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a b s t r a c t

We prove a generalization of a conjecture of Dokos, Dwyer, Johnson, Sagan, and Selsor giv-
ing a recursion for the inversion polynomial of 321-avoiding permutations.We also answer
a question they posed about finding a recursive formula for the major index polynomial of
321-avoiding permutations. Other properties of these polynomials are investigated aswell.
Our tools include Dyck and 2-Motzkin paths, polyominoes, and continued fractions.
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1. Introduction

The main motivation for this paper is a conjecture of Dokos, Dwyer, Johnson, Sagan, and Selsor [8] about inversion
polynomials for 321-avoiding permutations whichwewill prove in generalized form.We also answer a question they posed
by giving a recursive formula for the analogous major index polynomials. We first introduce some basic definitions and
notation about pattern avoidance and permutation statistics.

Call two sequences of distinct integers π = a1 . . . ak and σ = b1 . . . bk order isomorphic whenever ai < aj if and only if

bi < bj for all i, j. Let Sn denote the symmetric group of permutations of [n] def
= {1, . . . , n}. Say that σ ∈ Sn contains π ∈ Sk

as a pattern if there is a subsequence σ ′ of σ order isomorphic to π . If σ contains no such subsequence then we say σ avoids
π and write Avn(π) for the set of such σ ∈ Sn.

Let Z and N denote the integers and nonnegative integers, respectively. A statistic on Sn is a function st : Sn → N. One
then has the corresponding generating function

f stn =


σ∈Sn

qst σ .
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Two of the most ubiquitous statistics for σ = b1 . . . bn are the inversion number
inv σ = #{(i, j) | i < j and bi > bj}

where the hash sign denotes cardinality, and themajor index

maj σ =


bi>bi+1

i.

In [21], Sagan and Savage proposed combining the study of pattern avoidance and permutations statistics by considering
generating functions of the form

F st(π) =


σ∈Avn(π)

qst σ (1)

for any pattern π and statistic st. The earliest reference of which we are aware combining the inversion statistic and pattern
avoidance is the paper of Barcucci et al. [2] where generating trees are used. Various subsequent articles also considered
inversions in restricted permutations such as [1,3,5,9,18,20]. Dokos et al. [8] were the first to carry out an extensive study of
the generating functions of the form (1) for the inv and maj statistics. We note that when st = inv and π = 132 we recover
a q-analogue of the Catalan numbers studied by Carlitz and Riordan [4]. Work on the statistics counting fixed points and
excedances has been done by Elizalde [11,10], Elizalde and Deutsch [12], and Elizalde and Pak [13].

Our primary motivation was to prove a conjecture of Dokos et al. concerning the inversion polynomial for 321-avoiding
permutations. In fact, we will prove a stronger version which also keeps track of left–right maxima. Call ai in π = a1 . . . an
a left–right maximum (value) if ai = max{a1, . . . , ai}. We let

Lrmπ = {ai | ai is a left–right maximum}

and lrmπ = #Lrmπ . Consider the generating function

In(q, t) =


σ∈Avn(321)

qinv σ t lrm σ . (2)

Note that since #Avn(321) = Cn, the nth Catalan number, this polynomial is a q, t-analogue of Cn. Our main result is a
recursion for In(q, t). The case t = 1 was a conjecture of Dokos et al.

Theorem 1.1. For n ≥ 1,

In(q, t) = tIn−1(q, t)+

n−2
k=0

qk+1Ik(q, t)In−k−1(q, t).

We should note that after seeing a version of this article in preprint form, Mansour and Shattuck [19] have given a proof
of the special case t = 1 of this recursion using formal manipulation of continued fractions. In fact, with this substitution,
their main result is just our Corollary 7.5 below.

The rest of this paper is structured as follows. In the next section we will give a direct bijective proof of Theorem 1.1
using 2-Motzkin paths. The following two sectionswill explore related ideas involving Dyck paths, including a combinatorial
proof of a formula of Fürlinger and Hofbauer [15] and two new statistics which are closely related to inv. Sections 5 and 6
are devoted to polyominoes. First, we give a second proof of Theorem 1.1 using work of Cheng, Eu, and Fu [7]. Next we
derive recursions for a major index analogue,Mn(q, t), of (2), thus answering a question posed by Dokos et al. in their paper.
In the final section we use continued fractions to prove a refined version of Theorem 1.1 where we also keep track of the
number of fixed points. There are a number of properties of In(q, t) andMn(q, t) (symmetry, unimodality,modulo 2 behavior,
and signed enumeration) which are tangentially related to the present work. So we have collected them in an addendum
available on the arXiv [6].

2. A proof of Theorem 1.1 using 2-Motzkin paths

Our first proof of Theorem 1.1 will use 2-Motzkin paths. Let U (up), D (down), and L (level) denote vectors in Z2 with
coordinates (1, 1), (1,−1), and (1, 0), respectively. A Motzkin path of length n, M = s1 . . . sn, is a lattice path where each
step si is U,D, or L and which begins at the origin, ends on the x-axis, and never goes below y = 0. A 2-Motzkin path is a
Motzkin path where each level step has been colored in one of two colors which we will denote by L0 and L1. We will let
M
(2)
n denote the set of 2-Motzkin paths of length n.
It will be useful to have two vectors to keep track of the values and positions of left–right maxima. If σ = b1 . . . bn ∈ Sn

then let
val σ = (v1, . . . , vn)

where

vi =


1 if i is a left–right maximum of σ ,
0 else.
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Fig. 1. The Motzkin path associated with σ = 361782495.

Also define

pos σ = (p1, . . . , pn)

where

pi =


1 if bi is a left–right maximum of σ ,
0 else.

