorem has 9 cycles, while our proof will only characterize
extremal connected graphs with at most 3 cycles. Although this gap between our
main theorem and the Griggs–Grinstead–Guichard Theorem is relatively small

FIGURE 1. The graph C(14).
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(C(n) contains �n/3	, �n/3	 + 6, �n/3	 + 12 cycles when n ≡ 0, 1, 2 (mod 3),
respectively), it takes considerable care to handle it. This work is undertaken in [7].

When n ≥ 3r we define

C(n, r) :=
{

K3 ∗ (
(r − 1)K3 � n−3r

2 K2
)

if n ≡ r (mod 2),

K1 ∗ (
rK3 � n−3r−1

2 K2
)

if n 
≡ r (mod 2).

The graphs C(13, 2) and C(15, 3) are shown in Figure 2. As usual, we let

c(n, r) := m(C(n, r)) =
{

3r−1 · 2
n−3r+2

2 + 2r−1 if n ≡ r (mod 2),

3r · 2
n−3r−1

2 if n 
≡ r (mod 2).

We also need the bounds for maximal independent sets in trees and forests,
although we will not need the extremal graphs. Define

f (n) := 2� n
2 	

and

t(n) :=
{

2
n−2

2 + 1 if n is even,

2
n−1

2 if n is odd.

Using our upcoming Proposition 2.8, it is easy to establish the following result.

Theorem 2.3. If G is a forest with n ≥ 1 vertices then m(G) ≤ f (n).

Somewhat surprisingly, the tree analog is significantly more difficult.

Theorem 2.4 (Wilf [10]). If G is a tree with n vertices then m(G) ≤ t(n).

FIGURE 2. Examples of C(n, r) for n ≥ 3r.
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For the extremal trees the reader is referred to Sagan [6].
Next, we have a list of inequalities that will be useful in the proof of our main

theorem. It will be convenient to let g(n, 0) = f (n) and c(n, 0) = t(n).

Lemma 2.5. We have the following monotonicity results.

(1) If r ≥ 1 and n > m ≥ 3r − 1 then

g(n, r) > g(m, r).

(2) If r ≥ 1 and n > m ≥ 3r then

c(n, r) > c(m, r).

(3) If r > q ≥ 0 and n ≥ 3r − 1 then

g(n, r) ≥ g(n, q)

with equality if and only if n and r have different parity and q = r − 1.
(4) If r > q ≥ 0 and n ≥ 3r then

c(n, r) ≥ c(n, q)

with equality if and only if (n, r, q) = (4, 1, 0) or (7, 2, 1).

Proof. The proofs of all of these results are similar, so we will content ourselves
with a demonstration of (4). It suffices to consider the case when q = r − 1. Suppose
that r ≥ 2 since the r = 1 case is similar. If n and r have the same parity, then we
wish to show

3r−1 · 2
n−3r+2

2 + 2r−1 > 3r−1 · 2
n−3r+2

2

which is clear. If n and r have different parity, then n ≥ 3r forces n ≥ 3r + 1. We
want

3r · 2
n−3r−1

2 ≥ 3r−2 · 2
n−3r+5

2 + 2r−2.

Combining the terms with powers of 3, we have the equivalent inequality

3r−2 · 2
n−3r−1

2 ≥ 2r−2.

The bounds on n and r show that this is true, with equality exactly when both sides
equal1. �
Journal of Graph Theory DOI 10.1002/jgt
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We also need two results about m(G) for general graphs G. In what follows, if
v ∈ V then the open and closed neighborhoods of v are

N(v) = {u ∈ V | uv ∈ E}
and

N[v] = {v} ∪ N(v),

respectively. We also call a block an endblock of G if it has at most one cutvertex
in the graph as a whole. We first verify that certain types of endblocks exist.

Proposition 2.6. Every graph has an endblock that intersects at most one non-
endblock.

