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Abstract 

Sagan, B.E., Inductive proofs of q-log concavity, Discrete Mathematics 99 (1992) 289-306. 

We give inductive proofs of q-log concavity for the Gaussian polynomials and the q-Stirling 

numbers of both kinds. Similar techniques are applied to show that certain sequences of 

elementary and complete symmetric functions are q-log concave. 

1. Introduction and definitions 

Throughout this paper N and Z will stand for the natural numbers 

{0,1,2, . . . } and integers {. . . , -2, -1, 0, 1,2, . . . } respectively. A sequence of 

natural numbers 

(QCeL =. . . , a-2, a-1, a,, 01, a29 . . . 

is log concave if 

ak_-luk+l <a; for all k E Z. 

Log concave sequences appear in algebra, combinatorics and geometry. See the 

survey article of Stanley [17] for details. 

Now let q be an indeterminate. In order to define the q-analog of log 

concavity, we must first give a q version of the order relation c on N. Given the 

two polynomials f(q), g(q) E N[q] with f(q) = Ciso aiqi, g(q) = Ciao biqij we will 

say that 

f(q) Go g(q) if and only if ui c bi for all i. 

Equivalently f(q) s,g(q) whenever g(q) -f(q) E fW[q]. Note that while 6 is a 

total’order on N, s4 is only a partial order on N[q]. Still, this ordering respects 

the algebraic operations in N[q]. 
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Lemma 1.1. Suppose the polynomials f(q), g(q), F(q), G(q) E N[q] satisfy the 
inequalities f (q ) ss F(q) and g(q) s4 G(q) then: 

(1) f(q) + g(q) ==4 F(q) + G(q), 
(2) f(q)g(q) 64 F(q)G(q). 

The proof of this lemma is straightforward. 
Now the definition of q-log concavity first suggested by Stanley, should be quite 

natural. A sequence of polynomials in N[q] 

(fk(q))kcZ =. . . 7 f-*(q)~ f-1(4), M4h h(s), fi(q), . * * (1) 

is q-log concave if 

fk--l(q)fk+l(q) c9fk(q)’ for all k E z. 

It is clear that this statement reduces to the one about sequences of natural 
numbers when we let q = 1. Furthermore, we say that the sequence (1) is strongly 
q-log coixxzve if 

fk--l(qlfi+dq) ~q,h(qlfi(q) for all 13 k. 

The reader may be puzzled by this last definition, as these two notions are 
equivalent for sequences of natural numbers. This is not so for arbitrary q. For 
example, Lemke pointed out that the sequence q*, q + q*, 1 + 2q + q*, 4 + 2q + 
q* is q-log concave but not strongly q-log concave. 

Gessel [7] was the first to give a combinatorial proof of the Jacobi-Trudi 
identity (see Section 4.4) which showed strong q-log concavity of a sequence of 
modified q-binomial coefficients. Butler [4] then demonstrated combinatorially 
that the q-binomials themselves enjoyed this property as the lower index varies. 
Another combinatorial proof was given by Krattenhaler [lo]. In a previous paper, 
[14], we gave Stirling number of both kinds using induction. In the next section 
we will show how this method extends to the q-analogs of these sequences. This 
settles Butler’s conjecture that the q-Stirling numbers of the second kind are 
strongly q-log concave when the second index varies. Finally, Leroux [12] 
adapted the techniques in [4] to give combinatorial demonstrations for the 
q-Stirling numbers. 

In Section 3 we will adapt the inductive method to sequences of elementary and 
complete symmetric functions. Section 4 will discuss proofs of these results using 
injections and Schur functions as well as some remarks and open problems. 

2. q-Binomial coefficients and q-Stirling numbers 

The standard q-analog on n E N is 

[n] = 1+ q + q* + f * . + qn-1. 

This furnishes us with our first strongly q-log concave sequence. 
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Lemma 2.1. The sequence ([n]),,N is strongly q-log concave. 

Proof. To verify [k - l][f + l] c4 [k][l] for k c 1, merely multiply out both sides 
and compare like powers of q. 0 

Next we have the q-factorial 

[n]! = [n][n - l] * . * [2][1]. 

Finally we can define the q-binomial coeficients or Gaussian polynomials as 

” { 
bl! 

n = 
k 

[k]![n-k]! foroGksn’ 

0 fork<Oorkan. 

Note that this defines the q-binomial coefficients for all 
It turns out that the [;I are polynomials in q, although 
from the definition. 