By way of example, if σ = 361782495 then we have val σ = (0, 0, 1, 0, 0, 1, 1, 1, 1) and pos σ = (1, 1, 0, 1, 1, 0, 0, 1, 0).
Note that for any permutation vn = p1 = 1.

We will need the following lemma which collects together some results from the folklore of pattern avoidance. Since
they are easy to prove, the demonstration will be omitted.

Lemma 2.1. Suppose σ ∈ Sn.

(a) We have σ ∈ Avn(321) if and only if the elements of [n] − Lrm σ form an increasing subsequence of σ .
(b) Suppose we are given 0–1 vectors v = (v1, . . . , vn) and p = (p1, . . . , pn) with the same positive number of ones. Then

v = val σ and p = pos σ for some σ ∈ Sn if and only if, for every index i, 1 ≤ i ≤ n, the number of ones in p1, . . . , pi is
greater than the number in v1, . . . , vi−1. In this case, because of part (a), there is a unique such σ ∈ Avn(321). �

Note that in (b) the cases where i = 1 and i = n force p1 = 1 and vn = 1, respectively.

First proof of Theorem 1.1. We will construct a bijection µ : Avn(321) → M
(2)
n−1 as follows. Given σ ∈ Avn(321) with

val σ = (v1, . . . , vn) and pos σ = (p1, . . . , pn), we let µ(σ) = M = s1 . . . sn−1 where

si =


U if vi = 0 and pi+1 = 1,
D if vi = 1 and pi+1 = 0,
L0 if vi = pi+1 = 0,
L1 if vi = pi+1 = 1.

Continuing the example from the beginning of the section, σ = 361782495 would be mapped to the path in Fig. 1.
We must first show that µ is well defined in that if M = µ(σ) then M ends on the x-axis and stays weakly above it the

rest of the time. In other words, we want the number of U ’s in any prefix of M to be at least as great as the number of D’s,
with equality at the finish. This now follows from the definition of the si and the first two sentences of Lemma 2.1(b).

We must also check thatµ is a bijection. The fact that it is injective is an immediate consequence of the definition of the
si and the third sentence of Lemma 2.1(b). Since #Avn(321) = Cn = #M

(2)
n−1, we also have bijectivity.

If µ(σ) = M then we claim that

lrm σ = #U(M)+ #L1(M)+ 1, (3)
inv σ = #D(M)+ #L0(M)+ areaM, (4)

where areaM is the area betweenM and the x-axis, U(M) is the set of steps equal to U inM , and similarly for the other types
of steps. The first equation follows from the definition of M and the fact that lrm σ is the number of ones in pos σ . The +1
is because M has length n − 1 and we always have p1 = 1.

To prove the equation for inv, wewill induct on n. Note that everyM ∈ M
(2)
n−1, where n ≥ 2, can be uniquely decomposed

in one of the following ways:

(i) M = L0N , where N ∈ M
(2)
n−2,

(ii) M = L1N , where N ∈ M
(2)
n−2.

(iii) M = UNDO, where N ∈ M
(2)
k−1 and O ∈ M

(2)
n−k−2 for some 1 ≤ k ≤ n − 2.

Suppose (4) holds forN in case (i), and supposeµ(π) = N . If we have valπ = (v1, . . . , vn−1) and posπ = (p1, . . . , pn−1)
then adding L0 forces the vectors to change to val σ = (0, v1, . . . , vn−1) and pos σ = (1, 0, p2, . . . , pn−1). It follows that if
π = a1 . . . an−1 then σ = (a1 + 1)1(a2 + 1) . . . (an−1 + 1). So both the left and right sides of (4) go up by one when passing
from π to σ and equality is preserved. Similar arguments show that both sides stay the same in case (ii), and both go up by
k + 1 in case (iii). So equality is maintained in all cases.
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From what we have shown, it suffices to show that

I ′n(q, t) =


P∈M

(2)
n−1

q#D(P)+#L0(P)+area P t#U(P)+#L1(P)+1

satisfies the recurrence in Theorem1.1. Considering the three cases above, in (i) we get a contribution of qI ′n−1(q, t) to I ′n(q, t)
which corresponds to the k = 0 term of the sum. Similarly, case (ii) contributes tI ′n−1(q, t). Finally, in (iii) the piece UND
contributes tqk+1Ik(q, t) since when lifting N the area is increased by k, and both #U(N) and #D(N) are increased by one.
Also O contributes In−k−1(q, t)/t since there is a +1 in the exponent of t for both Ik(q, t) and In−k−1(q, t), but we only want
one such. Combining these contributions proves the recursion. �

3. Dyck paths and an equation of Fürlinger and Hofbauer

In this sectionwewill prove a formula of Fürlinger and Hofbauer [15, Eq. (5.5)] which is closely related to Theorem 1.1. In
fact,wewill show in Section 5 that this equation can be used to prove ourmain theorem.Our proof of the Fürlinger–Hofbauer
result will be combinatorial using Dyck paths, whereas the one given in [15] is by algebraic manipulation of generating
functions. Our proof has the interesting feature that it uses a nonstandard decomposition of Dyck paths which will also be
useful in the next section.

Let P = s1 . . . s2n be a Dyck path of semilength n and let Dn be the set of all such P . We will freely go back and forth
between three standard interpretations of such paths. In the first, P consists of n U-steps and n D-steps starting at the origin
and stayingweakly above the x-axis. It the second, there are n north steps,N = (0, 1), and n east steps, E = (1, 0), beginning
at the origin and staying weakly above the line y = x. In the last, we have n zeros and n ones with the number of zeros in any
prefix of P being at least as great as the number of ones. In this last interpretation, we can apply all the usual permutation
statistics defined in the same way as they were when there were no repetitions. In particular, we will need the descent set
of P

Des P = {i | ai > ai+1}

and the descent number des P = #Des P . A descent of P as a bit string corresponds to a valley of P in the first interpretation,
i.e., a factor of the form DU . We will also need the dual notion of a peak, which is a factor UD.

