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a b s t r a c t

Let G be a graph with vertex set {1, . . . , n}. A spanning forest F
of G is increasing if the sequence of labels on any path starting at
the minimum vertex of a tree of F forms an increasing sequence.
Hallam and Sagan showed that the generating function ISF(G, t)
for increasing spanning forests of G has all nonpositive integral
roots. Furthermore they proved that, up to a change of sign, this
polynomial equals the chromatic polynomial of G precisely when
1, . . . , n is a perfect elimination order for G. We give new, purely
combinatorial proofs of these resultswhich permit us to generalize
them in several ways. For example, we are able to bound the coeffi-
cients of ISF(G, t) using broken circuits. We are also able to extend
these results to simplicial complexes using the new notion of a
cage-free complex. A generalization to labeled multigraphs is also
given. We observe that the definition of an increasing spanning
forest can be formulated in terms of pattern avoidance, andwe end
by exploring spanning forests that avoid the patterns 231, 312 and
321.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to prove generalizations and consequences of two theorems of Hallam
and Sagan about increasing spanning forests [8]. To state them, we first need some definitions.

Let G = (V , E) be a finite graph with vertex set V = V (G) and edge set E = E(G). We will always
assume that V is a subset of the positive integers so that there is a total order on the vertices. If the
graph is a tree T then we consider it to be rooted at its smallest labeled vertex r .
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Fig. 1. An increasing tree T and a non-increasing tree T ′ .

Definition 1.1. A labeled tree is increasing if the integers on any path beginning at the root form an
increasing sequence. A labeled forest is increasing if each component is an increasing tree.

For example, the tree on the left in Fig. 1 is increasing, while the one on the right is not because of
the path 2, 7, 4.

As usual, call a subgraph H of G spanning if V (H) = V (G). Since a spanning subgraph is determined
by its edge set, it is convenient to ignore the distinction between subsets of E(G) and spanning
subgraphs. We will be interested in increasing spanning forests of G, or ISFs for short. Define

ISF(G) = set of ISFs of G, isf(G) = |ISF(G)|,
ISFm(G) = set of ISFs of Gwith m edges, isfm(G) = |ISFm(G)|,

ISF(G, t) =

∑
m≥0

isfm(G) t |V (G)|−m
(1)

where the absolute value signs denote cardinality. These invariants depend not just on the graph G,
but also on the labeling of its vertices (although the notation does not specify the labeling explicitly).
By way of illustration, consider the two labeled graphs in Fig. 2. An easy computation shows that

ISF(G, t) = t4 + 4t3 + 5t2 + 2t = t(t + 1)2(t + 2),
ISF(H, t) = t4 + 4t3 + 3t2 = t2(t + 1)(t + 3).

Even though these polynomials are different, it is striking that they both factor with nonpositive
integral roots.

To explain the two previous factorizations, it will be convenient to assume from now on that for
all graphs G we have V (G) = {1, 2, . . . , n} := [n] unless otherwise noted. We will also adopt the
convention that all edges will be listed with their smallest labeled vertex first. For k ∈ [n] we define

Ek = Ek(G) = {e ∈ E(G) : e = jk for some j < k}. (2)

Returning to the left-hand graph in Fig. 2, we have

E1 = ∅, E2 = {12}, E3 = {23}, E4 = {14, 24}.

Note that
4∏

k=1

(t + |Ek|) = t(t + 1)2(t + 2) = ISF(G, t).

It turns out that this is always the case.

Theorem 1.2 ([8, Theorem 25]). Let G be a graph with V = [n] and Ek as in (2). Then

ISF(G, t) =

n∏
k=1

(t + |Ek|).
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Fig. 2. Two labeled graphs G and H .

To state the second theoremwe will be studying, we recall some notions from the theory of graph
coloring. A proper coloring of a graph G using a set S is an assignment of elements of S to the vertices
of G so that no edge has both endpoints the same color. Suppose t is a positive integer. The chromatic
polynomial of G is

P(G, t) = the number of proper colorings of V using the set [t].

It is well known that P(G, t) is a polynomial function of t for every graph G. For the graph G of Fig. 2,
one has

P(G, t) = t(t − 1)(t − 1)(t − 2) = (−1)4 ISF(G, −t).

It cannot be the case that P(G, t) and ISF(G, t) are always the same up to a sign change: the
chromatic polynomial does not always have integral roots, and is independent of the choice of labeling.
However, there is a well-known condition which implies equality.

Definition 1.3. A perfect elimination ordering (PEO) on G is a total ordering v1, v2, . . . , vn of V (G) such
that, for every k, the set N(vk,Gk) := N(vk) ∩ {v1, . . . , vk−1} induces a clique,1 where N(vk) denotes
the set of neighbors of vk. Equivalently, for all i < j < k, if vivk and vjvk ∈ E(G), then vivj ∈ E(G).

Note that we are considering a PEO as building up a graph vertex by vertex rather than removing
vertices from the given graph as is the convention in some places in the literature. It is well known
that the existence of a PEO is equivalent to the condition that G is chordal, i.e., every cycle of length 4
or greater has a chord (an edge between two non-consecutive vertices of the cycle).

If G has a PEO, then counting exactly as we did for our example graph gives

P(G, t) =

n∏
k=1

(t − |N(vk,Gk)|).

It is also easy to verify that the order 1, 2, 3, 4 is a PEO for the graph G in Fig. 2, while that same order
is not a PEO for the graph H . Again, this presages a general result.

Theorem 1.4 ([8]). Let G be a graph with V = [n]. We have

ISF(G, t) = (−1)nP(G, −t)

if and only if the ordering 1, 2, . . . , n is a PEO for G.

This paper is devoted to expanding the ideas of [8] to broader settings, including replacing graphs
with simplicial complexes or labeledmultigraphs, or replacing ISFs with labeled forests obeyingmore
general pattern-avoidance conditions.

Section 2 contains new, combinatorial proofs of strengthened versions of Theorems 1.2 and 1.4. The
previous proofs used the machinery of poset quotients developed in [8]. First, we give an alternative

1 Such a vertex vk is sometimes called simplicial with respect to the graph Gk , and the PEO is called a simplicial elimination
ordering. Our choice of terminology avoids conflict with terms such as ‘‘simplicial complex’’.
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characterization of increasing forests in Lemma 2.1, that implies a weighted factorization formula,
Theorem 2.2, which generalizes Theorem 1.2. Second, we show in Theorem 2.4 that there is a bijection
between increasing spanning forests in G and NBC sets (edge sets with no broken circuit) precisely
when the natural ordering onG is a PEO. Theorem 1.4 follows from this result togetherwithWhitney’s
classical interpretation of the chromatic polynomial as a generating function for NBC sets [17].

In Section 3, we extend our results from graphs to simplicial complexes. The new characterization
of increasing spanning forests in Lemma2.1 naturally generalizes to the idea of a cage-free subcomplex
of a simplicial complex in Definition 3.1, and so we study the generating function

CF(∆, t, x) =

∑
Υ

∏
φ∈Υd

xφtN−|Υd|

for cage-free subcomplexes Υ of a pure simplicial complex ∆ of dimension d, where Υd denotes the
set of d-faces of Υ , the xφ are indeterminates, and N is a certain integer. This generating function
admits a factorization given in Theorem3.4 that generalizes Theorem2.2.Moreover, the specialization
obtained by setting xφ = 1 is essentially the product of generating functions for increasing spanning
forests of graphs Gσ corresponding to certain codimension-2 faces of ∆ as shown in Proposition 3.6.
We conclude the section with a discussion of the difficulty of extending the definition of a perfect
elimination order (PEO) to higher dimension.

Section 4 generalizes the theory to labeled multigraphs: graphs with multiple edges permitted,
labeled by nonzero complex numbers. The definition of an increasing spanning forest and the
factorization formula for the ISF generating function in Theorem 1.2 carry over easily to this setting.
In this setting, the definition of a perfect elimination order is somewhat more subtle, since it relies
on both the vertex ordering and the complex edge labeling. We associate a complex hyperplane
arrangement A(G) to each labeled multigraph G, generalizing the standard construction of a graphic
arrangement, and prove in Theorem 4.3 that the generating function for ISFs of G is given by
the characteristic polynomial of A(G) precisely when G is given what we call a perfect labeling
(Definition 4.2). Combined with well-known theorems of Orlik–Solomon and Zaslavsky, this result
has consequences for, respectively, Betti numbers of complexmultigraph arrangements, Corollary 4.6,
and for counting regions in their real versions, Corollary 4.7.