Since we will be dealing with inductive proofs, we 
recursions for the q-binomial coefficients. 

natural n and integral k. 
this is not instantly clear 

will need the two usual 

Proposition 2.2. For n > 1, the q-binomial coefficients satisfy the recursions 

and 

as well as the initial condition 

= Ok 6, 

where C& is the Kronecker delta. 

It is easy to prove this proposition directly from the definition of [;I. As a 
corollary, we see immediately that the q-binomial coefficients are in N[q] as 
promised above. 

We will define the q-analogs of the Stirling numbers inductively. The (signless) 
q-Stirling numbers of the first kind are denoted c[n, k] and satisfy 

c[n, k] = c[n - 1, k - l] + [n - l]c[n - 1, k] for n Z= 1, with c[O, k] = &. (2) 

The q-Stirling numbers of the second kind are defined by 

S[n, k] = S[n - 1, k - l] + [k]S[n - 1, k] for n 3 1, with S[O, k] = c&. (3) 

These polynomials were first studied by Gould [9] and Carlitz [5,8] respectively. 
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Theorem 2.3. For fixed n 2 0, the sequence ([i])kEZ is strongly q-log concave. 

Proof. It will be convenient to prove the statement 

4k:11[,:,14x~1 forallkGIandOSiS2(1-k+l). (4) 

The upper bound on the power of q enters because the difference in degree 

between [Xl and [k” iI[,: il is exactly 2(Z - k + 1). The equation is clearly true 

when n = 0, so assume n 3 1. 

We first consider the case where 1 s i s 21- 2k + 1. Expanding the left hand 

side of (4) using the first recursion in Proposition 2.2 we obtain 

Applying the same procedure on the right yields 

[aI:][‘l’_:]+q’[~I:][nT1] 

(5) 

(6) 

Now compare corresponding terms of (5) and (6). After canceling various 

powers of q, we see (by Lemma 1.1) that it suffices to prove the following four 

inequalities: 

(7) 

(9) 

Equation (7) follows from induction and the fact that (I - 1) - (k - 1) + 1 = 

1 - k + 1 so that the bounds on i are the same as in (4). For (8) we need only 

verify that 0 s i + 1 s 2{Z - (k - 1) + l}, which again follows from (4). To get 

i - 1 in the right range for (9), the fact that we are in the case where 
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1 s i s 21- 2k + 1 comes into play. Note, also, that we may not have k s 1 - 1 for 

purposes of induction. But this only happens if k = I which forces both sides of (9) 

to be equal. Finally, equation (10) is immediate. 

To take care of the case where i = 0, we expand the left and right sides of (4) as 

and 

respectively. When i = 2(1- k + 1) we use 

and 

The details of the comparison process are similar to those above and are left to 

the reader. 0 

It seems as if (4) is a stronger statement than the theorem itself. Because of 

certain properties of the q-binomial coefficients (symmetry and unimodality), 

they are actually equivalent. We will explain this more fully in (ii) of the last 

section. 

The proof for the q-Stirling numbers of the first kind is particularly easy. 

Theorem 2.4. For fixed n S 0, the sequence (c[n, k])keZ is strongly q-log concave. 

Proof. We again use induction on n. To eliminate a plethora of n - l’s we prove 

c[n + 1, k - l]c[n + 1, I+ l] Ss c[n + 1, k]c[n + 1, I] for all 13 k. 

Expanding both sides by the recursion for c[n, k] and comparing corresponding 

terms yields a sufficient set of equations: 

c[n, k - 2]c[n, I] c4 c[n, k - l]c[n, I- 11, 

[n]c[n, k - 2]c[n, 1+ l] c4 [n]c[n, k - l]c[n, I], 

[n]c[n, k - l]c[n, I] c4 [n]c[n, k]c[n, I- 11, 

[n]%[n, k - l]c[n, I + l] s4 [n]‘c[n, k]c[n, I]. 

These all follow from induction and Lemma 1.1. 0 
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Theorem 2.5. Forfixed n 2 0, the sequence (S[n, k])kpZ is strongly q-log concave. 

Proof. We need to strengthen the induction hypothesis to 

q’S[n + 1, k - l]S[n + 1, 1 + 11 s4 S[n + 1, k]S[n + 1, I] 

for all 13 k and 0 s i s I- k + 2. Proceed as usual. For the first and fourth terms 

we want to show 

q’S[n, k - 2]S[n, I] =s4 S[n, k - l]s[n, I- 11, 

qi[k - l][I + l]s(n, k - l]s([n, I+ l] Go [k][l]S[n, k]S[n, 11. 