Proof. The block-cutvertex graph of G, G′, is the graph with a vertex vB for
each block B of G, a vertex vx for each cutvertex x of G, and edges of the form
vBvx whenever x ∈ V (B). It is well known that G′ is a forest. Now consider a
longest path P in G′. The final vertex of P corresponds to a block B of G with the
desired property. �

Any block with at least 3 vertices is 2-connected, that is, one must remove at least
2 vertices to disconnect or trivialize the graph. Such graphs are exactly those which
can be obtained from a cycle by adding a sequence of ears. This fact is originally
due to Whitney [9], and can also be found in Diestel [1, Proposition 3.1.2] and
West [8, Theorem 4.2.8].

Theorem 2.7 (Ear Decomposition Theorem). A graph B is 2-connected if and
only if there is a sequence

B0, B1, . . . , Bl = B

such that B0 is a cycle and Bi+1 is obtained by taking a nontrivial path and identi-
fying its two endpoints with two distinct vertices of Bi.

Proposition 2.8. The invariant m(G) satisfies the following.

(1) If v ∈ V then

m(G) ≤ m(G − v) + m(G − N[v]).

(2) If G has an endblock B that is isomorphic to a complete graph then

m(G) =
∑

v∈V (B)

m(G − N[v]).

In fact, the same equality holds for any complete subgraph B having at least one
vertex that is adjacent in G only to other vertices of B.
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Proof. For any v ∈ V there is a bijection between the maximal independent
sets I of G that contain v and the maximal independent sets of G − N[v], given
by I �→ I − v. Also, the identity map gives an injection from those I that do not
contain v into the maximal independent sets of G − v. This proves (1). For (2),
merely use the previous bijection and the fact that, under either hypothesis, any
maximal independent set of G must contain exactly one of the vertices of B. �

We will refer to the formulas in parts (1) and (2) of this proposition as the
m-bound and m-recursion, respectively.

3. PROOF OF THE MAIN THEOREM

We are now in a position to state and prove our main result. The path and cycle on
n vertices will be denoted by Pn and Cn, respectively. Also, let E denote the graph
pictured in Figure 3.

Theorem 3.1. Let G be a graph with n vertices and at most r cycles where r ≥ 1.

(I) If n ≥ 3r − 1 then for all such graphs we have

m(G) ≤ g(n, r)

with equality if and only if G ∼= G(n, r).
(II) If n ≥ 3r then for all such graphs that are connected we have

m(G) ≤ c(n, r)

with equality if and only if G ∼= C(n, r) or if G is one of the exceptional
cases listed in the following table.

n r Possible G 
∼= C(n, r)

4 1 P4

5 1 C5

7 2 C(7, 1), E

FIGURE 3. The exceptional graph E.
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Proof. The proof will be by double induction on n and r. The base case r = 1
has been done by Jou and Chang [4], so we assume from now on that r ≥ 2. We
will also assume that n ≥ 8, as the smaller cases have been checked by computer.

We first show that graphs with a certain cycle structure can not be extremal by
proving the following pair of claims. Here we assume that G has n vertices and at
most r cycles.

Claim 1. If G is a graph with two or more intersecting cycles and n ≥ 3r − 1
then m(G) < g(n, r).

Claim 2. If G is a connected graph with an endblock B containing two or more
cycles and n ≥ 3r then m(G) < c(n, r).

To prove Claim 1 suppose to the contrary that v is a vertex where two cycles
intersect, so G − v has n − 1 vertices and at most r − 2 cycles. Furthermore, among
all such vertices we can choose v with deg v ≥ 3. It follows that G − N[v] has at
most n − 4 vertices and at most r − 2 cycles. If r = 2 then using Theorem 2.3 and
the m-bound gives

m(G) ≤ f (n − 1) + f (n − 4)

=
{

2
n−2

2 + 2
n−4

2 if n is even,

2
n−1

2 + 2
n−5

2 if n is odd

=
{

3 · 2
n−4

2 if n is even,

5 · 2
n−5

2 if n is odd

< g(n, 2).