One can view increasing trees in terms of permutation patterns. In particular, a tree is increasing
if and only if the label sequences on paths from the root always avoid the pattern 21. In Section 5, we
study the related class of tight forests, in which every path starting at the root avoids the permutation
patterns 231, 312, and 321. The permutations avoiding these patterns are a special class of involutions
thatwe call tight involutions, which are of independent combinatorial interest [3]. Tight forests play an
analogous role for triangle-free graphs as ISFs do for general graphs. Specifically, if G is a triangle-free
graph, then every tight spanning forest is an NBC set, and the converse is true if the vertex labeling
is a quasi-perfect ordering or QPO (Definition 5.5), a variation of the usual definition of a PEO. Thus
the existence of a QPO implies that the chromatic polynomial is a generating function for tight forests
as shown in Theorem 5.11. Structurally, graphs with QPOs satisfy a property analogous to chordal
graphs: every cycle of length 5 or greater has a chord, Proposition 5.6. These results raise the question
of studying labeled forests avoiding other pattern families.

2. The original theorems revisited

In this section we will give a new proof of Theorem 1.2. The starting point is the characterization
of increasing forests given in Lemma 2.1, which will enable us to generalize the theory from graphs to
simplicial complexes in Section 3. We will also prove a refinement of Theorem 1.4. The original proof
used the theory of quotient posets developed in [8]. Our proof does not need those ideas but instead
uses Whitney’s classic description of the coefficients of the chromatic polynomial in terms of broken
circuits.

Lemma 2.1. A graph F is an increasing forest if and only if it contains no pair of edges ik, jk with i, j < k.
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Proof (⇒). Suppose that F is an increasing forest which contains two edges ik, jk with i, j < k. Let
r be the root of the component containing these edges. Then either the unique path from r to i goes
through k or the unique path from r to j goes through k (or both). But in either case the path contains
a descent, either from k to i or from k to j. This contradicts the fact that F is increasing.

(⇐) Suppose that F is a graphwith no such pair of edges. Then F must be acyclic, for if F has a cycle
C , then taking k to be the largest vertex on C and i, j its two neighbors produces a contradiction.

To show that F is increasing, we again assume the opposite. Let T be a component tree of F with
root r such that r = v0, v1, . . . , vℓ is a non-increasing path starting at r . If we choose such a path of
minimal length, then v0, . . . , vℓ−1 is an increasing path, but then vℓ−2, vℓ < vℓ−1, a contradiction. □

It is now a simple matter to prove Theorem 1.2.

Proof of Theorem 1.2. The coefficient of tn−m in
∏n

k=1(t + |Ek|) counts the number of graphs formed
by picking m edges of G with at most one from each Ek. By Lemma 2.1, these graphs are exactly the
increasing spanning forests of G. □

Theorem 1.2 admits a weighted generalization, as follows. Let x = {xe | e ∈ E(G)} be a set of
commuting indeterminates. Associate with any spanning subgraph H ⊆ G the monomial

xH =

∏
e∈E(H)

xe

and define a generating function

ISF(G, t, x) =

∑
F

xF tn−|E(F )|

where the sum runs over all increasing spanning forests F of G. Clearly, substituting 1 for each xe
in this polynomial recovers the original ISF(G, t). The same proof given above also demonstrates the
following result.

Theorem 2.2. Let G be a graph with V = [n]. Then

ISF(G, t, x) =

n∏
k=1

(t + Ek(x))

where Ek(x) =
∑

e∈Ek
xe. □

In order to generalize Theorem 1.4, we need to review properties of broken circuits. Assume that
the edges of G have been given a total order e1 < e2 < · · · < ep. A broken circuit of G is an edge set
br(C) obtained from a cycle C by removing its smallest edge. An NBC set is an edge set containing no
broken circuit. Note in particular that every NBC set is acyclic, since if F ⊇ C then F ⊇ br(C). Set

NBC(G) = the set of NBC subsets of E(G), nbc(G) = |NBC(G)|,
NBCm(G) = the set of NBC subsets of E(G) with m edges, nbcm(G) = |NBCm(G)|.

The notation does not reflect the edge ordering, but it will be clear from context. In fact the numbers
nbcm(G) do not depend on the choice of ordering:

Theorem 2.3 (Whitney’s Formula [17]). Let G be a graph with n vertices. Then

P(G, t) =

∑
m≥0

(−1)m nbcm(G) tn−m

regardless of the ordering of the edges of G. □

We next identify the relationship between increasing spanning trees and NBC sets. The following
result, together with Whitney’s formula, immediately implies Theorem 1.4.
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Theorem 2.4. Let G be a graph with V (G) = [n]. Order the edges of G lexicographically. For each m ≥ 0
we have

ISFm(G) ⊆ NBCm(G). (3)

Furthermore, the following statements are equivalent:

(a) ISFm(G) = NBCm(G) for all m ≥ 0,
(b) ISF2(G) = NBC2(G),
(c) the natural ordering 1, 2, . . . , n is a PEO for G.

Proof. First we prove (3). Let F be an increasing spanning forest. Suppose that F contains a broken
circuit B, which must be a path of the form v1, v2, . . . , vℓ with ℓ ≥ 3, v1 = min{v1, . . . , vℓ}, and
v2 > vℓ. Then there must exist a smallest index p > 1 such that vp > vp+1, and in particular
vp−1, vp+1 < vp, contradicting the criterion of Lemma 2.1. Therefore F is an NBC set.

Next we show that conditions (a), (b), and (c) are equivalent.
(a) ⇒ (b): Trivial.
(b) ⇒ (c): Assume that (b) holds. Let i, j, k ∈ [n] with i < j < k and suppose ik, jk ∈ E(G). The edge

set {ik, jk} is not an increasing forest, so by (b) it must contain a broken circuit B. This forces ij ∈ E(G)
as the edge which was removed to form B = {ik, jk}. Hence we have established the second condition
in Definition 1.3.

(c)⇒ (a): Assume that (c) holds. Let F be an NBC set; in particular it is a forest. If it is not increasing,
then by Lemma 2.1 it contains two edges ik, jk with i < j < k. But if ij ∈ E(G) then these two edges
form a broken circuit, while if ij ̸∈ E(G) then the vertex ordering is not a PEO. In either case we have
a contradiction, so F is an increasing spanning forest. □

Because of Theorems 1.2 and 2.4 (or even the original 1.4) we know that the roots of ISF(G, t) and
P(G, t) are the same up to sign if the usual order on [n] is a PEO for G. This brings up some interesting
questions. What relationship, if any, is there between the roots of these two polynomials if the order
on [n] is not a PEO? If P(G, t) factors partially over the nonnegative integers, underwhat circumstances
do the negatives of these roots appear in ISF(G, t)?

Stanley [13] discovered a fundamental relationship between acyclic orientations and the chromatic
polynomial, whose best known special case is as follows.

Theorem 2.5 ([13]). The number of acyclic orientations of G is ao(G) = (−1)|V (G)|P(G, −1).

Thus ao(G) = nbc(G) by Whitney’s formula (Theorem 2.3), and combining these results with
Theorem 2.4 immediately yields the following corollary.

Corollary 2.6. For every graph G, we have isf(G) ≤ ao(G), with equality if and only if the labeling is a
PEO.

Blass and Sagan [2] constructed a bijection (actually, a family of bijections) between acyclic
orientations and NBC sets of any given graph G. This correspondence, together with the fact that
every increasing spanning forest is an NBC set by Theorem 2.4, gives a combinatorial explanation
of Corollary 2.6. (Note that [2] uses the convention that a broken circuit is obtained by deleting the
largest edge of a cycle.)