We also need to define one of the analogues of the Catalan numbers studied by Fürlinger and Hofbauer. Given a Dyck
path P = s1 . . . s2n we let |P|0 and |P|1 be the number of zeros and number of ones in P , respectively. More generally we will
write |w|A for the number of occurrences of A in the wordw for any A andw. Now let

pi(w) = s1 . . . si (5)

bew’s prefix of length i. Define

α(P) =


i∈Des P

|pi(P)|0,

β(P) =


i∈Des P

|pi(P)|1.

Note that α(P)+ β(P) = maj P . Now consider the generating function

Cn(t) = Cn(a, b; t) =


P∈Dn

aα(P)bβ(P)tdes P . (6)

Theorem 3.1 (Fürlinger and Hofbauer [15]).We have

Cn(t) = Cn−1(abt)+ bt
n−2
k=0

ak+1Ck(abt)Cn−k−1((ab)k+1t). (7)

Proof. We will first define a bijection δ :
n−1

k=0 Dk × Dn−k−1 → Dn. Given two Dyck paths

Q = Ua1Db1Ua2Db2 . . .UasDbs ∈ Dk and R = U c1Dd1U c2Dd2 . . .U ctDdt ∈ Dn−k−1

where all exponents are positive, we will combine them to create a Dyck path P = δ(Q , R) ∈ Dn as follows. (When Q is
empty, the same definition works with the convention that a1 = b1 = 0.) There are two cases:

1. If R = ∅, then

P = Ua1+1Db1+1Ua2Db2 . . .UasDbs .

2. If R ≠ ∅, then

P = Ua1+1DUa2Db1Ua3Db2 . . .UasDbs−1U c1Dbs+d1U c2Dd2 . . .U ctDdt .
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Fig. 2. The decomposition of Dyck paths.

For example,

δ(U3D2UD2,UDU2DUD2) = U4DUD2UD3U2DUD2,

as illustrated in Fig. 2. The path P is given by the solid lines while Q is dashed and R is dotted, with Q being shifted to start
at (2, 0) and R concatenated directly after, starting at (10, 0). Note that this puts the peaks of Q at exactly the same position
as the valleys of the first part of P , and makes R and P coincide after the first peak of R

To show that δ is bijective, we construct its inverse. Suppose that

P = U i1Dj1U i2Dj2 . . .U ikDjk .

Again, there are two cases for computing δ−1(P) = (Q , R).

1. If j1 ≥ 2, then

Q = U i1−1Dj1−1U i2Dj2 . . .U ikDjk and R = ∅.

2. If j1 = 1, let s be the smallest index such that i1 + i2 + · · · + is ≤ j2 + j3 + · · · + js+1 (note that s < k), and let
ϵ = j2 + j3 + · · · + js+1 − (i1 + i2 + · · · + is). Then

Q = U i1−1Dj2U i2Dj3 . . .U isDjs+1−ϵ−1 and R = U is+1Dϵ+1U is+2Djs+2 . . .U ikDik .

The first case is easy to understand as you just shorten the first peak of P which had been lengthened by δ. For the second
case, the reader may find it useful to consult Fig. 2 again. As in defining δ,Q is the Dyck path that starts at (2, 0) and has the
peaks at the valleys of P . At some point this will no longer be possible because Q would have to go under the x-axis. Q ends
at the point on the x-axis just before it would be forced to go negative, and R starts at that point. The path R begins with
up-steps until it hits P , and then coincides with P for the rest of the path.

We now use our bijection to prove the theorem. If P ∈ Dn and δ−1(P) = (Q , R), then the term Cn−1(abt) corresponds to
the case when R = ∅, since then adding the extra UD to the first peak moves all the valleys over by one unit. When R ≠ ∅,
suppose Q ∈ Dk and R ∈ Dn−k−1. The factor Cn−k−1((ab)k+1t) comes from the fact that all the valleys of R become valleys of
P , each one having k + 1 additional steps U and D to their left. The term Ck(abt) accounts for the fact that when the valleys
of Q become valleys of P , they have an additional U and D inserted to their left, namely the first D in P and the U preceding
it, and the term abt accounts for the extra valley started by this D. Finally, the factor ak comes from the fact that when the k
up-steps of Q are put in P , they are shifted one valley to the left of the corresponding valley in P . Thus each of these steps
moves the corresponding valley one position to the right. �

The decomposition in Theorem 3.1 is based on the structure of the first peak of P . If we consider the last peak of P , we
will get the following equation which does not appear in [15].

Theorem 3.2. We have

Cn(t) = Cn−1(t)+ an−1t
n−1
k=1

bkCk(t)Cn−k−1((ab)kt).

Proof. We define a second bijection∆ :
n−1

k=0 Dk × Dn−k−1 → Dn as follows. Given two Dyck paths

R = U c1Dd1U c2Dd2 . . .U ctDdt ∈ Dk and Q = Ua1Db1Ua2Db2 . . .UasDbs ∈ Dn−k−1.

1. If R = ∅, then

P = Ua1Db1Ua2Db2 . . .Uas+1Dbs+1.

2. If R ≠ ∅, then

P = U c1Dd1U c2Dd2 . . .U ct+a1DdtUa2Db1Ua3Db2 . . .UasDbs−1UDbs+1.

Now using similar arguments to those in the proof of Theorem 3.1, we get the desired result. �
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Fig. 3. The bijection Γ .

