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new sequence L(ax) = (by) where by = a,% — Ag—10k+1- So (ag) is
log-concave if and only if (by) is a nonnegative sequence. Call
(ay) infinitely log-concave if L£i(ay) is nonnegative for all i > 1.
Boros and Moll conjectured that the rows of Pascal’s triangle are
infinitely log-concave. Using a computer and a stronger version
of log-concavity, we prove their conjecture for the nth row for
all n < 1450. We also use our methods to give a simple proof
of a recent result of Uminsky and Yeats about regions of infinite
log-concavity. We investigate related questions about the columns
of Pascal’s triangle, g-analogues, symmetric functions, real-rooted
polynomials, and Toeplitz matrices. In addition, we offer several
conjectures.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let

(ax) = (k=0 =ao, a1, 0az, ...

be a sequence of real numbers. It will be convenient to extend the sequence to negative indices
by letting a; = 0 for k < 0. Also, if (ay) =ag,a1,...,a, is a finite sequence then we let a; =0 for

k > n.
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Define the L-operator on sequences to be L(ay) = (by) where by, = a,% — ag_1axs1. Call a sequence

i-fold log-concave if £!(ay) is a nonnegative sequence. So log-concavity in the ordinary sense is 1-fold
log-concavity. Log-concave sequences arise in many areas of algebra, combinatorics, and geometry.
See the survey articles of Stanley [25] and Brenti [8] for more information.

Boros and Moll [4, p. 157] defined (ay) to be infinitely log-concave if it is i-fold log-concave for
all i > 1. They introduced this definition in conjunction with the study of a specialization of the
Jacobi polynomials whose coefficient sequence they conjectured to be infinitely log-concave. Kauers
and Paule [16] used a computer algebra package to prove this conjecture for ordinary log-concavity.
Since the coefficients of these polynomials can be expressed in terms of binomial coefficients, Boros
and Moll also made the statement:

“Prove that the binomial coefficients are oco-logconcave.”

We will take this to be a conjecture that the rows of Pascal’s triangle are infinitely log-concave,
although we will later discuss the columns and other lines. When given a function of more than one
variable, we will subscript the L-operator by the parameter which is varying to form the sequence.

So Li(};) would refer to the operator acting on the sequence (7) «o- Note that we drop the sequence

parentheses for sequences of binomial coefficients to improve readability. We now restate the Boros—
Moll conjecture formally.

Conjecture 1.1. The sequence (Z) is infinitely log-concave for alln > 0.

k>0

In the next section, we use a strengthened version of log-concavity and computer calculations to
verify Conjecture 1.1 for all n < 1450. Uminsky and Yeats [30] set up a correspondence between cer-
tain symmetric sequences and points in R™. They then described an infinite region R ¢ R™ bounded
by hypersurfaces and such that each sequence corresponding to a point of R is infinitely log-concave.
In Section 3, we show how our methods can be used to give a simple derivation of one of their main
theorems. We investigate infinite log-concavity of the columns and other lines of Pascal’s triangle in
Section 4. Section 5 is devoted to two g-analogues of the binomial coefficients. For the Gaussian poly-
nomials, we show that certain analogues of some infinite log-concavity conjectures are false while
others appear to be true. In contrast, our second g-analogue seems to retain all the log-concavity
properties of the binomial coefficients. In Section 6, after showing why the sequence (hy)x>o of com-
plete homogeneous symmetric is an appropriate analogue of sequences of binomial coefficients, we
explore its log-concavity properties. We end with a section of related results and questions about
real-rooted polynomials and Toeplitz matrices.

While one purpose of this article is to present our results, we have written it with two more
targets in mind. The first is to convince our audience that infinite log-concavity is a fundamental
concept. We hope that its definition as a natural extension of traditional log-concavity helps to make
this case. Our second aspiration is to attract others to work on the subject; to that end, we have
presented several open problems. These conjectures each represent fundamental questions in the area,
so even solutions of special cases may be interesting.

2. Rows of Pascal’s triangle

One of the difficulties with proving the Boros-Moll conjecture is that log-concavity is not preserved
by the L-operator. For example, the sequence 4,5, 4 is log-concave but £(4,5,4) = 16,9, 16 is not.
So we will seek a condition stronger than log-concavity which is preserved by L. Given r € R, we say
that a sequence (ay) is r-factor log-concave if

2
aj, = rag—10k+1 (1)

for all k. Clearly this implies log-concavity if r > 1.
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We seek an r > 1 such that (ay) being r-factor log-concave implies that (by) = L(ay) is as well.
Assume the original sequence is nonnegative. Then expanding rby_1byy+1 < b,% in terms of the g, and
rearranging the summands, we see that this is equivalent to proving

2 2 2 4 2 2
(r —1Daj_10j 1 + 20x-10)0x+1 < Q) + 1ax—20x (akJrl — akak+2) +rag_1ak0g2.