Since [k - l][l+ 11 sQ [k][l] (by Lemma 2.1), Lemma 1.1 and induction finish 

these cases. 

Combining the two middle terms, we need to prove 

q’[l+ l]S[n, k - 2]S[n, I+ l] + qi[k - l]s[n, k - l],S[n, I] 

ss [l]s[n, k - l]s[n, I] + [k]S[n, k]S[n, 1 - 11. (11) 

Suppose first that 1 G i s I- k + 2. Substituting qi[l + l] = qit’[l] + 1 and 

[k] = q(k - l] + 1 above, we obtain 

qi+l[l]S[n, k - 2]S[n, 1 + l] + q’S[n, k - 2]S[n, I+ l] 

+ q’[k - l]s[n, k - l]s[n, I] 

s9 [l]s[n, k - l]s[n, I] + s[n, k]S(n, I- l] + q[k - l]s[n, k]S[n, I- 11. 

Comparing corresponding terms we get three inequalities, all of which are true 

because of the bounds on i in this case (and Lemma 1.1). In particular, for the 

middle pair when k < 1 we use 

.Jln, k]S@, / _ l]{ s4 q;;]n7 k - ‘]% ‘1 forOcj<l-k+l, 

s9q1 [n,k-2]S[n,l+l] forO<jc2(1--k+2). 

To conclude we need only consider i = 0. Using [l + l] = [1] + q1 and [k] = 

[k - l] + q’+‘, equation (11) becomes 

[l]s[n, k - 2]S[n, I+ l] + q%[n, k - 2]S([n, I+ l] 

+ [k - l]s[n, k - l]s[n, I] 

s,[l],S[n, k - l]s[n, I] + qk-‘S[n, k]S[n, l- l] + [k - l]S[n, k]S[n, I- 11. 

We omit the rest of the argument since it is similar to the first case. El 

Unlike the case of the q-binomial coefficients, the induction hypothesis really is 

stronger here. So we have really proved the following. 

CoroUary2.6. Ftin~O. Thenforalll~kandO~i~l-k+2wehave 

q’S[n, k - l]S[n, I+ l] s4 S[n, k]S[n, I]. 
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3. Elementary and complete symmetric functions 

Let x = {x1, x2, . . . , x,} be a set of variables. The kth elementary symmetric 
function is 

ek(xl, x2, . . . ,x,) = c Xi,Xin . . . Xix for 0 < k s n, 
lGi,<i*<. ..<i*sn 

with ek(X1, x2, . . . , x,) = 0 for k < 0 or k > n. The kth complete symmetric 
function is 

h/&,X2,. . . r&z)= c Xi,Xi, * ' . Xi, for k 2 0, 
l<i,zzi*<. .<ikGn 

with hk(xl, x2, . . . , x,) = 0 for k < 0. From these definitions it is easy to verify 
the following proposition. 

Proposition 3.1. For n 2 1, the elementary symmetric functions satisfy the 
recursion 

e&, . . . , 4 =x,ek-l(xl, . . . , x,-J + 4x1, . . . , .~d 

with the initial condition ek(0) = c?~,~. 
For n 2 1, the complete symmetric functions satisfy the recursion 

h/A, . . . , x,) =-d+1h, . . . , x,) +h,&, . . . ,x,-J 

with the initial condition h,(0) = bO+ 

The q-binomial coefficients and q-Stirling numbers can both be expressed as 
specializations of these functions. In fact, we have 

= q-@‘ek(l, q, . . . , q”-l) (12) 

= W, q, . . . , qn-“), (13) 

ch kl = e&[ll, [21, . . . , [n - 111, (14) 

W, kl = h-,&l], [21, . . . , WI). (15) 

All these identities can be proven directly from the appropriate recursions. This 
suggests that we can prove generalizations of the theorems in Section 2 for 
elementary symmetric functions and complete symmetric functions. First, how- 
ever, we need a few more definitions. 

Given two polynomial f (x), g(r) E N[x] (where x = {x1, x2, . . . , x,}) we define 

f(x) ~,g(x) if and only if g(r) -f(x) E I+]. 

