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ABSTRACT. We enumerate various families of planar lattice paths consist-
ing of unit steps in directions N, S, E, or W, which do not cross the z.axis
or both z- and y-axes. The proofs are purely combinatorial throughout,
using either reflections or bijections between these NSEW-paths and linear
NS-paths. We also consider other dimension-changing bijections.

1. Introduction. Consider lattice paths in the plane consisting of unit
steps, each in a direction N, S, E, or W. Such NSEW-paths were first investi-
gated by DeTemple & Robertson [DR] and Csiki, Mohanty & Saran [CMS].
The basic result of these papers is the following.
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Theorem 1. Tie number of NSEW-paths with n steps from the origin to
(c,d) is

().

where by convention the binomial coefficient (}) is assumed to be zero
unfess k is a an integer < k < n.

The form of expression (1.1) suggests that there is a simple combinatorial
explanation, although there is none in either [DR] or [CMS]. This will be
our first objective in the next section.

We will consider NSEW-paths which do not cross the z-axis, or which
cross neither the z-axis nor the y-axis. It turns out that there are simple
and beautiful expressions for the cardinality of several sets of such NSEW-
paths. A list of the simplest of these is given below, and more can be found
in the next section. But first it is convenient to introduce some notation.

Ifa,b,c,d are integers, let Pp((a, d) — (¢, d)) denote the set of all NSEW-
paths from (a,b) to (c,d) consisting of n steps, let P¥((a,b) — (c,d))
denote that subset of P,((a,5) — (c,d)) containing only paths which do
not cross the z-axis, and let P}+((a,b) — (c,d)) denote that subset of
Pn((a,4) — (¢, d)) containing only paths which do not cross either the z-
axis or the y-axis. We will also want to count sets of paths which can end
at more than one point. For this, we will use two additional notational
conventions. By “> ¢” in place of a coordinate of the final point of a set
of paths, we mean that this coordinate may be any integer greater or equal
¢, by “#” we mean that this coordinate may be any integer. For example,
P}((a,b) — (*,> d)) denotes the set of all NSEW-paths of n steps starting
at (4, b) which do not cross the z-axis and finish at some point (2, y), where
z is an arbitrary integer and y is an integer greater than or equal to d.

It will also be convenient to let L,(b — d) denote the set of all linear
NS-paths of length n from (0,b) to (0,d). Similarly, the other notational
conventions of the preceding paragraph will be adapted for 1-dimensional
paths.

Now, here is the promised list. For P, we have the following formulas.

(1.2 1Pttt = @)l = () (7).
wherer=1(n—-a-b+c+d)ands=L(n—a+b+c—d).
1) 120~ eyl = (, ).



For P} we can prove the following results.

(1.4)
st ci= ()~ 3o (i)
. (15)
IPF((0.0) = (el = (L;—J) (l—J)
(1.6)

er@m ==, %, ) - (,_s)

g in particular,

an ipHeo—eal= () - ()
18)  IPH(©.0) = (4 0) = Cons

where C, is the nth Catalan number.
(19) B2 (©0) = (o= (1)
(1.10) IPE((0,1) = (+, +))j = (2'”' 2)

Finally, for paths confined to the first quadrant, we obtain the following.
(1.11)

I (@) = (e D)l = (:) (:) - (r+:+1) (s--'l:—l)
_(r+:+1) (s+:+1) +(r+a:b+2)(s+:—6) '

with r, s as in (1.2). In particular,

(1.12)
[PF*((0,0) = (c.d))| = (g—;::;d_) (:-_;—i) - ("_t;i 1)("-;-1:* - 1) '

(1.13)

0.0 = (el = ey ) (o) = (jacgesy ) (o)
(1.14)

rren=con ()04
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Equation (1.9) was first discovered by Sands [Ca] and was the starting point
of our investigations.