3. Simplicial complexes

In this section we will generalize Theorems 1.2 and 1.4 from graphs to simplicial complexes.
For general background on simplicial complexes, see, e.g., [14]. Note that we will use Greek letters
for simplicial complexes and Roman letters for vertices. Throughout, we let ∆ be a pure simplicial
complex of dimension d ≥ 1, with vertices V = V (∆) = [n]. The symbol ∆k denotes the set of
simplices in ∆ of dimension k, and H̃k(∆) denotes reduced simplicial homology with coefficients in
Z. A subcomplex Υ ⊆ ∆ is a spanning subcomplex if it contains all faces of ∆ of dimension < d. (Note
that Υ need not be pure.) Faces of dimensions d, d − 1 and d − 2 are called facets, ridges, and peaks,
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Fig. 3. A simplicial complex ∆ and a cage-free spanning subcomplex Υ .

respectively. The notation ⟨φ1, . . . , φn⟩ indicates the complex generated by the faces φi. The link of a
face σ ∈ ∆ is

link∆(σ ) = {τ | τ ∩ σ = ∅, τ ∪ σ ∈ ∆}.

Note that dim link∆(σ ) = dim∆ − dim σ − 1.
We use the notation [i0, i1, . . . , iℓ]< to indicate the simplex with vertices i0 < i1 < · · · < iℓ. We

extend this notation to simplices obtained by adjoining vertices to smaller simplices as follows. If σ
is an ℓ-simplex and i is a vertex, then we write σ < i to mean that v < i for all v ∈ σ , and we denote
the (ℓ + 1)-simplex σ ∪ {i} by the symbol [σ , i]<. Similar extensions should be self-explanatory; for
instance, [σ , i, j]< denotes the (ℓ + 2)-simplex σ ∪ {i, j}, where σ < i < j. When the vertices in
a simplex are explicit positive integers, we will abbreviate the simplex as a sequence. For example,
[1, 3, 4, 6]< will be written 1346.

A pure simplicial complex of dimension 1 is just a graph with no isolated vertices. Note that in
Section 2, we permitted graphs to contain isolated vertices; however, these have little effect on the
polynomials under consideration — if G is obtained from H by introducing an isolated vertex, then
ISF(G, t) = t ISF(H, t) and P(G, t) = tP(H, t). So the polynomials considered in this sectionwillmerely
differ by a power of t from those introduced before.

The first step is to generalize the characterization of increasing spanning forests (Lemma 2.1) to
higher dimension. First we introduce some terminology.

Definition 3.1. Let ∆ be a simplicial complex. A ridge ρ = [σ , k]< is caged if ∆ contains two facets
of the form φ1 = [σ , i, k]< and φ2 = [σ , j, k]<.

We use the term ‘‘caged" because we regard ρ as being ‘‘trapped’’ between the facets φ1 and φ2.
Note that in a graph, vertex k is caged if and only if it satisfies the edge-pair criterion of Lemma 2.1.

As a running example, consider the simplicial complex∆ = ⟨123, 124, 134⟩ shown in Fig. 3. Ridge
14 is caged by facets 124 and 134, but ridge 13 = [1, 3]< is not caged because ∆ has only one facet of
the form [1, j, 3]<, namely 123.

Definition 3.2. A spanning subcomplex Υ ⊆ ∆ is cage-free if it contains no caged ridges.

For example, if∆ = ⟨123, 124, 134⟩ as in Fig. 3, then the spanning subcomplexΥ = ⟨123, 124, 34⟩
is cage-free.

As in Eq. (1), we introduce the notation

CF(∆) = set of cage-free subcomplexes of ∆, cf(∆) = |CF(∆)|,
CFm(∆) = set of cage-free subcomplexes of ∆ withm facets, cfm(∆) = |CFm(∆)|.

(4)

When d = 1 (i.e., ∆ is a graph), this condition specializes to that of Lemma 2.1: a spanning sub-
complex Υ ⊆ ∆ is cage-free precisely if it is an increasing spanning forest. Cage-free subcomplexes
generalize spanning forests in the following additional ways.
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Proposition 3.3. Let Υ be a cage-free simplicial complex on V = [n] of dimension d ≥ 1. Then

(a) H̃d(Υ ) = 0; and
(b) Υ has at least one leaf, i.e., a ridge contained in exactly one facet.

Proof. (a) Suppose, to the contrary, that Υ contains a d-cycle Z . Let k be the maximum vertex
contained in a d-simplex in Z . Choose a ridge of Υ of the form ρ = [ρ ′,m, k]<, where the vertex
m is as small as possible. We claim that every facet of Z containing ρ must be of the form [ρ ′,m, i, k]<.
If there is a facet not of this form then, by maximality of k, it must have the form [σ , h,m, k]< for
some σ and hwhere h < m. But then [σ , h, k]< is a ridge of Z containing kwith h < m, contradicting
the choice of ρ and proving the claim. Furthermore, Z is a cycle, so it must have at least two facets
containing ρ; by the claim, these two facets cage ρ, a contradiction.

(b) This assertion is obtained by replacing Z with Υ in the proof of (a). □

Assertion (a) of Proposition 3.3 specializes to acyclicity for graphs, and assertion (b) generalizes
the statement that every forest with at least one edge has a leaf. On the other hand, in dimensions
higher than 1, the property of being cage-free does not in general seem to have specific topological
consequences beyond those of Proposition 3.3. For instance, the complexΥ shown in Fig. 3 is cage-free
but not shifted, pure, or acyclic. The possibility of homology in codimension 1 means that cage-free
subcomplexes of ∆ are not simplicial spanning trees in the sense of [4].

To define the appropriate generating function for cage-free subcomplexes of ∆, we will need to
consider sets analogous to the edge sets Ek defined in (2). For a peak σ ∈ ∆d−2 and a vertex k > σ ,
define

Φσ ,k = Φσ ,k(∆) = {φ ∈ ∆d : φ = [σ , j, k]< for some jwith σ < j < k}. (5)

Let N = N(∆) be the number of nonempty sets Φσ ,k. In our previous example, the nonempty sets are

Φ1,3 = {123}, Φ1,4 = {124, 134},

and so N = 2. Note that the Φσ ,k are pairwise-disjoint and partition ∆d. Moreover, the ridge
ρ = [σ , k]< is caged in ∆ if and only if |Φσ ,k| ≥ 2.

Let x = (xφ) be a family of commuting variables indexed by facets φ ∈ ∆d. For each set Φσ ,k ⊂ ∆d,
define

Φσ ,k(x) =

∑
φ∈Φσ ,k

xφ .

For each cage-free spanning subcomplex Υ ⊂ ∆, define a monomial

xΥ =

∏
φ∈Υd

xφ .

Define generating functions

CF(∆, t, x) =

∑
Υ

xΥ tN−|Υd|, CF(∆, t) = CF(∆, t, x)
⏐⏐
xφ=1 =

∑
Υ

tN−|Υd|,

where both sums run over all cage-free subcomplexes Υ ⊆ ∆. Note that N ≥ |Υd| for all Υ so that
these quantities are indeed polynomials in t . Our example complex has

CF(∆, t, x) = t2 + (x123 + x124 + x134)t + (x123x124 + x123x134)
= (t + x123)(t + x124 + x134)
= (t + Φ1,3(x))(t + Φ1,4(x)),

CF(∆, t) = t2 + 3t + 2 = (t + 1)(t + 2).

We now have all the pieces in place to state a factorization theorem generalizing Theorem 2.2
(which is the special case d = 1).
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Fig. 4. A bipyramid ∆ and its upper links G1,G2,G3 .

Theorem 3.4. Let ∆ be a simplicial complex on V = [n] of dimension d ≥ 1. Then

CF(∆, t, x) =

∏
σ ,k

(t + Φσ ,k(x))

where the product is over all σ , k such that Φσ ,k(∆) ̸= ∅.

Proof. It follows directly from the definitions that Υ is cage-free precisely when the elements of Υd
are obtained by picking at most one facet from each Φσ ,k. Translating this statement into generating
functions gives the desired equality. □

Next we show that, up to a correction factor, the generating function CF(∆, t) is in fact the product
of generating functions ISF(Gσ , t) for a family of graphs associated with ∆.