It is obvious that the analog of Lemma 1.1 holds. The definition of strongly r-log 
concave is obtained by replacing q by x everywhere in the definition of strongly 
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q-log concave. For the sake of brevity we will let 

ek(n)d~fe&l, x2, . . . , x,) 

and similarly for the complete symmetric functions. 

Theorem 3.2. For fixed n 2 0, the following sequences are strongly x-log concave: 

(1) (ek(n)h 

(2) &(n))kE~. 

Proof. To prove (l), follow the usual procedure of applying the recursion and 

comparing like terms. Thus to show 

ck-r(n)e,+r(n) =Q&)c&) 

it suffices to prove 

xiek_2(n - l)e,(n - 1) d,x&,(n - l)el_,(n - l), 

vk-2@ - lkl+l(n - 1) Sxx,ek_l(n - l)e,(n - l), 

x,ek_-l(n - l)e!(n - 1) Sxx,ek(n - l)e,_,(n - l), 

ek-l(n - l)el+I(n - 1) S,,ek(n - l)e,(n - 1). 

All of these are instances of the induction hypothesis. 

For the complete symmetric functions, we will prove that for all n 2 m 2 0 and 

all 13 k we have 

Lr(n)h,+i(m) %Un)Um). (16) 

Our method will be a double induction on I and n. To check the boundary cases, 

note that (16) is certainly true if I< 0 or n = 0. 
Now consider n >O. If k <O or m = 0 then both sides of (16) must be zero. 

Thus we may assume k 1 > 0, m > 0 and use induction on these two variables as 

well. Expanding both sides as usual, we are reduced to verifying 

x,x,,&&)Wm) ~xx,x,hk-l(n)hl-l(m), 

x,h,-l(n)h,+l(m - 1) %X,hk-r(n)hl(m - I), 

x,&-&r - I)Mm) %.x,&&r - IP-r(m), 

h,_l(n - l)hl+I(m - 1) s,h,(n - l)h/(m - 1). 

All of these equations follow by induction as long as n > m and I > k (so that the 

induction hypothesis will apply to the third inequality). 

If n = m and 13 k we can apply the recursion to only the terms involving 1 in 

(16). This yields a pair of inequalities 

x&k-r(n)Un) %x,h&)hr-i(n)j 

h,-i(n)h,+r(n - I) %h&)h,(n - I). 
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All are true under the restrictions we have imposed in this case. Finally, to take 

care of the situation where I= k and n > m, we expand only the terms with k in 

(16). The details are left to the reader. 0 

We immediately have the following corollary. 

Corollary 3.3. Let fi, f2, . . . , fn E N[q] be any arbitrary sequence of polynomials. 
Then the sequences 

and 

(hk(fi,A . . . ,fn))kez 

are strongly q-log concave. 

For simplicity, we will often suppress the parameter q as we have above. 

Another corollary is the following. 

Corollary 3.4. The following sequences are strongly q-log concave: 

(1) (P[i&L? 
(2) WncM 
(3) (c[n, klk, 
(4) (S[n, kl)+ 

Proof. Combining the previous corollary with equations (12), (13), (14) and (15) 

yields items (l), (2), (3) and (4) respectively. 0 

The strong q-log concavity of the first equation is equivalent to 

upon cancellation of various powers of q. As was noted after the proof of 

Theorem 2.3, this is a weaker statement than the theorem itself. Item (3) was 

proved in Section 2 as Theorem 2.4 while the other two have not been presented 

previously here, although they are known results. We call (1) and (3) (respec- 

tively (2) and (4)) strong q-log concavity in n (respectively k) because that is the 

variable which is changing. Note that the c[n, k] are not even q-log concave in n; 

the case k = 1 is a counterexample. However they do satisfy a similar condition to 

be given later (Corollary 4.8). 

Next we investigate q-log concavity in n for the elementary and complete 

symmetric functions. 
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Theorem 3.5. Fix k E N and let (fn)nal, fn E N[q], be a strongly q-log concave 
sequence of polynomials. Then the sequences 

(ek(fbf2, . . . ,fn)LsN 
and 

(hk(fi,fz, . . . ,fn))ns~ 

are strongly q-log concave. 

Proof. We will need some notation. Let S = {sr < s2 < . . . < si} be a subset of the 

positive integers. Then define 

S+n={s,+n,s,+n,...,sj+n} foranyneN 

and 

fs =fs,.L, . . *.fi,. 