In the next section we provide combinatorial proofs for all these formu-
las. We also derive counting results about NSEW-paths with lower bounds
on the z- or y-coordinate of the final points. The techniques we use are
either the so-called reflection principle [Mo] or certain bijections between
NSEW-paths and NS-paths along the y-axis. In Section 3 we will look at
some other dimension-changing bijections. We should note that Brecken-
ridge, Bos, Calvert, Gastineau-Hills, Nelson & Wehrhahn [BBCGNW] have
independently discovered essentially the same formulas and bijective proofs
for (1.1) to (1.4), (1.8), (1.8) and (1.9). Related bijections have also been
considered in [CMS] and by Gessel [private communication].

Of course, several of these results follow directly from others on the
list by simple algebraic manipulations. For example, (1.9) can be deduced
from (1.7) by summing up over all d > 0. But such a proof does not really
explain why this expression is the answer to the problem in the way that
a bijection does. The second reason why purely combinatorial proofs are
preferable is that very often they give insight into the connections between
certain properties of lattice paths and the structure of the corresponding
counting expressions (cf. the proofs of (1.5}, {1.10), (1.13), (1.14)).

2. Reflections and bijections.

Proof of (1.1} and (1.2). We set up a correspondence between NSEW-
paths, p, and pairs (p1, p2) of NS-paths. The m-th step of p will correspond
to the pair of m-th steps from p; and p; according to the following table.

vEE 2
w w223
w2 wn 2y

Then the NSEW-paths of n steps from (0,0} to (¢,d) are in one-to-one
correspondence with pairs (p1, p2) of n-step NS-paths, where p; runs from
(0,0) to (0,c + d) and p; from (0,0) to (0,c — d). But the number of
NS-paths from (0,0) to (0, k) of length n is well-known [Mo, page 2] to be

(2.1) |La(0 — k)] = (—F) .

and (1.1) follows at once.
Formula (1.2) now follows by translation. 0O



Proof of (1.3). Here we use another correspondence between NSEW-
paths, p, and NS-paths, 5, of twice the length. The m-th step of p deter-
mines the (2m — 1)-st and 2m-th step of p according to the following table.
Notice the similarity to the correspondence in the proof of (1.1).

p P
N NN
E NS
W SN
S S

This sets up a one-to-one correspondence between NSEW-.paths with n
steps from (0, b) to (*,d) and NS-paths with 2n steps from (0, 2b) to (0, 2d).
Applying a translated version of formula (2.1), we are done. O

Proof of (1.4) and (1.6). These follow from (1.2) and (1.3) respectively
by the reflection principle. For (1.4), note that the total number of NSEW-
paths from (a, b) to (¢, d) is given by (7) (7). From this, we have to subtract
off the number of paths which cross the r-axis. Each of these has a first
point, say P, for which y = —1. Reflect the initial portion OP in the line
¥ = —1, giving a one-to-one cortespondence between paths which cross the
r-axis and paths from (a, —b—2) to (¢, d). Applying (1.2) we see that these
paths are counted by (, .} +1) (%)

Similarly, in (1.6) the first term counts all paths from (0,4) to (%,d).
Those that touch y = —1 are subtracted out by the second term. 0O

Proof of (1.7) and (1.8). We use the same correspondence as in the proof
of (1.3), except that the m-th step of p determines the 2m-th and (2m+1)-
st step of p. The first step of 5 is always taken to be N so p has total length
2n + 1 and ends at (0,2d + 1). In addition, the fact that p always stays
in the upper half plane translates to § always staying on the upper half of
the y-axis. The number of such paths is well-known [Mo, page 3] to be the
right-hand side of (1.7). (In fact, the one-dimensional reflection principle is
usually used to derive this from (2.1).) In particular, when d = 0 we obtain
a Catalan number. O

Proof of (1.9) and (1.10). To prove (1.9) we first apply the correspon-
dence in the proof of (1.7) to get a bijection

PF((0,0) — (+,%)) — U Lg’n+l(0 —=2j+1).
j20

In view of (2.1), it suffices to give a second bijection

(2.2) Lonsa(0 — 1) — | LE,,,(0 = 25+ 1).
i>0



Given p € Laq41(0 — 1) apply the map

p ifpeLf,(0—1)
P’ otherwise, where g/ is obtained from p by re-
P— flecting the portion up to the first intersection
with y = ~1 in that line and then shifting the
whole path 2 units upwards.