Definition 3.5. Let σ be a peak (a codimension-2 face) of ∆. The upper link of σ is the graph Gσ on [n]
with edges {ij | [σ , i, j]< ∈ ∆}. The peak σ is called effective if Gσ has at least one edge.

For example, let ∆ be the triangular bipyramid with facets 124, 125, 145, 234, 235, 345. Fig. 4
illustrates ∆ and the upper links of the effective peaks, namely the vertices 1, 2, and 3. Moreover,

CF(∆, t) = (t + 1)4(t + 2)

= t−10 ISF(G1, t) ISF(G2, t) ISF(G3, t).

The correction factor t−10 arises because 10 = 15 − 5 is the difference between the degree of the
product of the ISF(Gσ , t) and the degree of CF(∆, t).

This factorization is an instance of the following general statement.

Proposition 3.6. Let ∆ be a simplicial complex on n vertices. Let N be the number of nonempty sets Φσ ,k
and let s be the number of effective peaks of ∆. Then:

(a) The cage-free generating function is given by

CF(∆, t) = tN−ns
∏

effective peaks σ

ISF(Gσ , t).

(b) The number of cage-free subcomplexes of ∆ is given by

cf(∆) =

∏
σ

isf(Gσ ).

Proof. First note that (b) follows from (a) by setting t = 1. To prove (a), let G be the disjoint union
of all graphs Gσ , where σ is an effective peak. By ‘‘disjoint" we mean that when the same edge of ∆

occurs in many Gσ , the different copies are considered distinct in G. Since

ISF(G, t) =

∏
σ

ISF(Gσ , t)
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it is enough to show that

CF(∆, t) = tN−ns ISF(G, t).

Each facetφ can bewritten uniquely as [σ , i, j]<, and so gives rise to a unique edge ij = γ (φ) ∈ E(G)
where we are considering ij as an edge of Gσ . This map γ : ∆d → E(G) is bijective because it has
an inverse: given ij ∈ E(Gσ ) then the corresponding facet is [σ , i, j]<. Now, a spanning subcomplex
Υ ⊆ ∆ is cage-free if and only if the corresponding edge set γ (Υ ) contains no two edges ik, jk with
i, j < k. Further, by Lemma 2.1 this is precisely the statement that γ (Υ ) is the edge set of an ISF of G.

It follows that CF(∆, t) and ISF(G, t) are equal up to multiplying by a power of t . By Theorem 3.4,
deg CF(∆, t) = N , and deg ISF(G, t) = ns. So tN−ns is the appropriate correction factor. □

Next we discuss simplicial extensions of the concept of a perfect elimination ordering.

Definition 3.7. Let ∆ be a pure simplicial complex of dimension d ≥ 1 with vertices 1, . . . , n.
The labeling is a perfect elimination ordering (PEO) if for all (d − 2)-faces σ and vertices i, j, k with
σ < i < j < k, we have

[σ , i, k]<, [σ , j, k]< ∈ ∆ ⇒ [σ , i, j]< ∈ ∆.

If ∆ is a graph, then σ = ∅ and so Definition 3.7 reduces to the definition of a PEO of a graph.
Recall our example of the bipyramid (see Fig. 4) with facets, 124, 125, 145, 234, 235, 345. It is easy to
directly check that this labeling is a PEO of the bipyramid.

It is not hard to see that a labeling of the vertex set of∆ is a PEO if and only if the induced labeling of
each Gσ is a PEO. Together with Theorem 1.4, Corollary 2.6, and Proposition 3.6, we get the following
corollary.

Corollary 3.8. Let ∆ be a simplicial complex on n vertices.

(a) As above, let N be the number of nonempty sets Φσ ,k and let s be the number of effective peaks. Then

CF(∆, t) = (−1)nstN−ns
∏
σ

P(Gσ , −t)

where the product is over all peaks σ such that [σ , i, j]< ∈ ∆ if and only if the ordering 1, 2, . . . , n
is a PEO of ∆.

(b) We have the following relationship between cage-free subcomplexes of ∆ and acyclic orientations:

cf(∆) ≤

∏
σ

ao(Gσ )

with equality if and only if the ordering 1, 2, . . . , n is a PEO of ∆.

Which simplicial complexes have perfect elimination orderings? It iswell known that a graph has a
PEO if andonly if it is chordal, but the situation inhigher dimension ismuchmore complicated.Higher-
dimensional extensions of various equivalent characterizations of chordality, have been studied by,
e.g., Hà and Van Tuyl [6], Emtander [5], Woodroofe [18], and Adiprasito, Nevo and Samper [1].

A simplicial complex ∆ on vertex set [n] is called shifted if, whenever σ ∈ ∆ is a face and j < k
with j ̸∈ σ and k ∈ σ , then σ\{k} ∪ {j} is a face. Shifted complexes of dimension 1 are called threshold
graphs; both these classes arewell known in combinatorics. The vertex labeling on a shifted complex is
always a PEO, but not every complexwith a PEO is shifted. For instance, this is true of the bipyramid of
Fig. 4, which cannot be made shifted even by relabeling the vertices. In dimension 1, this observation
reduces to the statement that the threshold graphs are a proper subset of the chordal graphs.

The following is a connection between our notion of a PEO and chordality of graphs.

Proposition 3.9. Let ∆ be a simplicial complex. If ∆ has a PEO, then there is some peak σ whose link is a
chordal graph.
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Fig. 5. Three different labelings of the bipyramid.

Proof. Letσ be the lexicographically smallest peak, and let ij be an edgewith i < j. If ij ∈ link∆(σ ) then
σ < i < j, else we could replace the greatest vertex of σ with i to obtain a lexicographically smaller
peak. Therefore link∆(σ ) coincides with the upper link Gσ up to isolated vertices, and is chordal by
the remarks preceding Corollary 3.8. □

While the bipyramid over a triangle has a PEO, as we have seen in Fig. 4, no bipyramid over a
polygon with more than three sides has a PEO. This is because peaks are vertices, and every link of a
vertex is a cycle of length at least 4, which is not a chordal graph. In particular, whether a simplicial
complex has a PEO cannot be determined by its topology, even in dimension 1. This example also
illustrates that shellability does not imply the existence of a PEO. Indeed, in dimension 1, any cycle is
shellable but not chordal if it has length at least 4. Neither is the converse true: the ‘‘bowtie’’ complex
consisting of two triangles joined at a vertex is not shellable, but every labeling is trivially a PEO since
each ridge belongs to only one facet.

For a graph, Corollary 2.6 gives an upper bound for the number of increasing spanning forests and
shows that the upper bound is achieved by labeling the vertices with a PEO. In particular, the number
of increasing spanning forests does not depend on the choice of PEO, and a PEO could be defined as
a labeling which maximizes the number of increasing spanning forests. These properties are not in
general true for PEOs of a simplicial complex. Consider the three labelings of the bipyramid shown
in Fig. 5. Labelings (a) and (b) are PEOs, but not (c) because 135 and 145 are simplices, but not 134.
On the other hand, labelings (a) and (c) give rise to the same cage-free generating function, namely
CF (∆, t) = (t + 1)4(t + 2), while for labeling (b) one has instead (t + 1)2(t + 2)2. The number of
cage-free spanning subcomplexes is in fact maximized by both labelings (a) and (c).

If the top homology of a graph is trivial, then it is a forest, hence is chordal and has a PEO. In higher
dimension, vanishing top homology does not guarantee existence of a PEO. For example, the dunce
hat is contractible, hence acyclic, but one can check that no labeling of the eight-vertex triangulation
of the dunce hat given in [7] is a PEO. Note that the link of the vertex labeled 1 in [7] is a chordal graph,
so that the dunce hat is a counterexample to the converse of Proposition 3.9.

Question 3.10. Can one classify all simplicial complexes which have a PEO? To summarize the preceding
discussion, shiftedness suffices for the existence of a PEO, but shellability does not (nor, therefore, doweaker
conditions such as partitionability, constructibility, and Cohen–Macaulayness).

Question 3.11. Is there an analogue of NBC sets in the setting of simplicial complexes? Answering this
question could lead to a simplicial analogue of Theorem 2.4. For example, one could define the NBC sets of
∆ to be those of its upper links Gσ (counted with appropriate multiplicity), but we have not been able to
derive anything really new using this approach. It would be of interest to find a better definition.