By our assumptions, the two expressions with factors of r on the right are nonnegative, so it
suffices to prove the inequality obtained when these are dropped. Applying (1) to the left-hand side
gives

2 2 2
(r— 1)ak_1a,<+] + 20, 10441 < —5—

So we will be done if

r—1+2_1
r2 ro

Finding the root rg > 1 of the corresponding quadratic equation finishes the proof of the first assertion
of the following lemma, while the second assertion follows easily from the first.

Lemma 2.1. Let (ay) be a nonnegative sequence and let rg = (3 + ~/5)/2. Then (ai) being ro-factor log-
concave implies that L(ay,) is too. So in this case (ay) is infinitely log-concave.

Now to prove that any row of Pascal’s triangle is infinitely log-concave, one merely lets a computer
find £} (}) for i up to some bound I. If these sequences are all nonnegative and £/ (}) is ro-factor log-
concave, then the previous lemma shows that this row is infinitely log-concave. Using this technique,
we have obtained the following theorem.

n

Theorem 2.2. The sequence (k) k>0

is infinitely log-concave for all n < 1450.

We note that the necessary value of I increases slowly with increasing n. As an example, when
n =100, our technique works with I =5, while for n = 1000, we need [ = 8.

Of course, the method developed in this section can be applied to any sequence such that £i(ay) is
ro-factor log-concave for some i. In particular, it is interesting to try it on the original sequence which
motivated Boros and Moll [4] to define infinite log-concavity. They were studying the polynomial

Pn(x) =Y de(m)x‘ (2)
£=0
where
N 2m =2\ (m+ ]\ (]
_ j—2m
=32 () (") 6)

Kauers [private communication] has used our technique to verify infinite log-concavity of the se-
quence (d¢(m))¢>o for m < 129. For such values of m, £Z applied to the sequence is rg-factor
log-concave.
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3. Aregion of infinite log-concavity

Uminsky and Yeats [30] took a different approach to the Boros-Moll Conjecture as described in
the Introduction. Since they were motivated by the rows of Pascal’s triangle, they only considered
real sequences dg, a1, ..., a, Which are symmetric (in that a; = a,_j for all k) and satisfy ag =a, = 1.
Each such sequence corresponds to a point (ai, ..., ay) € R™ where m = [n/2].

Their region, R, whose points all correspond to infinitely log-concave sequences, is bounded by m
parametrically defined hypersurfaces. The parameters are x and di,d>,...,dy, and it will be conve-
nient to have the notation

5k=Zdi-

i=1
We will also need r; = (1 ++/5)/2. Note that r% =rgo. The kth hypersurface, 1 <k <m, is defined as
Hie={(x%, ..., &% xS, xSt | smotddien
x>1, 1=d; >--->dk>dk+2>--->dm>0},
while
Hun={(x"", ..., 81 cx’m1): x> 1, 1=dy > >dn_q >0},

where

C_{T] if n =2m,
12 ifn=2m+1.

Let us say that the correct side of Hj for 1 <k < m consists of those points in R™ that can be
obtained from a point on Hj by increasing the kth coordinate. Then let R be the region of all points
in R™ having increasing coordinates and lying on the correct side of H for all k. We will show how
our method of the previous section can be used to give a simple proof of one of Uminsky and Yeats’
main theorems. But first we need a modified version of Lemma 2.1 to take care of the case when
n=2m+1.

Lemma 3.1. Let ag, a1, . . ., Aom+1 be a symmetric, nonnegative sequence such that

(i) af > roag_1ay41 fork <m, and
(ii) am = 2am-1.

Then L(ay) has the same properties, which implies that (ay,) is infinitely log-concave.

Proof. Clearly L(ay) is still symmetric. To show that the other two properties persist, note that in
demonstrating Lemma 2.1 we actually proved more. In particular, we showed that if Eq. (1) holds
at index k of the sequence (ay) (with r =rp), then it also holds at index k of the sequence L(ay)
provided that the original sequence is log-concave. Note that the assumptions of the current lemma
imply log-concavity of (ay): This is clear at indices k £ m, m + 1 because of condition (i). Also, using
symmetry and multiplying condition (ii) by a,, gives a,%l > 2am—1am = 2am—1am+1 (and symmetrically
for k=m+1).

So now we know that condition (i) is also true for L(ay). As for condition (ii), using symmetry we
see that we need to prove

2 2
y — Gp—10m = 2(a5,_; — Gn—20m).
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Rearranging terms and dropping one of them shows that it suffices to demonstrate
2a,2n_1 +am_10m < a,zn.