The cardinality of S is denoted (SI. As usual, ek(n) stands for e,(fi, f2, . . . , fn) 
and similarly for the complete functions. 

For the elementary sequence, we will prove two statements. Suppose that 

l~k,n~m~OandSaregivenwithIS(=I-k, then 

f s+n+le,(m - l)ek(n + 1) sgfs+mek(m)e,(n)j (17) 

fs+ne,(m)ek(n) c,fs+mek(m)el(n), (18) 

where the second equation holds only for 1 > k and n > m. 
First we show that (17) holds. It is true if k < 0 because then the left-hand side 

is 0, so assume k 3 0. We will use induction on m and n. If m = 1, then the left 

side can be nonzero (the only case we need worry about) only if 1 and k are both 

0. So S = 0 and both sides of the equation equal one. If n = 1 this forces m = 1, so 

the base cases for both m and n are complete. 

Now suppose n 3 m 2 2. Applying recursion to the terms with subscript k of 

(17) and breaking the result into two inequalities yields 

fs+,+,eLm - l)e,(n) 4qfs+mek(m - l)el(n), (19) 

fs+,+If,+leAm - l)ek-,(n) cqfs+mfmek-4m - l)eLn). (20) 

When I= k in (19), S becomes empty and thus both sides are equal. When I> k, 
this inequality follows from (18) with m replaced by m - 1 and S by S + 1. In the 

future we will use the PASCAL language replacement symbol for this, writing it 

as m := m - 1, S := S + 1. Equation (20) is also a special case of (18) where 

m := m - 1, k := k - 1 and S := (S + 1) U (1) (note that this makes the cardinality 

of S correct). 

In a similar manner, the proof of (18) reduces to demonstrating 

fs+,e,(m - l)eAn) c4fs+mek(m)er(n - I), 

fscnfme,-l(m - l)eAn) c4fs+mfnek(m)er-I(n - 1). 
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The first of these is (17) with n := n - 1. The second will also follow from (17) 

using n := n - 1, I := 1 - 1 and S := S\ {si} (S with its smallest element s1 deleted) 

provided we can take care of the left-over terms on both sides. But this amounts 

to showing that fs,+Jmsq s,+m n f f which is true since the f-sequence is q-log 

concave. 

The proof that the complete symmetric functions are strongly q-log concave in 

n is similar to the one for the elementaries. The induction hypothesis is slightly 

different and S must be permitted to be a multiset ( = set with repetitions), but 

the reader will have no trouble supplying the details. 0 

Using equations (13)-( 15) in conjunction with this theorem gives the following. 

Corollary 3.6. Forfied k 3 0, the following sequences are strongly q-log concave: 

(1) (L ” klhh 
(2) (ch n - klL,rm, 
(3) 6% n - k1L.w 

Of course, the first of these three results is the same as item (2) of Corollary 3.4 

because of the symmetry of the Gaussian coefficients. These results are referred 

to as q-log concavity in n - k. It is not true that the sequence (en_k(n))nEN is 

strongly q-log concave when the variables are arbitrary polynomials in q, e.g., 
consider (en(n)),,N. However, it is conjectured that a related property holds; see 

Section 4.5. 

The following theorem simultaneously generalizes Theorems 2.3 and 2.5. 

Theorem 3.7. Fix b, c E N[q] such that c ay b or c = 0 and b is arbitrary. Consider 
the sequence defined by fn = bq”-’ + c[n - l] for all n 3 1. Then both the 
sequences ( fn)nal and 

h,(f,, . . . ,fn), h,(f,> . . . ,fn-I), . . . 2 h,(O) 

are strongly q-log concave. 

Proof. Showing that the first sequence is strongly q-log concave is a routine 

calculation, merely expand each J in terms of powers of q with coefficients that 

are polynomials in b and c. Comparing corresponding terms finishes the 

argument. 

To deal with the second sequence, we will use induction on n to show that 

q’h,_,(n - k + l)hl+l(n -I - 1) s4 hk(n - k)h!(n - 1) 

for all I3 k and all i, 0 G i s 1 - k + 2. Traveling our accustomed path, we are led 

to verify 

qifn-k+ifn-r-Ihk-An - k + l)hl(n - I- 1) 

sqfn-kfn-&l(n - k)hl-l(n - 9, 
q’h,_,(n - k)h,+,(n - 1 - 2) <.4 hk(n - k - l)h,(n - 1 - 1) 
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and 

qif,-k+lhk-&I - k + l)hl+I(n - I - 2) + qifn_&lhk_l(n - k)h1(n - l- 1) 

%rfn-&-1(~ - k)h&z - 1- 1) +f,_&(n - k - l)hl_,(n - I). (21) 

Only the last of these causes any trouble. 