4. ISFs in multigraphs

In this section we generalize the theory of increasing spanning trees from graphs to multigraphs.

Definition 4.1. Let n be a positive integer. A labeled n-multigraph is a multigraph G = (V , E) such
that:
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Fig. 6. A labeled multigraph G.

Fig. 7. The intersection lattice L(G) for the multigraph G in Fig. 6.

(a) V = {0, 1, . . . , n};
(b) G has no loops, and at most one edge 0k for each k ∈ [n];
(c) For 1 ≤ i < j ≤ n, each edge between i and j is labeled with a nonzero complex number ζ and

denoted by ijζ . No two edges with the same endpoints can have the same label.

We retain the notation (1) for ISFs of a labeled multigraph G. We also define

Ek = Ek(G) = {e ∈ E(G) : e = jkγ and j, k ̸= 0} ∪ {e ∈ E(G) : e = 0k}. (6)

Note the similarity of this definition to (2).
Wewill make the convention that two edges with the same endpoints form a cycle. The character-

ization of increasing spanning forests (Lemma 2.1) carries over to the setting of multigraphs, as does
the factorization for the generating function ISF(G, t) (Theorem 1.2).

For example, let G be the labeled multigraph G shown in Fig. 6. Then

E1 = {01}, E2 = {12α, 12β
}, E3 = {03, 13γ

} (7)

and

ISF(G, t) = t3 + 5t2 + 8t + 4 = (t + 1)(t + 2)2 = (t + |E1|)(t + |E2|)(t + |E3|).

We assume familiarity with the basic theory of posets, Möbius functions, and hyperplane arrange-
ments, as in Chapter 3 of [16], and we will adopt the notation therein. For convenience, we will refer
to a hyperplane simply by its defining equation.

Let G be a labeled multigraph on vertex set {0, . . . , n}. Define a hyperplane arrangement in Cn by

A(G) = {xi = γ xj | ijγ ∈ E(G)} ∪ {xk = 0 | 0k ∈ E(G)}. (8)

This construction generalizes the usual one of a graphic hyperplane arrangement. For example, if G is
the multigraph of Fig. 6, then A(G) is the arrangement in C3 with five hyperplanes x1 = 0, x1 = αx2,
x1 = βx2, x1 = γ x3, x3 = 0. The intersection lattice L(G) = L(A(G)) is shown in Fig. 7.

Its characteristic polynomial is

χ (L(G), t) = t3 − 5t2 + 8t − 4 = (t − 1)(t − 2)2 = (−1)3 ISF(G, −t).
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It is not a coincidence that the two polynomials are related. To explain the relationship, we needmore
about intersection lattices.

Let L be a lattice. Recall that the elements of L that cover 0̂ are called atoms, and that a multichain
is a totally ordered multisubset of L. Let C be an 0̂-1̂ multichain, i.e., a multichain of the form 0̂ =

z0 ≤ z1 ≤ · · · ≤ zn = 1̂. Then C induces an ordered partition of the atoms into blocks A1, A2, . . . , An,
namely

Ai = {atoms a | a ≤ zi and a ≰ zi−1}. (9)

Note that some blocks can be empty, e.g., if zi−1 = zi for some i. For example, if L is the lattice in Fig. 7,
then the saturated chain

C3 ⋖ x1 = 0 ⋖ x1 = x2 = 0 ⋖ x1 = x2 = x3 = 0

induces the atom partition

A1 = {x1 = 0}, A2 = {x1 = αx2, x1 = βx2}, A3 = {x1 = γ x3, x3 = 0},

which corresponds to the partition of E(G) given in (7).

Definition 4.2. A labeled n-multigraph G is perfectly labeled if for all nonzero i < j < k the following
hold:

(1) If G has edges ikα and jkβ , then it also has an edge ijα/β .
(2) If G has edges jkγ and jkϵ with γ ̸= ϵ, then it also has an edge 0j.
(3) If G has edges jkγ and 0k, then it also has an edge 0j.

In each of these cases, the third edge corresponds to a hyperplane whose defining equation is
implied algebraically by those of the first two edges. For instance, the first condition says that ifA(G)
contains the hyperplanes xi = αxk and xj = βxk, then it also contains the hyperplane xi/xj = α/β ,
i.e., xi = (α/β)xj. Thus perfect labelings are the analogues of PEOs in the setting of labeledmultigraphs.
Unlike the definition of a PEO, a perfect labeling is not simply an ordering of the vertices. On the other
hand, any PEO of a (simple) graph can be regarded as a perfect labeling by assigning all edges label 1.

For instance, one can check that the multigraph in Fig. 6 is perfectly labeled.

Theorem 4.3. Let G be a labeled n-multigraph. Let L = L(G) and let ρ(L) denote the rank of L. Then

ISF(G, t) = (−1)ρ(L)tn−ρ(L)χ (L, −t)

if and only if G is perfectly labeled.

Proof. Let Vm be the vector space obtained by intersecting all hyperplanes of the form xj = 0 and
xi = αxj where i < j ≤ m. Note that V0 = Cn

= 0̂L and Vn = 1̂L. Let C be the 0̂-1̂ multichain
0̂ = V0 ≤ V1 ≤ · · · ≤ Vn = 1̂ and let (A1, A2, . . . , An) be the partition of the atom set induced by C .
Then combining Theorem 18 and Lemma 19 of [8], one sees that

χ (L, t) = tρ(L)−n
n∏

i=1

(t − |Ai|) (10)

if and only if for every x ∈ L which is the join of two elements from Ak there exists some j such
that there is a unique atom below x in Aj. This second statement is precisely the condition that G is
perfectly labeled. Moreover, for each i, the edges in Ei(G) (see (6)) correspond to the hyperplanes in
Ai, so |Ei| = |Ai|. It follows that

ISF(G, t) =

n∏
i=1

(t + |Ei|) = (−1)n
n∏

i=1

(−t − |Ai|).
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Thus by (10),

ISF(G, t) =
(−1)n

(−t)ρ(L)−n χ (L, −t)

if and only if the labeling of G is perfect. The result now follows. □

We now briefly review some concepts related to NBC sets of geometric lattices. For details, see,
e.g., Lectures 3 and 4 of [15]. Let L be a geometric lattice with rank function ρ. For S ⊆ L, the symbol
∨S denotes the join of all elements in S. A set S of atoms of L is independent if ρ(∨S) = |S|, and is a
circuit if it is a minimal dependent set. (These terms refer to the matroid naturally associated with L.)
Note that if K is a circuit, then ∨K = ∨(K\{a}) for any a ∈ K . If we fix a total order on the atoms, then
S is a broken circuit if it is obtained by removing the smallest atom from a circuit. An NBC set of L is a
set which does not contain a broken circuit. Rota [11, Prop. 1] proved that

χ (L, t) =

∑
m≥0

(−1)m nbcm(L) tρ(L)−m (11)

where nbcm(L) is the number of nbc sets of L with m atoms. (When L is the lattice of flats of a
graph, Rota’s formula reduces to Whitney’s formula (Theorem 2.3).) Combining Rota’s formula with
Theorem 4.3, we see that if G is a labeled n-multigraph, then isfm(G) = nbcm(L(G)) for allm if and only
if G is perfectly labeled.

Let L be a geometric lattice and let (A1, A2, . . . , An) be a partition of the atom set induced by a 0̂-1̂
multichain, as in (9). An atomic transversal is a set T of atoms such that |T ∩ Ai| ≤ 1 for each i. By [8,
Lemma 19], every atomic transversal is independent. Evidently,∑

T

tn−|T |
=

n∏
k=1

(t + |Ak|)

where the sum is over atomic transversals of L. It follows from Theorem 4.3 that if L = L(G) where G is
a labeled n-multigraph then the number of atomic transversals of sizem is precisely isfm(G).Moreover,
atomic transversals are related to NBC sets in the following way.

Proposition 4.4. Let L be a geometric lattice and let C : 0̂ = z0 ≤ z1 ≤ · · · ≤ zn = 1̂ be a 0̂-1̂multichain
in L. Let (A1, A2, . . . , An) be the partition of the atoms induced by C. Fix a total ordering of the atoms so
that if a ∈ Ai and b ∈ Aj with i < j, then a precedes b. If T is an atomic transversal, then T is an NBC set.