Clearly this is a bijection
Lang1(0 = 1) e— L3, 11 (0 = 1)U L3 43(0 — 3) .

We now apply the same map to the elements of Ly,4,(0 — 3), and by
iterating the process end up with the right-hand side of (2.2). We will see
a similar map later in the proof of (1.5) and related identities.

The same idea will give a bijection

U L3526+ 1 = 20+ 14 (45 + 4)]) — Lan(2b+1 — 20 +1) .
jzo

Moreover, the last bijection also provides the following bijection,

2b41
U Z8@+ 12 +1) — | Loa(2b 412 +1) .
i2n =0

Since, by the bijection used to establish (1.6), the set L], (2041 — 2j+1) is
in one-to-one correspondence with P ((0,5) — (*,+)), we have a bijective
proof of the formula

2841
JP:((o,b)—~(~.~=))|=2( on )

j=0 ﬂ+6—]

Using the symmetry relation

and recursion formula

(23) o =)+ (k:':l) ’



this can be rewritten

In particular, for b = 0 we obtain (1.9) again, while for § = 1 we get
(1.10) by reapplying the recursion. The algebraic step of transforming
binomial coefficients by symmetry can be made bijective by considering the
correspondence between Lyn(0 — &) and L,,(0 — —k) given by reflection
in the origin. Also, the recursion steps can be turned into a bijection by
adjoining to the end of a path a N- or S-step as appropriate, corresponding
to the first or second terms of (2.3). O

Proof of (1.11) and (1.12). The inclusion-exclusion principle shows that
the number of paths being elements of P}t{(a,d} — (c,d)) is equal to
the number of all NSEW-paths of n steps from (a,b) to (¢,d) minus the
number of those which cross the z-axis minus the number of those which
cross the y-axis plus the number of those which cross both of them. The
paths crossing the z-axis have been already counted in the proof of (1.4) by
using reflection in y = —1. Similarly, by reflection in 2 = —1, it is seen that
n-step paths from (a,b) to (c,d) which cross the y-axis are in one-to-one
correspondence with all n-step paths from (—a — 2, b) to (¢, d). The set of
n-step paths from (a,}) to (¢, d) which cross both the z- and y-axes is in
one-to-one correspondence with all paths from (~a — 2, ~b — 2) to (e, d),
which is seen by using reflection twice, first in y = ~1, then in 2 = —1.
Hence, by (1.2) the desired number is given by the right-hand side of (1.11).
Setting a = b = 0 in (1.11) and using the binomial recursion repeatedly, we
obtain (1.12). O

Proof of (1.5), (1.13) and (1.14). Let us introduce another correspon-
dence, this time between families of NSEW-paths themselves. For a path
P € Pu((a, b) — (c,d)) we apply the map

p ifp€ Pt ((a,b) — (c,d))
p’ otherwise, where ¢’ is obtained from p by re-
p— flecting the portion up to the first intersection
with y = —1 in that line and then shifting the
whole path 25 4 2 units upwards.

This is a bijection

Pa({a,b) = (¢, d)) «—— Pf((a,8) = (c,d)) U Po((a, ) — (c,d + (26 +2))) .