But this is true because of (ii), and we are done. O

Theorem 3.2. (See [30].) Any sequence corresponding to a point of R is infinitely log-concave.

Proof. It suffices to show that the sequence satisfies the hypotheses of Lemma 2.1 when n = 2m, or
Lemma 3.1 when n =2m + 1.

Suppose first that k < m. Being on the correct side of H, implies that there are values of the
parameters such that

2 _
a’% > (r1XSk) — r%x(slc71+dk)+(5k+l di+1) — ro0K_10k+1-
Thus we have the necessary inequalities for this range of k.
If k =m then we can use an argument as in the previous paragraph if n =2m. If n=2m + 1, then
being on the correct side of H, implies that
Um = 2X°m=1 = 2a;,_1.

This is precisely condition (ii) of Lemma 3.1, which finishes the proof. O

4. Columns and other lines of Pascal’s triangle

While we have treated Boros and Moll’s statement about the infinite log-concavity of the binomial
coefficients to be a statement about the rows of Pascal’s triangle, their wording also suggests an
examination of the columns.

Conjecture 4.1. The sequence (Z) 1> 1S infinitely log-concave for all fixed k > 0.

We will give two pieces of evidence for this conjecture. One is a demonstration that various
columns corresponding to small values of k are infinitely log-concave. Another is a proof that £}, (',Z)
is nonnegative for certain values of i and all k.

Proposition 4.2. The sequence (”)n . Is infinitely log-concave for 0 <k < 2.

k/n>

Proof. When k =0 we have, for all i > 1,

c,l;(?)):a,o,o,o,...).

For k =1 we obtain

n
£n<1)=(1,1,1,...)

so infinite log-concavity follows from the k =0 case. The sequence when k =2 is a fixed point of the
L-operator, again implying infinite log-concavity. O

In what follows, we use the notation L(ay) for the kth element of the sequence £L(ay), and similarly
for L, and L.
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Proposition 4.3. The sequence Efl (’,1) is nonnegative for all k and for 0 <i < 4.

Proof. By the previous proposition, we only need to check k > 3. Using the expression for a binomial
coefficient in terms of factorials, it is easy to derive the following expressions:

b)) =G )
L%(Z) - ﬁ@z(kﬁ 1)(kf2)‘

With a little more work, one can show that L% (Z) can be expressed as a product of nonnegative
factors times the polynomial

and

(4k — 6)n* — (4k* — 10k + 6)n — k2.
To show that this is nonnegative, we write n =k 4+ m for m > 0 to get
(4k — 6)m* + (4k* — 2k — 6)m + (3k* — 6k).

But the coefficients of the powers of m are all positive for k > 3, so we are done with the case i = 3.
When i =4, we follow the same procedure, only now the polynomial in m has coefficients which
are polynomials in k up to degree 7. For example, the coefficient of m? is

528k’ — 8k® — 11,248k’ + 25,360k* — 5888k> — 24,296k? + 16,080k — 1584.
To make sure this is nonnegative for integral k > 3, one rewrites the polynomial as
(528k* — 8k — 11,248)k> + (25,360k* — 5888k — 24,296)k* + (16,080k — 1584),

finds the smallest k such that each of the factors in parentheses is nonnegative from this value on,
and then checks any remaining k by direct substitution. O

Kauers and Paule [16] proved that the rows of Pascal’s triangle are i-fold log-concave for i < 5.
Kauers [private communication] has used their techniques to confirm Proposition 4.3 and to also
check the case i =5 for the columns. For the latter case, Kauers used a computer to determine

(3)

explicitly, which is just a rational function in n and k. He then showed that (3) is nonnegative by
means of cylindrical algebraic decomposition. We refer the interested reader to [16] and the references
therein for more information on such techniques.

More generally, we can look at an arbitrary line in Pascal’s triangle, i.e., consider the sequence

(Zim)mw' The unimodality and (1-fold) log-concavity of such sequences has been investigated in

[3,27-29]. We do not require that u and v be coprime, so such sequences need not contain all of the
binomial coefficients in which a geometric line would intersect Pascal’s triangle, e.g., a sequence such



PR.W. McNamara, B.E. Sagan / Advances in Applied Mathematics 44 (2010) 1-15 7

as (y). (3). (3). - - - would be included. By letting u < 0, one can get a finite truncation of a column. For
example, if n=5, k=3, u=—1, and v =0 then we get the sequence

(5)6)-6)

which is not even 2-fold log-concave. So we will only consider u > 0. Also

n4mu\ n-+mu
k+mv) \n—k+m@u-—v)
so we can also assume v > 0.