Proof. Every subset of a transversal is a transversal, so it is enough to show that no atomic transversal
can be a broken circuit.

Suppose that T is an atomic transversal which is also a broken circuit, say T = K \ {a} where
K is a circuit and a = min(K ). In particular |K | ≥ 3 and |T | ≥ 2. Let Ai be the block containing a.
As mentioned above, T is independent, so T ∩ Ai must be nonempty, otherwise K would also be an
atomic transversal, hence independent. Let j = max{k | T ∩ Ak ̸= ∅}. Since |T | ≥ 2 and a = min(K ),
it follows that j > i. Let b be the unique element of T ∩ Aj and let S = K \ {b}. Since K is a circuit, we
have ∨K = ∨S = ∨T . On the other hand, ∨S ≤ zj−1 since, by the choice of j, all elements of S are less
than or equal to zj−1. But ∨T ≰ zj−1 since b ∈ T and b ≰ zj−1. This is a contradiction. □

Corollary 4.5. Let G be a labeled n-multigraph. Then isfm(G) ≤ nbcm(L(G)) for all m. Moreover,
isfm(G) = nbcm(L(G)) for all m if and only if G is perfectly labeled.

Proof. The inequality follows from Proposition 4.4, together with the earlier observation that the
numbers of ISFswithm edges equals the number of atomic transversals of sizem. The second assertion
follows from Rota’s formula (11) together with Theorem 4.3. □

Next we discuss consequences for the topology of the complement of AG and its real analogue.
Recall that the ith Betti number βi(X) of a topological space X is the dimension of the ith (unreduced)
homology group of X with coefficients in R. LetA be an arrangement in Cn and let X(A) = Cn

\∪A. A
well-known result of Orlik and Solomon [10, Theorem 5.2] states that βm(X(A)) = nbcn−m(L(A)). An
immediate consequence of the previous result is the following.
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Corollary 4.6. Let G be a labeled n-multigraph. Then

isfm(G) ≤ βn−m(X(A(G)))

for all m with equality for all m if and only if G is perfectly labeled.

Wenow consider the case thatG is anR-labeledmultigraph, i.e., all labels are nonzero real numbers.
Then formula (8) may be viewed as defining an arrangementAR(G) in Rn, with the same intersection
lattice as the complex arrangement A(G). As before, we define X(AR) = Rn

\ ∪A. Zaslavsky [19]
showed that for every real hyperplane arrangement A, the number of regions r(A) of X(A) is given
by nbc(L(A)). Observe that the proofs of Theorem 4.3 and Proposition 4.4 go through without change
upon replacing A(G) by AR(G), as does Corollary 4.5, with the following consequence.

Corollary 4.7. Let G be an R-labeled n-multigraph. Then

isf(G) ≤ r(AR(G))

with equality if and only if G is perfectly labeled.

Wenowmention a generalization of Theorem 1.4 to signed graphs. Let G be a labeled n-multigraph
with at most two edges between any two nonzero vertices. If every edge between nonzero vertices
of G is labeled by 1 or −1 we say that G is a signed graph. This is essentially equivalent to the signed
graphs studied by Zaslavsky in [20]. Our signed graphs have the additional vertex 0, and an edge of
the form 0i in our setting corresponds to a half-edge at i in [20].

A coloring of a signed graph G is a function

c : V (G) \ {0} → [−s, s] = {−s, −s + 1, . . . , 0, . . . , s − 1, s},

where s is some nonnegative integer. A coloring is proper provided that

(i) for all i, j ̸= 0, if ijϵ ∈ E(G), then c(i) ̸= ϵc(j); and
(ii) if 0i ∈ E(G), then c(i) ̸= 0.

These definitions correspond to those in [20], and our real hyperplane arrangement AR(G) coincides
with Zaslavsky’s H[G].

As for an ordinary graph, the chromatic function P(G, t) of a signed graph G is the number of proper
colorings of Gwith t = 2s+ 1 colors. It follows from [20, Theorem 2.2] that if G is a signed graph with
vertex set {0, 1 . . . , n}, then P(G, t) is a polynomial, specifically,

P(G, t) = tn−ρ(L)χ (L(AR(G), t)).

Using this fact and Theorem 4.3, we have the following generalization of Theorem 1.4.

Theorem 4.8. Let G be a signed graph with vertex set {0, 1 . . . , n}. Then

ISF(G, t) = (−1)nP(G, −t)

if and only if G is perfectly labeled.

We finish this section with a result on supersolvable arrangements. For more about such arrange-
ments, see [15, Section 4.3]. In [8, Proposition 22], it was shown that if L is a geometric lattice with a
0̂-1̂ saturated chain that induces a partition of the atom set (A1, A2, . . . , An), and the characteristic
polynomial of L factors as χ (L, t) =

∏n
i=1(t − |Ai|), then L is supersolvable. The converse of this

statement was shown earlier by Stanley [12, Theorem 4.1].

Proposition 4.9. Let G be a labeled n-multigraph. If G is perfectly labeled, then the lattice L(G) = L(A(G))
is supersolvable.

Proof. Consider the multichain 0̂ = V0 ≤ V1 ≤ · · · ≤ Vn = 1̂ defined in the proof of Theorem 4.3.
Let C ′ be the chain obtained from C by removing any repeated elements in C . We claim that C ′ is
saturated. Indeed, suppose Vk < Vk+1. For ℓ ≥ 1, letMℓ be the matrix whose rows are normal vectors
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Fig. 8. A supersolvable multigraph with no perfect labeling.

to the hyperplanes defining Vℓ, where for a hyperplane of the form xi = αxj, i < j, we take the normal
with a one in coordinate i and similarly for xi = 0. We denote these row vectors by r(xi = αxj) and
r(xi = 0), respectively. Since Vℓ is the nullspace ofMℓ, it suffices to show that

rkMk+1 = 1 + rkMk (12)

where rk denotes matrix rank.
Eq. (12) is clearly true ifMk+1 has only onemore row thanMk. So suppose at least two hyperplanes

were added; then one of themmust be of the form xj = βxk+1. Consider such a hyperplane where j is
maximum. It is obvious that rkM ′

= 1 + rkMk if M ′ is the matrix obtained by adding r(xj = βxk+1)
to Mk. So we will be done if we can show that the other rows of Mk+1 involving xk+1 are linear
combinations of the rows ofM ′. But this follows from the fact that G is perfectly labeled. For example,
consider a row corresponding to a hyperplane xi = αxk+1 with i < j. By condition (1) of Definition 4.2,
the matrix Mk contains the row r(xi = α/βxj), and

r(xi = αxk+1) = (α/β)r(xj = βxk+1) + r(xi = (α/β)xj).

Using Theorem 1.2 and 4.3 we see that χ (L(G), t) factors with nonpositive integer roots. By
the previous paragraph, this factorization is induced by the saturated chain C ′. It follows from
[8, Proposition 22] that L(G) is supersolvable. □

If G is a simple graph, 0 is an isolated vertex and all edges are labeled by 1, then a perfect labeling
of G is just a PEO and the converse of Proposition 4.9 holds; see, e.g., [15, Corollary 4.10]. However,
the converse is false for multigraphs. For example, the multigraph shown in Fig. 8 has no perfect
labeling, since condition (2) of Definition 4.2 must fail, but on the other hand L(G) is easily seen to be
supersolvable.

5. Forests and pattern avoidance

In this section, we study tight forests, another class of labeled forests characterized by avoiding
certain permutation patterns. If G is triangle-free, then every tight spanning forest is an NBC set, and
the converse is true if the vertex labeling is a quasi-perfect ordering (QPO). These orderings exist only
for certain bipartite graphs; when they do, they give a combinatorial interpretation of the chromatic
polynomial as a generating function for tight spanning forests. Thus, we obtain results concerning
the connection between tight forests, QPOs, and the chromatic polynomial analogous to the results
relating increasing spanning forests, PEOs, and the chromatic polynomial found in [8].