4. The sum peaks and sum tunnels statistics

In this section we discuss another pair of (new) statistics on Dyck paths, which are closely related to the inv statistic
on 321-avoiding permutations. In fact, these two statistics are equidistributed over Sn, as we will show. First we will need
some definitions and notation.

Let npea P denote the number of peaks of P , and note that npea P = des P+1 for any non-empty Dyck path P . Also define
the height of a peak p = UD = sisi+1 in a Dyck path P = s1 . . . s2n to be

ht(p) = |pi(P)|U − |pi(P)|D, (8)

where pi is as in Eq. (5). In the interpretation of Dyck paths using stepsU andD, ht(p) is the y-coordinate of the highest point
of p. In Fig. 2, the peaks of P have heights 4, 4, 3, 2, and 2.

To make a connection with permutations π = a1 . . . an, we consider the diagram of π , defined as follows. Consider a grid
of squares denoted (i, j), i, j ∈ [n], as in a Cartesian coordinate system. Put dots in the squares (i, ai), i ∈ [n], to represent
the elements of π . Fig. 3 displays the diagram for the permutation π = 341625978 ∈ Av9(321). We will now describe a
bijection Γ : Avn(321) → Dn which appeared in [11] (where it is denoted by ψ3), and in a slightly different form in [17].
Associate with each dot (i, j) of π its shadow, S(i, j), which consists of all squares (i′, j′) of the grid with i′ ≥ i and j′ ≤ j.
Consider the lattice path P formed by the boundary of the union of these shadows. (This is the same procedure as used by
Viennot [22] in his geometric version of the Robinson–Schensted correspondence.) DefineΓ (π) = P . Again, Fig. 3 illustrates
the process. Using Lemma 2.1, one can prove that for any permutation π ∈ Sn, the path P will stay above y = x and so be a
Dyck path. Lemma 2.1 also shows that if one restricts to π ∈ Avn(321), then this map becomes a bijection. The inv and lrm
statistics on π translate nicely under Γ .

Proposition 4.1. If Γ (π) = P, then

(a) lrmπ = npea P,
(b) invπ =


p(ht(p)− 1) where the sum is over all peaks p of P.

Proof. For (a), just note that every left–right maximum of π is associated with a peak p = NE of P consisting of two of the
edges of the square containing the maximum. And this correspondence is clearly reversible.

For (b), since π = a1 . . . an avoids 321, each inversion (i, j) of π has the property that ai is a left–right maximum but aj is
not. There is a two-to-one correspondence between elements of π and steps of P , where ai corresponds to the pair (Ni, Ei)
which are the projections horizontally and vertically onto P , respectively. Now (i, j) is an inversion if and only if Nj comes
before Ni and Ej comes after Ei. Thus it follows from Eq. (8) (with U and D replaced by N and E, respectively) that the element
ai corresponding to a peak p causes inversions with exactly ht(p) − 1 elements aj. The −1 comes from the fact that (i, i) is
not an inversion. Summing over all peaks completes the proof. �

Wewill show at the end of Section 6 that the bijection Γ can be used to give alternative proofs of Theorems 1.1 and 6.2.
Because of its appearance in the previous proposition, we define a new statistic sum peaks on Dyck paths P by

spea P =


p

(ht(p)− 1)

where the sum is over all peaks p of P . There is another statistic that we will now define which is equidistributed with sum
peaks.

If P is a Dyck path with steps U,D and v = DU = sjsj+1 is a valley of P then its height, ht(v), is the y-coordinate of its
lowest point. For each valley, v, there is a corresponding tunnel, which is the factor T = si . . . sj of P where si is the step after
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Fig. 4. The tunnels of a Dyck path.

the first intersection of P with the line y = ht(v) to the left of sj. The tunnels for the Dyck path in Fig. 4 are indicated with
dashed lines. In every tunnel, j − i is an even number, so we define the sum tunnels statistic to be

stun P =


T=si...sj

(j − i)/2

where the sum is over all tunnels T of P . In Fig. 4, we have stun P = (12 + 6 + 2 + 2)/2 = 11. It turns out that the sum
peaks and sum tunnels statistics are equidistributed over Dn.

Theorem 4.2. For any n ≥ 1,
P∈Dn

qspea P tnpea P =


P∈Dn

qstun P tn−des P .

Proof. For P ∈ Dn, let des P = n− des P for convenience. Recall that des P is the number of valleys of P . It suffices to define
a bijection h : Dn → Dn such that for any P ∈ Dn we have

spea P = stun h(P) and npea P = des h(P). (9)

Let δ−1(P) = (Q , R)where δ is the bijection of the Section 3. We inductively define h by h(∅) = ∅ and for n ≥ 1

h(P) =

UDh(Q ) if R = ∅,
Uh(R)D if Q = ∅,
Uh(Q )Dh(R) else.

To see that h has an inverse, it suffices to check that given P ′
∈ Dn we can tell which of the three cases above P ′ must

fall into for |P ′
| ≥ 4. (When |P ′

| = 2 then bijectivity is clear since there is only one Dyck path of this length.) The first case
contains all P ′ starting with a single U . The second case covers all P ′ that are strictly above the x-axis between the first and
last lattice points which forces them to start with at least two U ’s. And the last case contains those paths which start with
at least two U ’s and intersect the x-axis before the final vertex.

We now verify Eq. (9) by induction on n. It is easy to verify for n = 1. For greater n, let

P = U i1Dj1U i2Dj2 . . .U ikDjk ,

where i1, j1, . . . , ik, jk are positive. We have three cases.
If j1 ≥ 2, then Q = U i1−1Dj1−1U i2Dj2 . . .U ikDjk and R = ∅. So, comparing P and Q and using the induction hypothesis,

spea P = speaQ + 1 = stun h(Q )+ 1 = stunUDh(Q ) = stun h(P),
npea P = npeaQ = des h(Q ) = desUDh(Q ) = des h(P).