We offer the following conjecture, which includes Conjecture 1.1 as a special case.

n+mu

Conjecture 4.4. Suppose that u and v are distinct nonnegative integers. Then ( My )m>0

concave foralln > 0ifand only ifu < v orv =0.

is infinitely log-

We first give a quick proof of the “only if” direction. Supposing that u > v > 1, we consider the

sequence
0 u 2u
0/’ \v) \2v/)

obtained when n = 0. We claim that this sequence is not even log-concave and that log-concavity fails
at the second term. Indeed, the fact that (3)2 < (3% follows immediately from the identity

GG+ ()G )=+ ()0 (G 6) -G

which is a special case of Vandermonde’s Convolution.
The proof just given shows that subsequences of the columns of Pascal’s triangle are the only

infinite sequences of the form ("‘,;’f,’”)m>O that can possibly be infinitely log-concave. We also note

that the previous conjecture says nothing about what happens on the diagonal u = v. Of course, the
case u =v =1 is Conjecture 4.1. For other diagonal values, the evidence is conflicting. One can show

by computer that (”;T“)m>0 is not 4-fold log-concave for n =2 and any 2 < u < 500. However, this
is the only known value of n for which (";'Z}“)m>0 is not an infinitely log-concave sequence for some

u=>1l.

We conclude this section by offering considerable computational evidence in favor of the “if”
direction of Conjecture 4.4. Theorem 2.2 provides such evidence when u =0 and v = 1. Since all
other sequences with u < v have a finite number of nonzero entries, we can use the ro-factor log-
concavity technique for these sequences as well. For all n <500, 2 <v <20 and 0 <u < v, we have

checked that (") _  is infinitely log-concave.

5. g-Analogues

This section will be devoted to discussing two g-analogues of binomial coefficients. For the Gaus-
sian polynomials, we will see that the corresponding generalization of Conjecture 1.1 is false, and we
show one exact reason why it fails. In contrast, the corresponding generalization of Conjecture 4.1
appears to be true. This shows how delicate these conjectures are and may in part explain why they
seem to be difficult to prove. After introducing our second g-analogue, we conjecture that the corre-
sponding generalizations of Conjectures 1.1, 4.1 and 4.4 are all true. This second g-analogue arises in
the study of quantum groups; see, for example, the books of Jantzen [15] and Majid [21].
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Let g be a variable and consider a polynomial f(q) € R[q]. Call f(q) gq-nonnegative if all the co-
efficients of f(q) are nonnegative. Apply the L-operator to sequences of polynomials (fi(g)) in the
obvious way. Call such a sequence g-log-concave if L(f,(q)) is a sequence of g-nonnegative polynomi-
als, with i-fold g-log-concavity and infinite g-log-concavity defined similarly.

We will be particularly interested in the Gaussian polynomials. The standard g-analogue of the
nonnegative integer n is

1_qn 2 n—1
1_q=1+q+q +---4q .

[n]=[n]g=

Then, for 0 < k < n, the Gaussian polynomials or q-binomial coefficients are defined as

n| _[n| _ [n]g!
k|7 |k q_[k]q![n—k]q!

where [n]q! = [1]4[2]q - - - [n]lq. For more information, including proofs of the assertions made in the
next paragraph, see the book of Andrews [2].
Clearly substituting g =1 gives [,':]1 = (). Also, it is well known that the Gaussian polynomials
are indeed g-nonnegative polynomials. In fact, they have various combinatorial interpretations, one

of which we will need. An (integer) partition of n is a weakly decreasing positive integer sequence

A= (\1,A2,...,A¢) such that |A| def > ixi=n. The A; are called parts. For notational convenience, if

a part k is repeated r times in a partition A then we will denote this by writing k" in the sequence
for L. We say that A fits inside an s x t box if A1 <t and ¢ < s. Denote the set of all such partitions
by P(s,t). It is well known, and easy to prove by induction on n, that

[',j] = > " (4)

reP(n—k,k)

We are almost ready to prove that the sequence ([Z])k>0 is not infinitely g-log-concave. In fact,
we will show it is not even 2-fold g-log-concave. First we need a lemma. In it, we use mint f(q) to

denote the nonzero term of least degree in f(q).

Lemma 5.1. Let L([ , ]) = Bk(q)- Then for k <n/2,

qg¢  ifk<n/2,

mint B =
K@ {Zq" ifk=n/2.

Proof. Since By(q) = [,’Z]z — [kfl][kil] it suffices to prove, in view of (4), the following two state-
ments. If i <k and

A uwyePm—k+1,k—1)xPn—k—-1,k+1)

with |A| + || =i, then (A, u) € P(n — k, k)%. Furthermore, the number of elements in P(n — k, k)> —
Pn—k+1,k—1)xP(n—k—1,k+ 1) is 0 or 1 or 2 depending on whether i <k or i =k <n/2 or
i =k =n/2, respectively.