Applying the same map to Py((a,b) — (c,d + (2b + 2))), etc., we get a
bijection
(2.4) Pa((a,8) = (e, d)) — || PF((a,8) = (c.d + (25 + 2)j)) .

jzo

Now, let a + &+ c+d = n (mod 2). Using the bijection in (2.4) for d
successively replaced by d,d + 2,...,d + 2b, we obtain a bijection

]
U Pa(2,8) = (c,d+2)) — P} ((a,8) — (c,> d)) .
j=0

Incasea+b+c+d=n+1 (mod 2) use (2.4) for d replaced by d+ 1,d +
3,...,d+ 28+ 1, thus obtaining a bijection

b
(J Pal(a,8) = (¢, d + 1+ 25)) — PF((a,8) — (¢, > d)) .
j=0
Putting both together and using the basic result (1.2), leads to the following
expression for the cardinality of P}((a,?) — (¢, > d)):

[

es @y —eza=X (" ()

j=0

In particular, for o = b = § we get

(2.6) |PF((0,0) = (e, 2 d))]| = (L@J) (L"—‘;-‘!J) '

Setting d = 0 in (2.6) gives (1.5).

The same idea which was used to obtain (2.4) may also be applied to the
right-hand side of (2.4) in “horizontal” direction. This provides a bijection
{2.7)

Pa((a,8) = (c,d)) — {J PH*((a,b) — (c+ (20 + 2)i,d + (26 + 2)j)) .
520

Now, let a+b+c+d =n (mod 2). In a similar manner as above, a bijection

a &
U U (Pa((@,8) = (c+2,d+27))UPa(a,5) — (c+1+2i, d+1+25)))

i=05=0
— PIt((a,8) = (26,2 d))
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can be constructed. In case a+ b+ c+d=n+1 (mod 2), analogously we
construct a bijection

(P,.((a, b) — (c+1+2i,d+2j))U Pa((8, b) — (c+2i, a'+1+2j)))
1]

b
0=

— P ((a,0) = (2 ¢, 2 d)) .
Again, putting both together and using the binomial recursion, simple con-
siderations show that

(2.8) 1Pf*((a,b) = (2 6,2 )]

B Zz“: n!(n+ 1)

- P fr+i—jllm—r—i+jlls—i—-jln—s+i+j+1]!"
The specialization a = b = 0 leads to the formula
(2.9) )

H{n+1)!
PHH((0,0) = (2 &2 )] = = - —
l ( ) rn ;—d’l”‘n—; d]!ln-—c—dJ!Ln czd 2J|

In particular, setting d = 0 results in

' +1
2.10 P:+ 0,0) = (Ze* =(n’:c)(:—ci )'
(2.10) [Pr+((0,0) — ( )] ALY
which directly implies {1.13). Equation (1.14) is the special case ¢ = 0 of
(2.10). O

3. Higher dimensions.

It is easy to extend the idea of a dimension-changing bijection to higher
dimensions. As an example, we will examine the case of lattice paths in di-
mension four. Let the four coordinates be denoted z, y, z,wand let X, Y, Z,
W denote a positive unit step in those respective directions while X, ¥, Z, W
denote the corresponding negative step. Then there is a length-preserving
bijection between 4-dimensional paths p and triples of I-dimensional paths
P1. P2, Ps by letting the m-th steps correspond according to the following
table.

P Bpp
X N N N
Y N N §
Z N § N
W N § §
W S N N
Z S N 8§
¥ § S N
X 8§ s s

11



Of course, given the ending points of pi,p2 and ps only gives us three
conditions, and we need four to determine the ending point of p. Thus we
will only be able to count paths that end on a given line.

Suppose p ends somewhere on the line ! whose parametric equations are

z=ag+1
=b-t
(3.1) TR

z=c—1

w=t,

for some constants a, b, ¢ and variable t. Next we eliminate ¢ using pairs
corresponding to two partitions of coordinates, namely {z, y} U {z,w} and

{xr z} U {y. w}-

z+y=a+b
z+w=c
z+z=a+c
y+w=>

Now let #; and z3 be the number of X-steps and X-steps, respectively, in p
with similar notation for the other directions. Then the final z-coordinate
of pis z; — z2 and likewise for the other coordinates. This can be sub-
stituted into the equations above. Then add and subtract the equations
corresponding to the same partition to obtain

-t -nptan-ntw—wy=a+bte
ni-ntn-w-nt+an-—wmtwr=a+b—v¢
I~ -ttt a-—n-wtwr=a-~b4e
nt+nzt+ntrt+at+ntwituwe=n

where the last equation comes from the fact that p has length n. Finally

we can solve for the number of N-steps on each of p;, p3, p3 which are given
respectively by

b
=1+y1+21+W1=n+a;- te
b—
3l+y1+32+u)2=n—+a..;_._c
~-b
=1+w+21+wn=n+a2 te

Thus we have proved the following theorem.