If j1 = i1 = 1, then Q = ∅ and R = U i2Dj2 . . .U ikDjk . Using similar reasoning to the first case,

spea P = spea R = stun h(R) = stunUh(R)D = stun h(P),
npea P = npea R + 1 = des h(R)+ 1 = desUh(R)D = des h(P).

If j1 = 1 and i1 ≥ 2 then, keeping the notation in the definition of δ,

Q = U i1−1Dj2U i2Dj3 . . .U isDjs+1−ϵ−1 and R = U is+1Dϵ+1U is+2Djs+2 . . .U ikDik .

The last peaks of P coincide with all but the first peak of R. The first peak of R and the peaks of Q are in bijection with the
rest of the peaks of P where a peak of P corresponds to the peak of Q (or the first peak of R) which is closest on its right. Let
p1, . . . , ps+1 be these peaks of P , corresponding to peaks q1, . . . , qs in Q and r1

def
= qs+1 in R. Then

ht(pk) =

ht(q1)+ 1 if k = 1,
ht(qk)+ jk if 1 < k ≤ s,
ht(qs+1)+ js+1 − ϵ − 1 if k = s + 1.
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(a) A polyomino in P10 . (b) A polyomino in H9 .

Fig. 5. Parallelogram and shortened polyominoes.

Thus we have
s+1
k=1

ht(pk) =

s+1
k=1

ht(qk)+ j2 + · · · + js+1 − ϵ =

s+1
k=1

ht(qk)+ i1 + · · · + is.

Hence

spea P = speaQ + spea R +

s
k=1

ik

= stun h(Q )+ stun h(R)+

s
k=1

ik

= stunUh(Q )Dh(R)
= stun h(P),

where the third equality comes from the fact that Uh(Q )Dh(R) has exactly one more tunnel than the union of the tunnels of
Q and R, namely the tunnel from the new U to the new D, and that tunnel has semilength

s
k=1 ik. Additionally,

npea P = npeaQ + npea R = des h(Q )+ des h(R) = desUh(Q )Dh(R) = des h(P),

completing the proof. �

5. A proof of Theorem 1.1 using polyominoes

In this section we will give a second proof of our main theorem using Theorem 3.1, another result of Fürlinger and
Hofbauer, and polyominoes. In particular,wewill need a bijectionΥ first defined by Cheng, Eu, and Fu [7] between shortened
polyominoes and 321-avoiding permutations. We first need to define some terms.

A parallelogram polyomino is a pair (U, V ) of lattice paths using steps N and E such that

• U and V begin at the same vertex and end at the same vertex, and
• U stays strictly above V except at the beginning and end vertices.

In Fig. 5(a) we have U = NNNEENENNE and V = EENENNENNN . LetPn denote the set of all parallelogram polyominoes with
|U| = |V | = n. Note that if U = s1 . . . sn and V = t1 . . . tn then s1 = tn = N , and sn = t1 = E. Define two statistics

area(U, V ) = the area contained inside (U, V ),
col(U, V ) = the number of columns spanned by (U, V ).

Returning to our example, area(U, V ) = 12 and col(U, V ) = 4. Consider the generating function

Pn(q, t) =


(U,V )∈Pn

qarea(U,V )tcol(U,V ).

Another result of Fürlinger and Hofbauer, which we state here without proof, shows that this polynomial is closely related
to Cn(a, b; t) as defined in Eq. (7).
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Theorem 5.1 (Fürlinger and Hofbauer [15]).We have

Pn+1(q, t) = qntCn(q, q−1
; t)

for all n ≥ 0. �

We will also need another type of polyomino. Define a shortened polyomino to be a pair (P,Q ) of N, E lattice paths
satisfying

• P and Q begin at the same vertex and end at the same vertex, and
• P stays weakly above Q and the two paths can share E-steps but not N-steps.

Fig. 5(b) shows such a polyomino. We denote the set of shortened polyominoes with |P| = |Q | = n by Hn.
We can now define the map Υ : Hn → Avn(321). Given (P,Q ) ∈ Hn, label the steps of P with the numbers 1, . . . , n

from south-west to north-east. Each step of P is paired with the projection of that step onto Q . Give each step of Q the same
label as its pair. Then reading the labels on Q from south-east to north-west gives a permutation σ = Υ (P,Q ). In Fig. 5(b),
σ = 341625978. The next result compares our statistics on Hn and Avn(321).

Theorem 5.2 (Cheng–Eu–Fu [7]). The map Υ : Hn → Avn(321) is a well-defined bijection such that if Υ (P,Q ) = σ then
(a) area(P,Q ) = inv σ , and
(b) col(P,Q ) = lrm σ .

Proof. The fact that Υ is a well-defined bijection and part (a) were proved in [7], so we will only sketch the main ideas
here. If Υ (P,Q ) = σ , then the left–right maxima of σ will label the E steps of Q . The positions of these maxima in σ
are the same as their positions on Q . Thus, as we saw in Lemma 2.1(b), this data will determine a unique 321-avoiding
permutation provided that the prefix condition is satisfied. And that condition is ensured by the second item in the definition
of a shortened polyomino. Thus we have a bijection.