The first statement is an easy consequence of |A| + |u| =i <k <n —k. A similar argument works
for the i < k case of the second statement. If i =k then the pair ((k), ) is in the difference and if
i=k=n/2 then the pair (9, (1%)) is as well. O
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Proposition 5.2. Let L? ([Z]) = Ci(q). Then forn > 2 and k = |n/2| we have

mint C(q) = —q" 2.

Consequently, ([ ]), is not 2-fold q-log-concave.

Proof. The proofs for n even and odd are similar, so we will only do the former. So suppose n = 2k
and consider

Ck(@) = Br(@)* — Bk—1(q) B+1(q) = Br(q)* — Bk—1(@)*.

By the previous lemma mint B(q)? = 4¢%¢ and mint B;_1(q)% = q%~2. Thus mintCx(q) = —q?¢2 =
—q"2 as desired. O

After what we have just proved, it may seem surprising that the following conjecture, which is a
g-analogue of Conjecture 4.1, does seem to hold.

n

Conjecture 5.3. The sequence ([

])n>k is infinitely q-log-concave for all fixed k > 0.

As evidence, we will prove a g-analogue of Proposition 4.2 and comment on Proposition 4.3 in this
setting.

n

Proposition 5.4. The sequence ([,

1)1y i infinitely q-log-concave for 0 <k < 2.

Proof. When k = 0 one has the same sequence as when g =1.

When k =1 we claim that
n
E([l D =(1,9,¢%,¢%,...).

(1-¢"* -1 -¢"Ha-g""h

Indeed,

P —n—1n+1]=

(1-9)?
qn—l _ an 4 qn+1
(1-¢q)?

:qnfl

(and recall that the sequence starts at n =1). It follows that

c"(['l‘]):(l,o,o,o,...)
fori > 2.

For k = 2, the manipulations are much like those in the previous paragraph. Using induction on i,

we obtain
if|n _  @-Dm-2| N
v([3])=ar e )

for i > 0. This completes the proof of the last case of the proposition. O
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If we now consider arbitrary k it is not hard to show, using algebraic manipulations like those in

the proof just given, that
n B qnfk n n
L“([k])_ [n] [k][k—l]' )

These are, up to a power of q, the g-Narayana numbers. They were introduced by Fiirlinger and
Hofbauer [13] and are contained in a specialization of a result of MacMahon [20, p. 1429] which was
stated without proof. They were further studied by Brandén [5]. As shown in the references just cited,
these polynomials are the generating functions for a number of different families of combinatorial
objects. Thus they are g-nonnegative.

More computations show that

o(Tn T\ _ @21 [n ] n n
L"([k])_[nmn—l][k} [k—1][’<—2] (©)

It is not clear that these polynomials are g-nonnegative, although they must be if Conjecture 5.3 is
true. Furthermore, when g = 1, the triangle made as n and k vary is not in Sloane’s Encyclopedia [24]
(although it has now been submitted). We expect that these integers and polynomials have interest-
ing, yet to be discovered, properties.

We conclude our discussion of the Gaussian polynomials by considering the sequence

n+mu
(" ]),.. 2

for nonnegative integers u and v, as we did in Section 4 for the binomial coefficients. When u > v
the sequence has an infinite number of nonzero entries. We can use (4) to show that the highest

degree term in ["+“]2 — [”;/2“] has coefficient —1, so the sequence (7) is not even g-log-concave.
When u < v, it seems to be the case that the sequence is not 2-fold g-log-concave, as shown for
the rows in Proposition 5.2. When u = v, the evidence is conflicting, reflecting the behavior of the

binomial coefficients. Since setting g =1 in [";Z’“] yields ("), we know that ([Z;Z'”])mm is not

always 4-fold g-log-concave. It also transpires that the case n =3 is not always 5-fold g-log-concave.
We have not encountered other values of n that fail to yield a g-log-concave sequence when u = v.

While the variety of behavior of the Gaussian polynomials is interesting, it would be desirable to
have a g-analogue that better reflects the behavior of the binomial coefficients. A g-analogue that
arises in the study of quantum groups serves this purpose. Let us replace the previous g-analogue of
the nonnegative integer n with the expression

_qn_q—n_ 1-n _

=" =1 @@+ g

From this, we obtain a g-analogue of the binomial coefficients by proceeding as for the Gaussian
polynomials: for 0 <k < n, we define

n\ o

k[ (k)(n —k)!
where (n)! = (1)(2)---(n).

Letting ¢ — 1 in () gives (};), and a straightforward calculation shows that

n 1 n
<’<> gk [k]qz' ©
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n . . . . . . . oy
So <k> is, in general, a Laurent polynomial in g with nonnegative coefficients. Our definitions of g-
nonnegativity and g-log-concavity for polynomials in q extend to Laurent polynomials in the obvious
way.
We offer the following generalizations of Conjectures 1.1, 4.1 and 4.4.