Assume first that 1s i < I- k + 2. Substituting fn_-k+l = qfn_k + c; fn_( = 

qfn_r_l + c into equation (21) and splitting the result into three inequalities yields 

qi+lf,_&k_&z -k + l)hl+l(n - 1 - 2) ~4fn-&-1(n - k)h,(n - I - l), 

qicf,&_~(n - k + l)hl+l(n - 1 - 2) s4 c/z,& - k - l)/z_,(n - I), 

qif,_-l_-lhk_-l(n - k)h,(n - I- 1) 6y clfn-,-,hk(n - k - l)h[_,(n - I). 

All of these are true by induction. 

When i = 0 we need to split the argument up into two parts depending on the 

assumptions on b and c. If Ca, b, then we can use 

fi+i =fi + bq’+’ + (c - b)q’ for all j 2 1, 

to replace fn--k+l and fn_,. Since b, c - b E N[q] the four resultant inequalities will 

all hold, finishing this case. 

If c = 0 then fk = bqk-‘, and so hk(n - k) = bk[;] by equation (13). Thus the 

q-log concavity of the sequence of complete symmetric functions is equivalent to 

Theorem 2.3. 0 

4. Remarks and open problems 

The study of q-log concavity is relatively young. So there are many questions 

that still need to be answered. 

4.1. Related concepts 

A sequence (a&=, ak E N, is unimodal if there is an index j such that 

. . . G aj_2 c aj_, G aj 2 ajcl aaj+2a.. . _ 

The connection with q-log concavity is the following well-known theorem. 

Theorem 4.1. Let (ak)ktZ be a sequence of positive integers. If (ak)ksL is log 

concave then it is unimodal. 

The q-unimodality of a sequence of polynomials can be defined by replacing < 

by s4 everywhere in the above definition. However, the analog of Theorem 4.1 is 

false as is seen by the counterexample 

1+3q+3qz, 2+2q+3qz, 1+3q+q*. (22) 
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Is there some strengthening of q-log concavity that will guarantee q-unimodality? 

Butler [3] and later Rabau (private communication) have found proofs that the 

q-binomial coefficients are q-unimodal in k. In fact, Butler proved a much 

stronger result. Let a*(k;p) be the number of subgroups of order pk in a finite 

abelian p-group of type il, where A. is a partition of n. The main result of [3] is 

that the aA(k;p) are p-unimodal in k. The case where A. = (1”) gives the case of 

the Gaussian polynomials. It has been noted that q-unimodality in k is false for 

c[5, k] [3] and S[9, k] [12]. The q-unimodality question is open for the other 

sequences considered in this paper. 

There are other possible candidates for the q-analogs of the definitions of q-log 

concavity and q-unimodal. Consider a sequence (fk(q))k& where 

fk(q) = lz %,k@ 

for all k. We will say the sequence is componentwise log concave (respectively, 
componentwise unimodal) if, for each fixed i, the sequence of coefficients (ak,i)keZ 

is log concave (respectively, unimodal). Although q-log concavity of the sequence 

of fk(q) implies log concavity of the sequence of constant terms (qO,k)kez, it does 

not even imply unimodality for the other coefficient sequences as is seen by our 

example (22). Is it possible to add some condition to q-log concavity so that it will 

give componentwise log concavity ? For unimodality, it is easy to see that the 

following proposition is true. 

Proposition 4.2. The sequence (fk(q))keH is q-unimodal if and only if it is 
componentwise unimodal and there is some value k = k,, such that all the coefficient 
sequences have their maximum at k,,. 

4.2. Internal properties 

We say a polynomial is internally log concave (respectively, internally 
unimodal) if the sequence of its coefficients is log concave (respectively, 

unimodal). The q-binomial coefficients have long been known to be internally log 

concave (and hence internally unimodal). White (private communication) has 

checked internal log concavity of the c[n, k] and S[n, k] for n c 20 and has 

conjectured that this holds in general. 