Now suppose σ = a1 . . . an and that we have an inversion ai > aj where i < j. In that case ai and aj will label an E-
step and an N-step of Q , respectively, with the N-step coming later on the path. One can then show that there will be a
square inside (P,Q ) due north of ai and due west of aj corresponding to the inversion. This process is reversible, so there is
a bijection between inversions of σ and squares inside (P,Q ), proving part (a) of the theorem. And part (b) follows from the
already-noticed fact that the left–right maxima of σ are in bijection with the E-steps of Q . �

The final ingredient is a simple bijection between Pn+1 and Hn: If (U, V ) ∈ Pn+1 then contracting the first step of U and
the last step of V (both of which are N-steps) gives (P,Q ) ∈ Hn. The polyomino in Fig. 5(b) is obtained by shortening the
one in 5(a) in this manner. If shortening (U, V ) gives (P,Q ) then we clearly have

area(U, V ) = area(P,Q )+ col(P,Q ), (10)
col(U, V ) = col(P,Q ). (11)

Second proof of Theorem 1.1. Theorem 5.2 together with Eqs. (10) and (11) give In(q, t) = Pn+1(q, t/q). Combining this
with Theorem 5.1 yields

In(q, t) =


qn−1tCn(q, 1/q; t/q) if n ≥ 1,
1 if n = 0.

Now in Theorem 3.1 we replace a, b, and t by q, 1/q, and t/q, respectively. Multiplying both sides by qn−1t and rewriting
everything in terms of the corresponding inversion polynomials finishes the proof. �

6. A major index polynomial recursion

In the paper of Dokos et al., they asked for a recursion for the 321-avoiding major index polynomial which is defined by
Eq. (1) with st = maj and π = 321. The purpose of this section is to give such a recurrence relation using polyominoes.

Consider the polynomial

Mn(q, t) =


σ∈Avn(321)

qmaj σ tdes σ . (12)

Using the description of the bijection Υ : Hn → Avn(321) given in the proof of Theorem 5.2, it is clear that each descent
of σ corresponds to a factor EN of Q where Υ −1(σ ) = (P,Q ) and vice-versa. Since the position of the descent in σ is the
same as the position of the factor on Q , we have Des σ = DesQ where, as usual, Q is identified with the bit string obtained
by replacing N and E by 0 and 1, respectively. It follows that des σ = desQ and maj σ = majQ . So we can rewrite (12) as

Mn(q, t) =


(P,Q )∈Hn

qmajQ tdesQ .

We will need a lemma about what happens if we restrict this sum to the parallelogram polyominoes Pn ⊆ Hn.
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Lemma 6.1. We have
(P,Q )∈Pn

qmajQ tdesQ = Mn−1(q, t)+ (qn−1t − 1)Mn−2(q, t).

Proof. Let (P ′,Q ′) ∈ Hn−1 be obtained from (P,Q ) ∈ Pn by shortening. Also write P = p1 . . . pn−1E and Q = q1 . . . qn−1N .
We have two cases.

If qn−1 = E, then n − 1 ∈ DesQ which implies

qmajQ tdesQ = qn−1+majQ ′

t1+desQ ′

= qn−1tqmajQ ′

tdesQ
′

.

Furthermore, P ′ and Q ′ both end with an E step and removal of that common step leaves a polyomino in Hn−2. It follows
that the (P,Q ) in this case contribute qn−1tMn−2(q, t) to the sum in the lemma.

For the second case we have qn−1 = N . It follows that (P ′,Q ′) ∈ Hn−1 where the only restriction is that Q ′ end with
a north step. In other words, we want the generating function for all polyominoes in Hn−1 except for those whose lower
path ends with an E step (which must coincide with the last step of the upper path which is always E). This is clearly
Mn−1(q, t)− Mn−2(q, t), and adding the contributions of the two cases we are done. �

Theorem 6.2. For n ≥ 1 we have

Mn(q, t) = Mn−1(q, qt)+

n
k=2


Mk−1(q, t)+ (qk−1t − 1)Mk−2(q, t)


Mn−k(q, qkt),

and

Mn(q, t) = Mn−1(q, t)+

n−2
k=0

Mk(q, t)

Mn−k−1(q, qkt)+ (qn−1t − 1)Mn−k−2(q, qkt)


.

Proof. To obtain the first equation, suppose (P,Q ) ∈ Hn. If both P and Q start with an E step then the generating function
for such pairs isMn−1(q, qt) since each descent of Q is moved over one position.

Since Q always starts with an E-step, the only other possibility is for P to start with an N-step. Let z be the first point
of intersection of P and Q after their initial vertex. Let Q0 and Q1 denote the portions of Q before and after z, respectively,
and similarly for P0 and P1. Let k = |Q0| = |P0|. But then P0 and Q0 do not intersect between their initial point and z. Thus
(P0,Q0) ∈ Pk and, from the previous lemma, the generating function for such pairs is the first factor in the summation.

We also have |Q1| = |P1| = n − k and (P1,Q1) ∈ Hn−k. Since Q1 is preceded by a path with k steps, each of its descents
will be increased by k. So the generating function for such pairs isMn−k(q, qkt). Putting all the pieces together results in the
first formula in the statement of the theorem.

To obtain the second, merely replace z in the proof just given by the last point of intersection of P and Q before their final
vertex. �

Weend this sectionwith the observation that there is a close connection between themapsΓ andΥ defined in Sections 4
and 5, respectively. Specifically, the inverse of Γ : Avn(321) → Dn coincides with the composition of the bijection from Dn
to Hn used in [15] to prove Theorem 5.1 with the bijection Υ : Hn → Avn(321). So one can use Γ in place of Υ in some of
the proofs. For example, the equation In(q, t) = qn−1tCn(q, 1/q; t/q)which appears in the second proof of Theorem 1.1 can
also be obtained from Γ as follows. If π ∈ Avn(321) and Γ (π) = P , then by Proposition 4.1 and the definitions in Section 3,
we have

inv(π) = spea P = n + α(P)− β(P)− npea P = n − 1 + α(P)− β(P)− des P,
lrm(π) = npea P = 1 + des P.

Thus,

In(q, t) =


P∈Dn

qspea P tnpea P = qn−1tCn(q, 1/q; t/q).