Two sequences of distinct positive integers π = π1π2 · · · πk and σ = σ1σ2 · · · σk are order-
isomorphic, written π ∼ σ , provided that πi < πj if and only if σi < σj for all i and j. For example,
2341 ∼ 6892. If π and σ are two sequences of distinct positive integers we say σ contains π as a
pattern if σ has a subsequence that is order-isomorphic to π . For example, σ = 6892 contains 231 as
a pattern because of the subsequence 692 ∼ 231. We say that σ avoids π if σ does not contain π as
a pattern. For example, 6892 avoids 321. More generally, given a set of sequences Π we say that σ
avoids Π if σ avoids every π ∈ Π .

Now let T be a tree with vertices labeled by distinct positive integers. As before, we regard T
as rooted at its smallest labeled vertex r . We say that T avoids π if every path from r to a leaf
of T avoids π . For example, if T is the right-hand tree in Fig. 1, then the paths from the root are
235, 239, 26, 278, 274, so T avoids 321 but not 21 because 74 ∼ 21. Indeed, a tree is increasing
precisely if it avoids 21. We say that a labeled forest avoids π if every component tree in it does so.
We similarly extend all definitions of pattern avoidance in sequences to forests.
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For the remainder of the section, we will specifically consider labeled forests avoiding the set
Π = {231, 312, 321}. To simplify discussion, we will call a copy of one of these permutations in a
tree a bad triple. Note that a bad triple can never contain the root of a tree, since none of the forbidden
patterns starts with the digit 1. As shown in [3, Prop. 6.2], the permutations avoiding these patterns
are precisely the involutions such that all two-cycles are of the form (i, i + 1), and in particular are
counted by the Fibonacci numbers.

Definition 5.1. A permutation is tight if it avoids the patterns Π = {231, 312, 321}. Equivalently,
all the 1’s in its permutation matrix lie on or adjacent to the main diagonal. A sequence of distinct
integers is tight if it is order-isomorphic to a tight permutation. Finally, if F is a labeled forest, with
every component tree rooted at its smallest labeled vertex, then we saw that F is tight if every path
starting at a root is a tight sequence.

It is worth noting that every tree with two or fewer edges is tight. As before, we use the notation

T F(G) = set of tight spanning forests of G, tf(G) = |T F(G)|,
T Fm(G) = set of tight spanning forests withm edges, tfm(G) = |T Fm(G)|,

TF(G) = TF(G, t) =

∑
m≥0

tfm(G)tn−m.
(13)

Lemma 5.2. Every subforest of a tight labeled forest is tight.

Proof. It suffices to prove the corresponding statement for labeled trees. Accordingly, let T be a labeled
tree with root r , and let T ′ be a subtree of T . Let r ′ be the root of T ′, and let s be the vertex of T ′ which is
closest to r in T , so that P : r, . . . , s, . . . , r ′ is a path in T . Since r ′ has the smallest label of any vertex in
T ′, it follows that r ′ and s are either identical or adjacent; otherwise the path s, . . . , r ′ would contain
the pattern 321 or 231, which would contradict the fact that P is tight.

Now let P ′ be apath in T ′ starting at r ′. By the previous paragraph, P ′ is either a subpath of somepath
from r in T , or else it has the form r ′, s, P ′′, where s is the parent of r ′ in T and s, P ′′ is a subpath of a path
from r in T . Then s, P ′′ is tight because T is tight, and r ′, s, P ′′ is tight as well, again by Definition 5.1,
since the label of r ′ is smaller than that of any other vertex in this path. □

In Theorem 2.4, we showed that every increasing forest is an NBC set.Wewish to extend this result
to the setting of tight forests. It is not the case that every tight forest is an NBC set: for example, in
the cycle with vertex set [3] the three-vertex path labeled 1, 3, 2 is a tight forest but is itself a broken
circuit. On the other hand, the next result shows that broken 3-cycles are the only obstruction to
extending Theorem 2.4.

Proposition 5.3. Let G be a graph with no 3-cycles. Then T Fk(G) ⊆ NBCk(G) for all k.

Proof. By Lemma 5.2, it suffices to show that any broken circuit B with 3 or more edges or more
(regarded as a labeled tree) contains a bad triple. Now B is a path of the form a, x, y, . . . , b where
a = min(B) and b < x. Then either b < x < y, b < y < x, or y < b < x. In each case x, y, b is a bad
triple, being a copy of 231, 321, or 312 respectively. □

Proposition 5.4. If G has a 3-cycle, then T F2(G) ⊊ NBC2(G) and so TF(G, t) ̸= (−1)|V (G)|P(G, −t).

Proof. Let G have a 3-cycle C . So C is order isomorphic to the cycle on [3], and the example before the
previous proposition indicates how to find an element of T F2(G) not in NBC2(G). □

We now define a kind of vertex ordering that is related to tight forests as PEOs are to ISFs.

Definition 5.5. Let G be a graph. A candidate path in G is a path of the form

a, c, b, v1, . . . , vm = d (14)
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Fig. 9. A non-bipartite graph with a QPO.

such that a < b < c;m ≥ 1; and vm is the only vi smaller than c. The total ordering of V (G) is called a
quasi-perfect ordering (QPO) if all candidate paths satisfy the following condition:

either ad ∈ E(G), or else d < b and cd ∈ E(G). (15)

This definition seems obscure, but in fact QPOs are an extension of PEOs in the following sense. If
the possibility m = 0 were allowed, so that d = b, then (15) would reduce to the requirement that
ab ∈ E(G), just as in a PEO. The existence of a QPO has strong structural consequences, as we now
explain.

Proposition 5.6. Let G be a graph with a QPO.

(1) Every cycle of length at least 5 has a chord.
(2) If G has no 3-cycles, then it is bipartite.

Proof. For (1), we prove the contrapositive. Suppose that C ⊆ G is a chordless cycle of length at least
5. Let P be the three-edge subpath a, c, b, d, where c = max(C) and b > a. Neither ad nor cd are edges,
so P is a candidate path that fails (15).

For (2), if G is not bipartite, then it has an odd cycle C . If C has minimum length, then it cannot be
a cycle of length at least 5 by part (a). So C must be a triangle, which is a contradiction. □

Before continuing with the general development, we will look at a few examples.

Example 5.7. We note that not every graphwith a QPO need be bipartite. For example, the labeling of
the non-bipartite graph shown in Fig. 9 is a QPO. In particular, the only candidate path is a, c, b, d =

1, 5, 4, 3, and ad is an edge.

Example 5.8. For every positive integer n, the complete bipartite graphs Kn,1, Kn,2 and Kn,3 all admit
QPOs. For Kn,1, every vertex labeling gives a QPO since every path has at most 3 vertices and at least
4 are needed for a candidate path. Now consider Kn,2 and Kn,3 where we assume without loss of
generality that n ≥ 2 and n ≥ 3, respectively, in the two cases. In the case of Kn,2, let W = {1, 2}
be the labels of the vertices in the partite set of size 2, and for Kn,3, letW = {1, 2, n+ 3}. be the labels
of the vertices in the partite set of size 3. In either case, if P is a candidate pathwith an even number of
vertices, labeled as in Definition 5.5, then ad ∈ E(G) because the graphs are complete bipartite. Now
suppose that P is a candidate path with an odd number of vertices. First, if P starts in V (G) \ W then
at least one of c, v1 has a label with value at most 2. But each of these vertices is adjacent in P to a
vertex with a smaller label, which contradicts the definition of a candidate path. Second, if P begins
in W , then the ambient graph must be Kn,3 and P must have exactly five vertices, including all three
vertices inW . It follows that one of a, b, d has label n+3. But, again, this is a contradiction since none
of these vertices is allowed to have the largest label in the path.

Example 5.9. Consider the complete bipartite graph G = Km,n, wherem, n ≥ 4. Note that every cycle
in G of length ≥ 5 has a chord. But we claim that no ordering of V (G) is a QPO. Suppose, towards a
contradiction, that G has a QPO. Let N = m + n and let X, Y be the partite sets of G.

First, suppose that N − 1,N belong to the same partite set, say X . Let a < b < d be vertices in Y .
Then a, c = N − 1, b, N, d is a candidate path with ad ̸∈ E(G) and d > b, so condition (15) fails.