If r ≥ 3 then we use the induction hypothesis of the theorem, Lemma 2.5 (1) and (3),
and the m-bound to get

m(G) ≤ g(n − 1, r − 2) + g(n − 4, r − 2)

=
{

3r−3 · 2
n−3r+8

2 + 3r−2 · 2
n−3r+2

2 if n ≡ r (mod 2),

3r−2 · 2
n−3r+5

2 + 3r−3 · 2
n−3r+5

2 if n 
≡ r (mod 2),

=
{

22 · 3r−3 · 2
n−3r

2 if n ≡ r (mod 2),

8 · 3r−3 · 2
n−3r+3

2 if n 
≡ r (mod 2),

< g(n, r).

To prove Claim 2 we first observe that by the Ear Decomposition Theorem, B

contains two cycles C and C′ such that C ∩ C′ is a path with at least 2 vertices.
Since B is an endblock, one of the endpoints of the path C ∩ C′ is not a cutvertex in
G. Label this endpoint v. Note that by construction deg v ≥ 3 and v is on at least 3
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cycles of G, namely C, C′, and the cycle in C ∪ C′ obtained by not taking any edge
of the path C ∩ C′. Proceeding as in the proof of Claim 1 and noting that G − v is
connected by our choice of v, we have

m(G) ≤
{

t(n − 1) + f (n − 4) if r = 3,

c(n − 1, r − 3) + g(n − 4, r − 3) if r > 3

< c(n, r).

We now return to the proof of the theorem, first tackling the case where G

varies over all graphs with n vertices and at most r cycles. For the base cases of
n = 3r − 1 or 3r, we have g(n, r) = g(n) and G(n, r) = G(n) so we are done by
the Moon–Moser Theorem.

Suppose that n ≥ 3r + 1. From Claim 1 we can assume that the cycles of G are
disjoint. It follows that the blocks of G must all be cycles or copies of K2. Let B

be an endblock of G. We have three cases depending on whether B ∼= K2, K3, or
Cp for p ≥ 4.

If B ∼= K2 then let V (B) = {v, w} where w is the cutvertex of B in G, if B has
one. Then G − N[v] has n − 2 vertices and at most r cycles while G − N[w] has
at most n − 2 vertices and at most r cycles. By induction, Lemma 2.5 (1) and (3),
and the m-recursion we have

m(G) ≤ 2g(n − 2, r) = g(n, r)

with equality if and only if G − N[v] = G − N[w] ∼= G(n − 2, r). It follows that
B is actually a component of G isomorphic to K2 and so G ∼= G(n, r).

The case B ∼= K3 is similar. Proceeding as before, one obtains

m(G) ≤ 3g(n − 3, r − 1) = g(n, r),

and equality is equivalent to G ∼= B � G(n − 3, r − 1) ∼= G(n, r).
To finish off the induction step, consider B ∼= Cp, p ≥ 4. Then there exist

v, w, x ∈ V (B) all of degree 2 such that vw, vx ∈ E(B). So G − v has n − 1 ver-
tices and at most r − 1 cycles. Furthermore, G − v 
∼= G(n − 1, r − 1) since G − v

contains two vertices, w and x, both of degree 1 and in the same component but
not adjacent. Also, G − N[v] has n − 3 vertices and at most r − 1 cycles. Using
computations similar to those in Claim 1,

m(G) < g(n − 1, r − 1) + g(n − 3, r − 1) = g(n, r),

so these graphs cannot be extremal.
It remains to consider the connected case. It will be convenient to leave the base

cases of n = 3r or 3r + 1 until last, so assume that n ≥ 3r + 2. Among all the
endblocks of the form guaranteed by Proposition 2.6, let B be one with the largest
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number of vertices. Claim 2 shows that B is either K2 or a cycle. Furthermore, the
r = 1 base case shows that cycles with more than 5 vertices are not extremal, so
B must contain a cutvertex x. Again, there are three cases depending on the nature
of B.

If B ∼= K2 then let V (B) = {x, v} so that deg v = 1 and deg x ≥ 2. By the choice
of B, G − N[v] is the union of some number of K1’s and a connected graph with at
most n − 2 vertices and at most r cycles. Also, G − N[x] has at most n − 3 vertices
and at most r cycles, so

m(G) ≤ c(n − 2, r) + g(n − 3, r) = c(n, r)

with equality if and only if both G − N[v] and G − N[x] are extremal. Except
for the case where n = 9 and r = 2, this implies that G − N[v] ∼= C(n − 2, r) and
G − N[x] ∼= G(n − 3, r), which is equivalent to G ∼= C(n, r). In the case where
n = 9 and r = 2 we still must have G − N[x] ∼= G(6, 2) ∼= 2K3, but now there are
three possibilities for G − N[v]: C(7, 2), C(7, 1), or E. However, since G − N[x]
is a subgraph of G − N[v] we must have G − N[v] ∼= C(7, 2), which shows that
G ∼= C(9, 2), as desired.