Theorem6.2 can also be proved using the bijectionΓ . Note that each descent in a permutationπ ∈ Avn(321) corresponds
to an occurrence of the string NEE in the Dyck path Γ (π). Thus the statistics des and maj in π correspond to the number
of occurrences and the sum of the x-coordinates after the first E in each occurrence of NEE in Γ (π), respectively. Using the
standard decomposition of a non-empty Dyck path as P = NQER where Q and R are Dyck paths, as well as its reversal, we
can keep track of these two statistics to obtain the recursions in Theorem 6.2.

7. A refinement of Theorem 1.1 using continued fractions

We will now use a modification of the bijection in Section 2 together with the theory of continued fractions to give a
third proof of Theorem 1.1. In fact, we will be able to keep track of a third statistic on permutations σ , namely

fix σ = the number of fixed points of σ .
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So consider the following polynomial

In(q, t, x) =


σ∈Avn(321)

qinv σ t lrm σ xfix σ

and the generating function

I(q, t, x; z) =


n≥0

In(q, t, x)zn.

It is worth noting that

In(q, t, x/t) =


σ∈Avn(321)

qinv σ texc σ xfix σ (13)

where exc σ is the number of excedances ofσ (i.e., the number of indices i such thatσ(i) > i). This follows from the following
fact.

Lemma 7.1. Suppose σ = a1a2 . . . an ∈ Avn(321). Then ai is a left–right maximum if and only if ai ≥ i. Consequently,

lrm σ = exc σ + fix σ .

Proof. If ai is a left–right maximum, then ai is greater than the i − 1 elements to its left in σ , so ai > i − 1. Conversely, if ai
is not a left–right maximum then it is smaller than some element to its left in σ . Also, by Lemma 2.1(a), it is smaller than all
n − i elements to its right in σ . This implies that n − ai ≥ n − i + 1, whence ai ≤ i − 1. �

Continued fractions are very useful for enumerating weighted Motzkin paths M . If s is a step of M then we defined its
height to be

ht(s) = the y-coordinate of the initial lattice point of s.

If ht(s) = i then we assign s a weight wt s = ui, di, or li corresponding to s being an up, down, or level step, respectively.
Weight pathsM = s1 . . . sn and the set Mn of all such Motzkin paths by

wtM =

n
j=1

wt sj

and

wtMn =


M∈Mn

wtM.

For example, taking the pathM in Fig. 1 would give (ignoring the subscripts on the L’s) wtM = u0l21u1l2d2l1d1.
In the sequel, we will use the following notation for continued fractions

F =
a1|
|b1

±
a2|
|b2

±
a3|
|b3

± · · · =
a1

b1 ±
a2

b2±
a3

b3±···

. (14)

We can now state Flajolet’s classic result connecting continued fractions and weighted Motzkin paths.

Theorem 7.2 (Flajolet [14]). If z is an indeterminate then
n≥0

wtMn zn =
1|

|1 − l0z
−

u0d1z2|
|1 − l1z

−
u1d2z2|
|1 − l2z

−
u2d3z2|
|1 − l3z

− · · · (15)

is the generating function for weighted Motzkin paths. �

In order to derive a continued fraction expansion for I(q, t, x; z), we will set up a bijection between Avn(321) and a
subset ofM(2)

n . CallM ∈ M
(2)
n restricted if it has no L0 steps at height 0. LetRn be the set of such paths. In the following proof,

we will use the same definitions and notation as in Section 2.

Theorem 7.3. The series I(q, t, x; z) has continued fraction expansion

I(q, t, x; z) =
1|

|1 − txz
−

tqz2|
|1 − (1 + t)qz

−
tq3z2|

|1 − (1 + t)q2z
−

tq5z2|
|1 − (1 + t)q3z

− · · · .

Proof. We define a bijection ν : Avn(321) → Rn in a way similar to the bijection µ in the first proof of Theorem 1.1, but
without the shift. Specifically, given σ = a1 . . . an ∈ Avn(321) with val σ = (v1, . . . , vn) and pos σ = (p1, . . . , pn), we let
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Fig. 6. The Motzkin path ν(σ ) associated with σ = 361782495.

ν(σ ) = M = s1 . . . sn where

si =


U if vi = 0 and pi = 1,
D if vi = 1 and pi = 0,
L0 if vi = pi = 0,
L1 if vi = pi = 1.

Continuing the example from the beginning of the paper, σ = 361782495 would be mapped to the path in Fig. 6.
We must show that ν is well defined in that M ∈ Rn. Defining the inverse map and proving it is well defined is similar

and so left to the reader. The fact that M is a Motzkin path follows because, by Lemma 2.1(b), in every prefix of pos σ the
number of ones is at least as great as the number in the corresponding prefix of val σ , with equality for all of σ . This forces
similar inequalities and equality between the number of up-steps and the number of down-steps inM . ThusM stays weakly
above the x-axis and ends on it.

To see that M has no L0-steps on the x-axis, note first that all steps before the first U-step (if any) must be of the form
L1 because, if not, then the index i of the first such L0-step would contradict Lemma 2.1(b). Also, any time M returns to the
x-axis, it must be with sj = D for some j. So the corresponding prefixes of val σ and pos σ have the same number of ones
and this implies that a1 . . . aj are 1, . . . , j in some order. Now using an argument similar to the one just given, one sees that
there can be no L0-step before the next U-step. This completes the proof that µ is well defined.