196 J. Hallam et al. / European Journal of Combinatorics 76 (2019) 178–198

Second, suppose thatN−1,N belong to different partite sets. LetX be the partite set containingN−

2 and let a, b, d ∈ Y with a < b < d < N−2; note that three such verticesmust exist because |Y | ≥ 4.
Let x be the sole element of {N − 1,N} ∩ X . Then a, c = N − 2, b, x, d is a candidate path leading to
the same failure of (15) as in the previous case.

For graphs with no 3-cycles, having a QPO implies that the tight forests are precisely the NBC sets.

Proposition 5.10. Let G be a labeled graph with no 3-cycles. If the vertex labeling is a QPO, then
T F(G) = NBC(G).

Proof. By Proposition 5.3, we only need to prove NBC(G) ⊆ T F(G). So let F be an NBC set in G. Then
F is a forest, since if F contained a cycle then it would contain a broken circuit. Let Q be a candidate
path in F labeled as in (14). Then ad ̸∈ E(G) since if the edge were present in G, then Q would be a
broken circuit in F . It follows that we must have both d < b and cd ∈ E(G). But this rules out any
candidate path with four vertices since such a path together with cd would contain a 3-cycle.

Now let T be one of the component trees of F . To finish the proof, we will show that any path P
starting at the root of T is tight, by induction on |V (P)|. This is clear if |V (P)| ≤ 2 since the patterns
to be avoided all have 3 elements. So assume the result for paths with k vertices and consider a path
P = w1, w2, . . . , wk+1 from the root of T . Letπ = π1π2 . . . πk+1 be the standardization of P , that is, the
unique permutation of [k+1]with π ∼ P . Since P starts at the minimum vertex of T we have π1 = 1.
So it suffices to show that π is a tight involution. Our main tool will be the characterization of tight
involutions in terms of fixed points and 2-cycles in Definition 5.1. By induction π−

:= π1π2 . . . πk is
a tight sequence. So there are only three possibilities for the position of k + 1 in π .

Case 1:πk+1 = k+1. In this caseπ− is a tight involution on [k]. So the concatenationπ = π−, k+1
just adds a fixed point at k + 1 and is also tight.

Case 2: πk = k + 1. Since π− is tight, there are three possibilities for the position of k in π . If
πk+1 = k then we are done by a similar argument as in Case 1, only adding the 2-cycle (k, k + 1).
If πk−1 = k then πk+1, k + 1, k, πk−2 corresponds to a candidate path in T with four vertices, a
contradiction as shown in the first paragraph of the proof. Finally, suppose πk−2 = k. First, note
that k > 3 otherwise π1 = 3 ̸= 1. So πk−3 exists. Also, since π− is tight and both πk−2 = k and
πk = k+ 1, we must have πk−1 = k− 1. Thus the sequence πk−3, k, k− 1, k+ 1, πk+1 corresponds to
a candidate path wk−3, wk−2, wk−1, wk, wk+1. Appealing to the first paragraph again, wk+1 < wk−1
and wk−2wk+1 ∈ E(G). But then the path wk−2, wk−1, wk, wk+1 is a broken circuit in T , another
contradiction.

Case 3: πk−1 = k+ 1. Since π− is tight, there are only two possible positions for k in π . If πk+1 = k
then, again by the tightness of π−, we must have πk = k − 1. This results in the contradiction that
πk−2, k + 1, k − 1, k corresponds to a candidate path with four vertices. Finally, if πk = k then we
have another four-vertex candidate path corresponding toπk−2, k+1, k, πk+1. This final contradiction
completes the proof. □

Theorem 5.11. Suppose that G has vertex set [n] and has no 3-cycles. Then the following are equivalent:

(1) The labeling of vertices is a QPO.
(2) NBC(G) = T F(G).
(3) TF(G, t) = (−1)nP(G, −t).

Proof. The equivalence of (2) and (3) follows from Whitney’s formula (Theorem 2.3), and the
implication (1) ⇒ (2) is just Proposition 5.10, so it remains to prove the converse. Accordingly,
suppose that the labeling of vertices is not a QPO. Let Q be a candidate path, labeled as in (14), that
fails (15) and for which m is as small as possible. We will show that Q contains a bad pattern and is
an NBC set, which contradicts condition (2).

Either a or d is the smallest labeled vertex of Q , so the one with the smaller label must be the root
of Q considered as a tree. If a < d then c, b, d is either a 321-pattern or a 312-pattern according as
d < b or d > b. On the other hand, if a > d then b, c, a is a 231-pattern.
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Nowwe show that Q is an NBC set — that is, if e is an edge outside Q whose endpoints belong to Q ,
then e is not the smallest edge of the resulting cycle. We consider the possibilities for e individually.

First, consider possible edges containing vertex a. We know e = ab is not an edge of G since G has
no 3-cycles, and e = ad is not an edge of G since Q fails the QPO condition. This leaves e = avi for
some i ∈ [m − 1], but then e is lexicographically greater than ac.

Second, we look at edges containing c . If e = cvi for some i ∈ [m − 1], then e is lexicographically
greater than bc. If e = cd and d > b then e is still lexicographically greater than bc. The only other
possibility is when d < b. But since Q does not satisfy the QPO condition, this forces cd not to be an
edge of G.

Finally, suppose e = vivj for some i, j with j ≥ i + 3 where we let v0 = b. In this case,

a, c, b, v1, . . . , vi−1, vi, vj, vj+1, . . . , vm = d

is a shorter candidate path that fails (15), which contradicts the choice of Q . □

By Theorem 1.2, the generating function for increasing forests in any graph has only nonpositive
integer roots, regardless of the ordering of the vertices. This is not in general the case for the
corresponding generating function for tight forests.

Proposition 5.12. Let G be a graph with n vertices and e edges. Then G has a vertex ordering such that
every root of TF(G, t) is an integer if and only if it is a forest.

Proof. (⇐) If G is a forest, then any increasing labeling gives both a PEO and a QPO. Hence TF(G, t) =

ISF(G, t), which has only integral roots by Theorem 1.2.
(⇒) Suppose that TF(G, t) = (t + a1) · · · (t + an), where the an are integers. Since all coefficients

of TF(G, t) are nonnegative, all its roots are nonpositive and so all the ai are nonnegative. As observed
earlier, every forest with two or fewer edges is tight so we have, for q = |E(G)|

TF(G, t) = tn + qtn−1
+

(
q
2

)
tn−2

+ · · ·

= tn +

(∑
i

ai

)
tn−1

+

⎛⎝∑
i<j

aiaj

⎞⎠ tn−2
+ · · · .

Note that(
q
2

)
=

(
a1 + · · · + an

2

)
=

1
2

⎛⎝∑
i

a2i + 2
∑
i<j

aiaj −
∑

i

ai

⎞⎠ =
1
2

(∑
i

(a2i − ai)

)
+

∑
i<j

aiaj.

So for the second equality in the first sequence of equations to hold, we must have ai ∈ {0, 1} for all i.
Since q =

∑
ai we obtain TF(G, t) = tn−q(t + 1)q. But this implies that every subset of E(G) is a (tight)

forest, so G is a forest. □

We conclude with two problems for further study suggested by the previous proposition. For any
set of patterns Π and any graph G, let FΠ

m (G) be the set of m-edge spanning forests of G avoiding all
patterns in Π , and let FΠ (G, t) =

∑
m |FΠ

m (G)|tn−m.

Question 5.13. For which sets of patterns Π and graphs G does FΠ (G, t) have integer roots? Can there be
roots other than 0 and −1?

For Π = {21}, the generating function FΠ (G, t) = ISF(G, t) has integer roots by Theorem 1.2, so its
coefficient sequence is log-concave, hence unimodal. For Π = {231, 312, 321}, if the vertex labeling
is a QPO, then by Theorem 5.11 we have FΠ (G, t) = TF(G, t) = (−1)nP(G, −t), and the coefficient
sequence is log-concave by a celebrated recent result of Huh [9].

Question 5.14. For which sets of patternsΠ and graphs G is the coefficient sequence of FΠ (G, t) unimodal
or log-concave?
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