A pOlynOItkil f(q) = fZO + U,q + f * . + anqn is SymmefriC if qk = an-k for all 

0 s k s n. It is not hard to show that the product of two symmetric unimodal 

polynomials with positive coefficients is again a symmetric unimodal polynomial 

with positive coefficients (see [17, Proposition 1.21). Note, also, that if f (q) and 

g(q) are symmetric unimodal polynomials with positive coefficients then 

f (4) s4 g(q) 3 qY(q) c,g(q) 

for all i with 0 s i c deg g(q) - deg f (q). This observation from [2] explains the 

remarks after Theorem 2.3 and Corollary 3.4. 
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4.3. p, q-analogs 

If p is another indeterminate, then we can define p, q-analogs of many of the 

concepts in this paper as follows. The p, q-analog of n E N is 

[n],,, = pk-’ + pkP2q + pk-3q2 + f - * + qk-‘. 

The p, q-binomial coefficients and Stirling numbers of both kinds are obtained by 

replacing bl by bl,,, everywhere in their definitions. These polynomials have 

been studied by Wachs and White [19] among others. All the results of Sections 2 

and 3 about polynomial sequences in N[q] have the obvious two variable analogs. 

In fact exactly the same proofs work with minor modifications. The only places 

where the statement of the p, q-analog might not be immediately apparent is in 

Corollary 2.6 and Theorem 3.7 which become as in the following propositions. 

Proposition 4.3. Fix n 3 0. Then for all 12 k and 0 G i + j G I- k + 2 we have 

#pi&& k - lls,.,[n, 1 + 11 s,,,~ Sp,4[n, k]S,.,[n, I]. 

Proposition 4.4. Fix 6, c E fW[p, q] such that c ap,4 b or c = 0 and b ZLY arbitrary. 
Consider the sequence defined by fk = bqk-’ + c[k - l],,, for all k 2 1. Then both 
the sequences (f&l and 

h,(f,, . . . ,fn), h,(f,, . . . ,fn-A . . . > hn(fJ 

are strongly p, q-log concave. 

4.4. Jacobi-Trudi proofs 

Stanton (private communication) has observed that some of our results can be 

proved using techniques from the theory of symmetric functions. For example, 

the fact that h,(n) = hk(xl, x2, . . . , x,) is strongly x-log concave in k is equivalent 

to the determinantal condition 

h,(n) h+l(n) 
h,_l(n) h,(n) ’ “*‘* 

This is a corollary of the well-known Jacobi-Trudi identity [13, p. 25; 15, 

Theorem 6.1.31. 

Theorem 4.5. Let A = (Al, AZ, . . . , A,) be a partition. Then the d x d determinant 

sA(n) sfdet(hA,_i+j(n)) 

is the generating function for all Young tableaux of shape A with part size bounded 

by n. The function sn(n) is called the Schur function associated with A. 

There is also a dual form of this theorem which expresses a Schur function as a 

determinant of elementary symmetric functions. 
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Since these determinants count tableaux, they must have nonnegative 

coefficients. It follows that Theorem 3.2 (and thus Corollaries 3.3 and 3.4) comes 

from the case A = (I, k) of Jacobi-Trudi. It is interesting to note that the 

strengthened induction hypothesis (16) also comes from the analog of Theorem 

4.5 for flagged Schur functions [7, 11, 181. 

However, we have been unable to find proofs of the other results of Section 3 

using an analog of Theorem 4.5. It would be interesting to do so. Also, it would 

be nice to generalize these identities to ones about d x d determinants. 

4.5. Combinatorial proofs 

We have already mentioned that Butler [4] and Leroux [12] give combinatorial 

proofs for the results in Section 2. These proofs rely on interpretations of the 

q-binomial coefficients and q-Stirling numbers in terms statistics on Ferrers 

diagrams. Sagan [14] used certain digraphs discovered by Wilf [20-211 to 

demonstrate log concavity of these quantities in the case q = 1. Gessel [7] and 

later Gessel and Viennot [8] found combinatorial methods involving lattice paths 

for proving determinantal identities like Jacobi-Trudi. In certain cases, all of 

these techniques are really the same. Such an example will be sketched next. 

We begin with another way to attack Theorem 3.2. As in the proof of Theorem 

3.5, with each subset S s { 1, 2, . . . , n}, we can associate a monomial or weight 

Thus e,(n) is just the generating function for Bn,k, the set of all k-subsets of 

{I, 2, * . . 7 n}. Thus to show that 

ek-i(n)el+i(n) %r e&)e&r) 

it suffices to find a weight-preserving injection 

Given the set S, let Sj = S II { 1, 2, . . . , i} and SF = S\& (set difference). Now, if 

(5, T) E &k-i X &,r+i, then there must be a largest index j such that IT] = 

IS,] + 1. Thus define 

P(S, T) = (Sj U Ti’, ~ U So). 