We now claim that

fix σ = the number of L1-steps at height 0, (16)
lrm σ = #U(M)+ #L1(M), (17)
inv σ = areaM. (18)

Let us prove the first equation. If sj = L1 with ht(sj) = 0 then, as in the proof that ν is well defined, a1 . . . aj−1 are the
numbers 1, . . . , j − 1 in some order. Thus if vj = pj = 1 then both the position and value of aj correspond to a left–right
maximum. This forces aj = j and so we have a fixed point. Similar considerations show that every fixed point in a 321-
avoiding permutation is a left–right maximum corresponding to an L1 step at height 0.

Eq. (17) follows immediately from the fact that the number of left–rightmaxima in σ equals the number of ones in pos σ ,
and the corresponding steps inM are of the form U or L1.

For the final equality, first recall that all inversions of σ are between a left–right maximum m and a non-left–right
maximum to its right by Lemma 2.1(a). So ifm is in position p then, because everything to its left is smaller, it createsm− p
inversions. Also, the maximum values and their positions in σ are given by ivi and jpj, respectively, whenever vi, pj = 1.
Since ivi = jpj = 0 whenever vi, pj = 0 we have

inv σ =


vi=1

ivi −

pj=1

jpj =

n
i=1

(vi − pi)i.

As far as the area, we start by noting that areaM =


j ht(sj). Furthermore, ht(sj) is just the difference between the
number of up-steps and down-steps preceding sj. For any step si, we have pi − vi = 1,−1, or 0 corresponding to si being an
up-, down-, or level-step, respectively. So ht(sj) =


i<j(pi − vi). Combining expressions, interchanging summations, and

using the fact that val σ and pos σ have the same number of ones, gives

areaM =

n
j=1


i<j

(pi − vi) =

n
i=1

[(n − i)pi − (n − i)vi] =

n
i=1

(vi − pi)i.

Comparing this expression with the one derived for inv σ in the previous paragraph completes the proof of (18).
To finish the demonstration of the theorem, we just need to set the weights in Theorem 7.2 in light of (16)–(18). The

only level steps at height 0 are L1 which contribute to both fix σ and lrm σ . So we let l0 = tx. At heights h ≥ 1 we have
both L0 and L1 steps. The former only contribute to inv by adding h, while the later also increase the lrm statistic by one, so
we have lh = (1 + t)qh. Similar reasoning gives uh = tqh and dh = qh which, after plugging into Eq. (15), completes the
proof. �
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The following refinement of Theorem 1.1 is a simple consequence of the preceding result.

Theorem 7.4. For n ≥ 1,

In(q, t, x) = txIn−1(q, t, x)+

n−2
k=0

qk+1Ik(q, t, 1) [In−1−k(q, t, x)− t(x − 1)In−2−k(q, t, x)] .

Proof. We can derive from the continued fraction expansion of I(q, t, x; z) in Theorem 7.3 that

I(q, t, x; z) =
1

1 − txz −
tqz2

−qz+ 1
I(q,t,1;qz)

.

After simplification, this leads to the functional equation

I(q, t, x; z) = 1 + txzI(q, t, x; z)+ qzI(q, t, 1; qz) [I(q, t, x; z)− 1 − tz(x − 1)I(q, t, x; z)] . (19)

Extracting the coefficient of zn on both sides gives the desired recursion. �

We note that the q = 1 case of the functional equation (19) is, by (13), equivalent to Eq. (1) in [11]. It can be explicitly
solved as done in Eq. (2) of the work just cited.

One can obtain another simple continued fraction expansion of the series I(q, t, x; z) in the case x = 1. Indeed, combining
Theorem 7.3 with the well-known relation [16, p. 129]

1|
|1

−
λ1z|
|1

−
λ2z|
|1

− · · · =
1|

|1 − λ1z
−

λ1λ2z2|
|1 − (λ2 + λ3)z

−
λ3λ4z2|

|1 − (λ4 + λ5)z
−

λ5λ6z2|
|1 − (λ6 + λ7)z

− · · · ,

we get the following result.

Corollary 7.5. Set I(q, t; z) := I(q, t, 1; z). The generating function I(q, t; z) has continued fraction expansion

I(q, t; z) =
1|
|1

−
tz|
|1

−
qz|
|1

−
tqz|
|1

−
q2z|
|1

−
tq2z|
|1

−
q3z|
|1

−
tq3z|
|1

−
q4z|
|1

−
tq4z|
|1

− · · · . �

It is interesting to note that there is a second recursion for In(q, t)which follows from a result of Krattenthaler.

Theorem 7.6 (Krattenthaler [17]). We have

I(q, t; z) =
1|

|1 − (t − 1)z
−

z|
|1 − (tq − 1)z

−
z|

|1 − (tq2 − 1)z
−

z|
|1 − (tq3 − 1)z

− · · ·

as the continued fraction expansion of I(q, t; z). �

Corollary 7.7. For n ≥ 1,

In(q, t) = tIn−1(q, t)+

n−2
k=0

Ik(q, t)In−1−k(q, qt).

Proof. Simple manipulation of the continued fraction in Krattenthaler’s Theorem gives the functional equation

I(q, t; z) = 1 + (t − 1)zI(q, t; z)+ zI(q, t; z)I(q, qt; z).

Taking the coefficient of zn on both sides of this equation finishes the proof. �

It is worth noting that, a priori, it is not at all clear that the recursions in Theorem 1.1 and the above corollary generate the
same sequence of polynomials. The relationship between these two recursions can be interpreted in terms of the statistics
sum peaks and sum tunnels, introduced in Section 4, as follows. Using the standard decomposition of non-empty Dyck
paths as P = NQER, where Q and R are Dyck paths, the generating function for Dn with respect to the statistics (spea, npea)
satisfies the recursion in Corollary 7.7. On the other hand, using the same decomposition, the generating function for Dn
with respect to the statistics (stun, n − des) satisfies the recursion in Theorem 1.1. Thus, Theorem 4.2 implies that the two
recursions are equivalent.
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