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Given a triangular array of non-negative integers we give a necessary condition to insure that
every row of the array is log concave. This result is then used to inductively construct injections
showing the log concavity of the binomial coefficients and Stirling numbers of both kinds.
Finally these proofs are related to the graphical intespretation of these numbers. given by Wilf.

To Herbert Wilf, whose tantalizing questions inspired this paper.

1. Introduction

A sequence of non-negative integers (a;jo<i<n IS called log concave if
Q1Gr 1 <a:, forallk, 0<k<n. €)
It is easy to show that this is equivalent to the seemingly stronger condition
Ay < Ay iOy-iy @

for all k,! and i satisfying C<=k=</!<n and 0<i<k -/ Proving that various
sequences are log concave has been a topic of increasing interest in recent years
[2,3,5,6,7]. If the sequence (a;) is enumerative, then it may be possible to give
a combinatorial proof of (1) by exhibiting an injection from pairs counted
by ax_;ax+, to those corresponding to aZ. This approach will be taken up in
Section 3.

Given a set of non-negative integers ¢4, defined for n =0 and 0<k <n, we say
that ¢, is leg concave in k if for any fixed n the sequence (¢, )o<x<. is log concave.
iIf the t,, are arranged in a triangular array with n and k being the row and
column indices respectively, then log concavity in k corresponds to the log
concavity of each row. Three famous triangles of this type are Pascal’s triangle
and Stirling’s triangles of the first and second kinds.

In addition, the binomial coefficients and Stirling numbers al! satisiy two-term
recurrence relations. In Section 2 we give conditions on the coeficients of such
recurrences that guarantees log concavity in k. As a consequence we obtain
“one-line” proofs that the three examples above satisfy this condition. Also
unwinding the recursion leads us to the injective log concavity proofs mentioned
in the first paragraph.
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Finally, we shov that these combinatorial constructions have a simple
interpretation in terms of paths through graphical structures developed by Wilf

[8,9]. In this setting it is reminiscent of a technique of Gessel and Viennot [4] for
counting lattice paths.

2. Inductive proofs

Now suppose that for n =1 and 0 <k <=# the ¢, satisfy the recuirence

tuk = Cricbn—1k—1 F Bnicln—11 3)
where the coefficients c,;, d,; are non-negative integers. To eliminate boundary
conditions, it is convenient to extend the definitions of ¢, by setting ¢,, =0 for

k <0 or k> n. We assume that in this extended range c,, and &, can be chosen
so that (3) continues to hold. Also note that if the ¢,, were log concave in k for
0=<k =n, then they continue to be for all integral k since the new inequalities are
satisfied trivially.

With these preliminaries we can introduce our primary tool.

Theorem 1. Let t,, be an extended triangular array satisfying t, = Cpxtn—1x-1+

duitn-11; for all n =1 where t,;, ¢, and d,, are all non-negative integers. Suppose
that

(i) ¢« and d,; are log csncave in k,
(ll) cnk—ldnk+l + cnk+l'§"nic-—l $2cnkdnk’ fO" alln= 1;

then &, is log concave in k.

Proof. Induct on n. The n =0 row of the array is automatically log concave since
it contains at most one non-zero entry. Now suppose that the (n — 1)st row is
log concave.

TO Prove tux—it.+1 <% we expand both sides by the recurrence and compare

corresponding terms. Thus it is enough to show that the following three equations
hoid

2 .2

Crk—1Cnk+1ln—1k-25 - ik = Crurlp—1k-1, 4)
. 2 2 .

Dk 1bpiirtn=1k=iln-1k+1 < Al - 105 (5)

and
Crk =18 nic +1bn=1k-2tn—1k+1 F+ Crk+1@nk =1t n— 1k —1tn—14
< 2Cuurtn -1k -1tn=1k- 6)

Log concavity of rew n — 1 (in the form given in Section 1, eq. (2)) together with
assumptions (i) and (ii) are precisely what is needed to demonstrate these three
formulae. 0O
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The reader may feel that Theorem 1 is not much of a labor-saving device as it
endeavours to demonstrate the log concavity of a singie array by proving that two
others ar= '3 concave with an extra cordition besides! However, this is offset by
the fact that the coefficient arrays are usually much simpler than the original one.
In particular, this will be true cof the three examples mentioned in the
introduction.