Conjecture 5.5.

Z»k>o

"))n>k is infinitely q-log-concave for all fixed k > 0.

k
(c) For all integers 0 < u < v, the sequence ((":1'?”))"120

(a) The row sequence (( is infinitely q-log-concave for alln > 0.

(b) The column sequence (<
is infinitely q-log-concave for alln > 0.

Several remarks are in order. Suppose that for f(g), g(q) € R[q,q~ '], we say f(q) < g(q) if g(q) —
f(q) is g-nonnegative. Then the proofs of Lemmas 2.1 and 3.1 work equally well if the a;’s are Laurent
polynomials and we replace the term “log-concave” by “g-log-concave.” Using these lemmas, we have
verified Conjecture 5.5(a) for all n < 53. Even though (a) is a special case of (c), we state it separately
since (a) is the g-generalization of the Boros-Moll conjecture, the primary motivation for this paper.

As evidence for Conjecture 5.5(b), it is not hard to prove the appropriate analogue of Proposi-

tions 4.2 and 5.4, i.e. that the sequence (Z)n>k is infinitely g-log-concave for all 0 < k < 2. To obtain

the expressions for Ln((;:>) and L%((,’:)), take Egs. (5) and (6), replace all square brackets by angle

brackets and replace each the terms q" % and g®"—3k by the number 1.
Conjecture 5.5(c) has been verified for all n < 24 with v < 10. When u > v, we can use (8) to show

. 2 . .
that the lowest degree term in <"Jvr”> — (”;VZ”) has coefficient —1, so the sequence is not even g-log-
concave. When u = v, the quantum groups analogue has exactly the same behavior as we observed

above for the Gaussian polynomials.
6. Symmetric functions

We now turn our attention to symmetric functions. We will demonstrate that the complete ho-
mogeneous symmetric functions (hy)r>o are a natural analogue of the rows and columns of Pascal’s
triangle. We show that the sequence (hy)k>o is i-fold log-concave in the appropriate sense for i <3,
but not 4-fold log-concave. Like the results of Section 5, this result underlines the difficulties and
subtleties of Conjectures 1.1 and 4.1. In particular, it shows that any proof of Conjecture 1.1 or Con-
jecture 4.1 would need to use techniques that do not carry over to the sequence (hy)>o. For a more
detailed exposition of the background material below, we refer the reader to the texts of Fulton [12],
Macdonald [19], Sagan [23] or Stanley [26].

Let X = {X1,X2,...} be a countably infinite set of variables. For each n > 0, the elements of the
symmetric group &, act on formal power series f(x) € R[x] by permutation of variables (where x; is
left fixed if i > n). The algebra of symmetric functions, A(X), is the set of all series left fixed by all
symmetric groups and of bounded (total) degree.

The vector space of symmetric functions homogeneous of degree k has dimension equal to the
number of partitions A = (A1, ..., Ay) of k. We will be interested in three bases for this vector space.
The monomial symmetric function corresponding to A, my = m,(X), is obtained by symmetrizing the
monomial x?l .- -xge. The kth complete homogeneous symmetric function, hy, is the sum of all monomials
of degree k. For partitions, we then define

hy =hy, - hy,.
Finally, the Schur function corresponding to A is

s, =det(hy, —iyji<i j<e-
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We remark that this determinant is a minor of the Toeplitz matrix for the sequence (hy). We will
have more to say about Toeplitz matrices in the next section.
Our interest will be in the sequence just mentioned (hy)k>o. Let hi(1") denote the integer obtained

by substituting x; =---=x, =1 and x; =0 for i > n into hy = hi(x). Then h;(1") = (”*ﬁ’l) (the

number of ways of choosing k things from n things with repetition) and so the above sequence
becomes a column of Pascal’s triangle. By the same token hy (1" %) = (”;1) and so the sequence
becomes a row.

We will now collect the results from the theory of symmetric functions which we will need.
Partially order partitions by dominance where A < u if and only if for every i > 1 we have A1 +
<o+ A < 1 4 -+ 4. Also, if {b,} is any basis of A(X) and f € A(X) then we let [b,]f denote
the coefficient of the basis element b, in the expansion of f in this basis. First we have a simple
consequence of Young’s Rule.

Theorem 6.1. For any partitions A, ;v we have [m,,]s, is a nonnegative integer. In particular,

1 ifu=~x,
[(myls, = {0 :jfrllj £ A

Let A + u denote the componentwise sum (A1 + 1, A2 + (2, ...). The next result follows from the
Littlewood-Richardson Rule and induction.