It is easy to check that p(S, T) E Bn,k X B,,[, and that p is injective and weight 

preserving. 

The map is a special case of the Gessel/Viennot lattice path injection [7, 81. (It 

is also implicit in Bhatt and Leiserson [I].) Butler stated it explicitly in [2] and 

Sagan rediscovered the map in [14]. 

We can also use /3 to give a combinatorial proof of the following well-known 

theorem [17]. 
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Theorem 4.6. Suppose that f(q) E N[q] h as only negative real roots, then f(q) is 
internally log concave. 

Proof. The coefficients of f(q) are elementary symmetric functions of the 

negatives of the roots which, by assumption, are positive numbers. Hence this 

result is equivalent to the x-log concavity in k of the ek(n) which was proved 

combinatorially above. 0 

Slight modifications of the P-map can be used to prove all the results of Section 

3 [16]. In addition, we believe these methods could also be applied to show that 

the elementary symmetric functions are ‘almost’ strongly q-log concave in n - k. 

Conjecture 4.7. Let (fn)n31, fn E N[q] be a sequence of polynomials. Suppose 

there exists a constant polynomial b with bfn d4 fn+I for all n 2 1. Then for all 

n>O and kc1 we have 

ek-I(fi, . . . ,fn+k--l)e,+Gj.. . ,fn+l+l) c4 b’-k+leAfi,. . . ,fn+Ae,(fi,. . . ,.L+J. 

De Medecis has given a combinatorial proof of a special case of the above 

conjecture due to Leroux. In particular, when fn = n and b = 2. 

Proposition 4.8. Zf n > 1 then c[n - 1, k]c[n + 1, k] c 2c[n, k]‘. 

We can give a direct combinatorial proof of the q-log concavity in k for the 

c[n, k] without passing through the elementary symmetric functions. Consider the 

set c&k consisting of all permutations x of (1, 2, . . . , n} whose disjoint cycle 

decomposition contains exactly k cycles P,, P2, . . . , Pk. We will agree to write all 

our permutations in standard form, n = PIP, . . . Pk where 

l every Pj will be written wth its smallest element first, and 

l minP,<minP*<“‘<minPk. 

An inversion in a permutation JC is a pair (r, s), r, s E n, such that r appears to the 

left of s and r > s. For example, 

JC = (1, 5, 3)(2,7)(4) 

has 5 inversions: (5,3), (5,2), (5,4), (3,2) and (7,4). If we let inv n denote the 

number of inversions in n then it is not hard to prove that 

c[n - k] = c qinvn. 
n~C”,!i 

(Merely show that the right-hand side satisfies equation (2).) 

Now to prove strong q-log concavity in k for the c[n, k] we need an injection 

y : c,,,k-, x c,,,,, + cn,, x cn,,, 

which preserves the inv weighting. Such a bijection is given in [14]. Roughly, it 
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uses the p injection restricted to each cycle in a way that preserves the relative 

ordering of elements. Details will be found in the paper just cited. 

4.6. Generalization of a q = 1 result 

In [14] we derived all the results in Section 2 for q = 1 as immediate corollaries 

to a single theorem. The analog of that result is true for arbitrary q. It states the 

following. 

Proposition 4.9. Let (fn,k(q))nEN,ktL be an array of polynomials in N[q] satisfying 
the boundary condition 

f&q) = 0 for k f 0 

and recursion 

fn,Aq) = c,,Aq)fn-+1(q) + dn.k(q)fn-u(q) 

for n 3 1 and c+(q), d,,,(q) E N[q]. Now suppose that: 

(1) c&q) and d,.,(q) are q-log concave in k, and 

(2) cn,k--l(q)dn,k+l(q) + cn,k+l(q)dn,k--l(q) s4 %Aq) for all n 2 1, 
then f&q) is q-log concave in k. 

Unfortunately, this proposition can only be applied to the c[n, k] since they are 

the only polynomials whose recursion satisfies items (1) and (2). Is there a 

strengthening of Proposition 4.9 that would give the q-log concavity in k of the 

q-binomial coefficients and q-Stirling numbers of the second kind as well? 
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