Next consider B ∼= K3 and let V (B) = {x, v, w} where x is the cutvertex. Let i

be the number of K3 endblocks other than B containing x. First we note that x is
adjacent to some vertex y not in a K3 endblock as otherwise n < 3r. It follows from
our choice of B that G − N[v] = G − N[w] has some number of K1 components,
i components isomorphic to K2, and at most one other component, say H , with
at most n − 2i − 3 vertices and at most r − i − 1 cycles. Furthermore, because x

is adjacent to y, the graph G − N[x] has at most n − 2i − 4 vertices and at most
r − i − 1 cycles. This gives us the upper bound

m(G) ≤ 2i+1c(n − 2i − 3, r − i − 1) + g(n − 2i − 4, r − i − 1).

As the right-hand side of this inequality is strictly decreasing for i of a given parity,
it suffices to consider the cases where i is 0 or 1. When i = 1, we have

m(G) ≤ 4c(n − 5, r − 2) + g(n − 6, r − 2) < c(n, r).

When i = 0 we have

m(G) ≤ 2c(n − 3, r − 1) + g(n − 4, r − 1) = c(n, r).

Using the same argument as in the case B ∼= K2 and (n, r) = (9, 2), one can show
that this inequality is strict when c(n − 3, r − 1) could be achieved by one of the
exceptional graphs. For other n, r we get equality if and only if G ∼= C(n, r).

The last case is where B ∼= Cp where p ≥ 4. Label the vertices of B as
x, u, v, w, . . . so that they read one of the possible directions along the cycle,
where x is the cutvertex. So deg u = deg v = deg w = 2, deg x ≥ 3, and G − v
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is connected with n − 1 vertices and at most r − 1 cycles. Furthermore, G − v 
∼=
C(n − 1, r − 1) because it contains a vertex of degree 1 (namely u) adjacent to a
vertex of degree at least 3 (namely x). Also, the graph G − N[v] is connected with
n − 3 vertices and at most r − 1 cycles. These conditions give us

m(G) < c(n − 1, r − 1) + c(n − 3, r − 1) = c(n, r),

and since this inequality is strict, such G are not extremal.
We are left with the base cases. When n = 3r, c(n, r) = c(n) and C(n, r) ∼= C(n)

so we are done by the Griggs–Grinstead–Guichard Theorem. If n = 3r + 1 then
we can proceed as in the induction step except where B ∼= K2 since then c(n − 2, r)
and g(n − 3, r) have arguments outside of the permissible range. However, since
we have assumed n ≥ 8, Theorems 2.1 and 2.2 apply to give

m(G) ≤ c(n − 2) + g(n − 3)

= c(3r − 1) + g(3r − 2)

= 4 · 3r−2 + 3 · 2r−3 + 4 · 3r−2

≤ c(3r + 1, r)

= c(n, r).

The latter inequality is strict for r 
= 3; when r = 3, the former inequality is strict
because C(8) = K4 ∗ K4 has more than 3 cycles. Therefore these graphs cannot be
extremal, finishing the proof of the theorem. �

As was mentioned in Section 1, Theorem 3.1 and the Moon–Moser Theorem
combine to completely settle the maximal independent set question for the family
of arbitrary graphs with n vertices and at most r cycles for all n and r, but this does
not occur in the connected case. For these graphs, Theorem 3.1 handles the cases
where n is large relative to r and the Griggs–Grinstead–Guichard Theorem handles
the cases where n is small relative to r, but there is a gap between where these
two results apply when n 
≡ 0 (mod 3). This gap is handled in [7]. That article also
answers related questions for maximum independent sets.
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