Theorem 6.2. For any partitions A1, ..., A" and ;v we have [s;.]s;1 - - - sur is a nonnegative integer. In partic-
ular,

1 ifu=At T
[Sp ]Sy SU—{O if LAY AT

Because of this result we call A +--- + A" the dominant partition for s;1 - --s;r.

Finally, we need a result of Kirillov [17] about the product of Schur functions, which was proved
bijectively by Kleber [18] and Fulmek and Kleber [11]. This result can be obtained by applying the
Desnanot-Jacobi Identity—also known as Dodgson’s condensation formula—to the Jacobi-Trudi ma-
trix for s,r+1. Note that, to improve readability, we drop the sequence parentheses when a sequence
appears as a subscript.

Theorem 6.3. (See [11,17,18].) For positive integers k, r we have
(Skr)2 = S(k—1)"S(k+1)" = Spr—1Sgr+1.
To state our results, we need a few more definitions. If b, is a basis for A(X) and f € A(X)
then we say f is b,-nonnegative if [b,]f > O for all partitions A. Note that m,-nonnegativity is the
natural generalization to many variables of the g-nonnegativity definition for R[q]. Also note that

s;-nonnegativity implies m;-nonnegativity by Theorem 6.1.

Theorem 6.4. The sequence L'(hy) is s;-nonnegative for 0 < i < 3. But the sequence L£*(hy) is not m;-
nonnegative.

Proof. From the definition of the Schur function we have
LO(h) =he=s and L'(h) = (he)? — he_1hirr = Sie.
Now Theorem 6.3 immediately gives

Lz(hk) = (Sk2)2 — S(]<_])25(,<+1)2 = SkSk3
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which is s;-nonnegative by the first part of Theorem 6.2. Using Theorem 6.3 twice gives

L (i) = (5107 (53)% = Sk1S (e 13 Sk+1S k13
= (51)%(513) = (1S k13 1)? F SO SUem1)3S e 1)3 — Sk—1S e 193 Sk1S e 193
= (Sk)251<25k4 + S(k—1)35K2S (k+1)3

which is again s, -nonnegative. This finishes the cases 0 <i < 3.

We now assume k > 2. Computing L*(h;) from the expression for L3(h;) gives the sum of the
terms in the left column below. The right column gives the dominant partition for each term, as
determined by Theorem 6.2.

+(sk) A (542)% (5a)? (8k, 4k, 2k, 2Kk)
205102 (542) 2SS e 1)3S (k1) (7k, 5k, 3k, k)
F(Sg_1y3) 2 (5k2)2 (S ey 193)? (6k, 6k, 4k)

—(Sk=1)2S 1o 1)25 (k—1)3 (Sk+1)?S e 1925 e 198 (8K, 4k, 2Kk, 2k)
—(Sk=1)2S (e 1)25 (k13 SI3S (k- 1)2S (k423 (Tk — 1,5k +1,3k+ 1,k — 1)
—S(k—2)3 S e—1)2513 (Sk1) 2 S (192 S et 14 (Tk+1,5k — 1,3k — 1,k +1)
=S (k—2)3S (k—1)2 (Sk3)“S (k+1)2 S (k+-2)3 (6k, 6k, 4k)

Now consider A = (7k + 1,5k — 1,3k — 1,k + 1), the dominant partition for the penultimate term
above. Observe that if 4 is the dominant partition for any other term, then A £ . So, by the second
part of Theorem 6.2, s, appears in the Schur-basis expansion for L*(h;) with coefficient —1. It then
follows from the second part of Theorem 6.1, that the coefficient of m; is —1 as well. O

7. Real roots and Toeplitz matrices

We now consider two other (almost equivalent) settings where, in contrast to the results of the
previous section, Conjecture 1.1 does seem to generalize. In fact, this may be the right level of gener-
ality to find a proof.

Let (ax) =ap,as,...,a, be a finite sequence of nonnegative real numbers. It was shown by Isaac

Newton that if all the roots of the polynomial p[ay] def ag + ai1x + --- 4+ ayx" are real, then the se-
quence (ay) is log-concave. For example, since the polynomial (1 + x)" has only real roots, the nth
row of Pascal’s triangle is log-concave. It is natural to ask if the real-rootedness property is preserved
by the L-operator. The literature includes a number of results about operations on polynomials which
preserve real-rootedness; for example, see [6-8,22,31,32].

Conjecture 7.1. Let (ay) be a finite sequence of nonnegative real numbers. If p[a] has only real roots then the
same is true of p[L(ay)].