12



Theorem 2. The number of 4-dimensional paths with n steps ending on
the line given by (3.1) is

() () )

To describe other sets of paths let Q3(0 — 1) denote the set of 4-
dimensional paths of length n from the origin to the line { of (3.1) which
stay in some subset S of Z4. Define the following half-spaces.

Hozty+z4+w>0
Hyz+y—z2—-w>0
Hyz—y+z-w>0.

Letting r = "_1'_0_-21:&3,3 = ““;"‘c,t = ""‘“;“‘c, we have the following
formulas.

(3.2) Q7 (0 — 1) = [(2) - (r: 1)] (:) (,:) '

In particular, if a + &+ ¢ = 0 then

(3.3) @0~ 01=Cus(7) (3)

where the Catalan number is non-zero if and only if n is even. Similarly

(3.4 Q-1 = [(’:) - (r-?- 1)] [(:) B (s: 1)] (?) '

In particular, if a4+ b = ¢ = 0 then

(35) @F0(0 )= €}

[(:) - (sil)]
(t "(tl'l)] '

(3.7) Q00 — 1)) = 3y -

Finally

@ememo = [(7) - (7))

]
(3.6) |

In particular, if a = b = ¢ = 0 then

=

13



The proofs in all cases are quite simple. For example, to get (3.2) merely
note that points of p always satisfy z + y+ z + w > 0 if and only if
Zy+ Y1+ 21 + w1 2> T2+ Y2 + 22 + wa at each stage; which is equivalent to
the number of N-steps of py always being at least the number of S-steps.

Clearly, the above construction can be carried out in general, although
the description of the paths counted gets progressively more complicated.
Every n-tuple (p1, ..., ps) of linear paths corresponds to a path p in 27!
dimensions. One obtains the appropriate table by listing all the positive
directions for p and then all the corresponding negative directions in reverse
order. The rows for (py, ..., p.) are obtained by counting in base 2 from 0
to 2" —1 and replacing 0’s and 1’s by N’s and S’s respectively. This ensures
the crucial property that if a direction in Z2"~' corresponds to a given
sequence of N’s and $’s then the sequence for the negative of that direction
is obtained by changing each N to an S and vice versa. The ending points of
the n linear paths only give us n constraints, so we will only be able to count
paths that end in a certain affine subspace of dimension 2°~1 — n. It was
a happy coincidence that when n = 2 this subspace was a point. However,
the persevering reader should now be able to write down the equations for
general n if they are desired.

For another method to enumerate paths staying in a given region defined
by hyperplanes (this time in 3 dimensions) see the paper of Wimp and
Zeilberger [WF).

4. Related problems. One of us [Gu] originally obtained some of the
formulas in Section 2 by induction and other algebraic manipulations. The
desire to obtain combinatorial proofs of these results was one of the stimali
for the current work. One such identity, which is considerably harder to
prove bijectively is

IPEE((0.0) = 0, D)) = 5CaCosn.

A combinatorial demonstration of this fact using trees and Baxter permu-
tations will be found in the paper of Cori, Dulucq and Viennot [CDV].
They also use their techniques to explain the connection with Hamiltonian
rooted maps on 2n vertices [Ty; S, sequence 1647),

An open problem is as follows. Let { be the line z + y = n — 2. Then,
by summing the values in equation (1.12), we obtain

[P3*((0,0) = D] = (n - 2)2" + 2.

It turns out that this is just twice the genus of the n-cube [Ri; BH; Sl
sequence 1587]. A combinatorial explanation would be welcome.

14
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