This conjecture is due independently to Richard Stanley [private communication]. It is also one of
a number of related conjectures made by Steve Fisk [10]. If true, Conjecture 7.1 would immediately
imply the original Boros-Moll Conjecture. As evidence for the conjecture, we have verified it by com-
puter for a large number of randomly chosen real-rooted polynomials. We have also checked that
p[ﬁ,i{(Z)] has only real roots for all i < 10 and n < 40. It is interesting to note that Boros and Moll’s
polynomial P,,;(x) in Eq. (2) does not have real roots even for m = 2. So if the corresponding sequence
is infinitely log-concave then it must be so for some other reason.

Along with the rows of Pascal’s triangle, it appears that applying £ to the other finite lines we
were considering in Section 4 also yields sequences with real-rooted generating functions. So we
make the following conjecture which implies the “if” direction of Conjecture 4.4.

n+mu

Conjecture 7.2. For 0 < u < v, the polynomial p[ L}, ("}

))] has only real roots for all i > 0.
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We have verified this assertion for all n < 24 with i <10 and v < 10. In fact, it follows from a
theorem of Yu [33] that the conjecture holds for i =0 and all 0 < u < v. So it will suffice to prove
Conjecture 7.1 to obtain this result for all i.

We can obtain a matrix-theoretic perspective on problems of real-rootedness via the following
renowned result of Aissen, Schoenberg and Whitney [1]. A matrix A is said to be totally nonnegative
if every minor of A is nonnegative. We can associate with any sequence (ay) a corresponding (infinite)
Toeplitz matrix A = (aj_i)i j>o0. In comparing the next theorem to Newton’s result, note that for a
real-rooted polynomial p[a,] the roots being nonpositive is equivalent to the sequence (a;) being
nonnegative.

Theorem 7.3. (See [1].) Let (ay) be a finite sequence of real numbers. Then every root of p[ay] is a nonpositive
real number if and only if the Toeplitz matrix (aj_;);, j>o is totally nonnegative.

To make a connection with the L-operator, note that

Qe Ak

2
ay — ag—10g+1 =
k -1 G

’

which is a minor of the Toeplitz matrix A = (aj_;); j>o. Call such a minor adjacent since its entries
are adjacent in A. Now, for an arbitrary infinite matrix A = (a; ;)i j>o, let us define the infinite ma-
trix L£(A) by

>i,j>0

Note that if A is the Toeplitz matrix of (a;) then L£(A) is the Toeplitz matrix of L(ay). Using Theo-
rem 7.3, Conjecture 7.1 can now be strengthened as follows.

ai, j ai, j+1
i+1,j  dit1,j+1

L(A) = (

Conjecture 7.4. For a sequence (ay) of real numbers, if A = (aj_;)i j>o is totally nonnegative then L(A) is
also totally nonnegative.

Note that if (ay) is finite, then Conjecture 7.4 is equivalent to Conjecture 7.1. As regards evidence
for Conjecture 7.4, consider an arbitrary n-by-n matrix A = (a;, j)’; =1 For finite matrices, L£(A) is
defined in the obvious way to be the (n — 1)-by-(n — 1) matrix consisting of the 2-by-2 adjacent
minors of A. In [9, Theorem 6.5], Fallat, Herman, Gekhtman, and Johnson show that for n <4, £(A) is
totally nonnegative whenever A is. However, for n =5, an example from their paper can be modified
to show that if

1 t 0 0 0
t 241 2t t2 0
A=|t? B+2t 144 263 4+t 0
0 2 2342t tA420241 ¢

0 0 t2 3+t t2

then A is totally nonnegative for t > 0, but £(A) is not totally nonnegative for sufficiently large t
(t > +/2 will suffice). We conclude that the Toeplitz structure would be important to any affirmative
answer to Conjecture 7.4.

We finish our discussion of the matrix-theoretic perspective with a positive result similar in flavor
to Conjecture 7.4.

Proposition 7.5. If A is a finite square matrix that is positive semidefinite, then L(A) is also positive semidef-
inite.



PR.W. McNamara, B.E. Sagan / Advances in Applied Mathematics 44 (2010) 1-15 15

Proof. The key idea is to construct the second compound matrix C3(A) of A, which is the array of
all 2-by-2 minors of A, arranged lexicographically according to the row and column indices of the
minors [14].

We claim that if A is positive semidefinite, then so is C>(A). Indeed, since the compound operation
preserves multiplication and inverses, the eigenvalues of C;(A) are equal to the eigenvalues of C3(]J),
where | is the Jordan form of A. If | is upper-triangular and has diagonal entries A1, A2, ..., Ay, then
we see that Cp(J) is upper-triangular with diagonal entries A;A; for all i < j. Since the A;’s are all
nonnegative, so too are the eigenvalues of C,(J), implying that C,(A) is positive semidefinite.

Finally, since £(A) is a principal submatrix of C2(A), L(A) is itself positive semidefinite. O
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