If n is a non-negative intcger then let [n] denote the set {1, 2, ..., n}. Recall
n
k
c(n, k), and Stirling numbers of the second kind S(n, k) count subsets of [n] with
k elements, permutations of {n] with k cycles, and partitions of [n] with k blocks
respectively. The recurrencz relations for these functions are well known and
follow directly from their directions:

/n n-1 n—1

\k)=(k—1)+( )
cn,k)=cn—-1, k-1 +n—-1)c(n-1, k),
S(n,k)=S(n—-1,k—1)+kS(n—1, k).

that the binomial coefficients ( ), (signless) Stirling numbers of the first king

Corollary 2. (%), c(n, k) and S(n, k) are all log concave in k.

Proof. In each case we verify conditions (i) and (ii). For (%), ¢.; =d,x =1 when
n =1 and constant sequences are trivially log concave. Furthermore,

cnk—ldnk+1 + an+1dnlc—l = 2 = 2andnk'

The Stirling numbers of the first kind have ¢, =1, d,, =n — 1 for all n =1 which
are also constant (with respect to k) hence satisfying (i). In this case (iij reduces
w3 2(n — 1) <2(n — 1). Finally for S(n, k) we let
,{1’ for k=0, d _{k, for k=0,

‘=0, fork<o0, “*~lo, fork<0.
so that d, =0, alwsvs. Log concavity for d,, follows from the fact that
(k—=1)(k+1)=k>- 1<k’ Also

k+1)+(k—-1)=2k, iik>0,

Crk-19nk+1 + Cricr 1k —1 = {(()’ if k<0,

= 2C,«dn N both cases. O
3. Injective proofs
We can now construct an injective demonstration of log concavity in k for any

triangular array ¢, satisfying the hypotheses of Theorem 1 as follows.
(a) Define the injection for small n in some reasonable way. (Often this
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(b) Use egs. (4), (5) and (6} to extend the injection to larger » until a pattern
evolves.
(c) Prove that the pattern holds for all n.
In the interests of brevity, only the results of step (c) will be given below for our
three canonical exampies.

T aae D Lan thn cnt AF all maien € T T2l vl with ICl = and 1Ti=1
LEl D,y OC UIC SCU Or an Paiis o, £ JS|Rj A |fi] Wilul [0 =K &G £ |,
N<lb<l<n Alco let S =€NJfil and =€ - . ow oiven {S TYeR P
VSN TSove 4310V iwu i AR L It ar adje ANUNWY paVeal () 2 )T Dpp-ik+i
consider the sequence of pairs
o N _ /0 M\ 10 T\ Q@ N _ /08 oy
O L) Ons n)y \On=1s Ipn-1)s « -+, 00, 10) =V, V).

Since |T,,|=|S,|+2 and |T;] =|S,| there must be a largest index i such that
|T;| =|§;| + 1. Now define a map f, by
148, T)= (LU S5, S,UTS). @)

Theorem 3. f, as defined by eq. (7) is an injection from B, _14+1 10 B

" YR Looa o ot PR T R Y . SUL I ks £/C T - D N+ :f
THUUE. VVE LIDL SHUW UldL j, 1D WEIL JClncd, 1.C., Uldl j,\J, I J & Dy, DUL 11
Tl = I€l L1 2=m L1 cav thon
"" |U'| " & y i Ay Ay y Vil
ITUSi=m+1+[(k-1)-m]=k
and
Cl e —
SsUT{l=m+[(k+1)-(m+1)]=k
Wa unll giva twon nranfe that £ ic Anata.ana Tha Grat will smaba £ hazitasns
YV WIll BIVE LWU PIUULD MIal Ju 10 VIIVTIUTVIIV. 11V 1IDL WILL LIRS J, O IICIR 5
from Theorem 1 apparent, but the second will be simpler

Demonstration 1. Extend f, to a function f, : B,y — B,41-1, Where [ —k =2 by
again finding the first index i such that |T;} = |S;| + 2 and then defining f, by (7). It
is easy to show that f; is still well defined and injectivity will be proved by
Induction on ~. In fact we will actually be proving iog concavity in the form given
0y €q. {(<).

af se D o moozzimen sl o Ba O 4 P o S S
i =4 dU addULIC uIC ICSUIt 10 71 — 1. Uiven

(S', Tr) — [{n—l(bn:l’ ?:n—l)v lt: |-E|—l( = ?‘in-l? -+ ?’
l(ln—l» A)n--l)a it ”n—ll = |bn—l| +1.

From the definition of f we have
(LS 1 ImnY T'13Em\Y €€ peT (4")
AW W ie gy &4 7 Fo5 ) L s Cwy it C 8 \N"7
!{S’ ™ ifnadC uaT (5)
f(S, T):'{\ ] Vi) BRIV E Iyt 2, \“™ 7
n (S fp) TN fme€ naT (6a’)
\& W (Fvgy 2 gy BE ¥6 ooy 00 G Ly N\ 4
lfs' T' U {n)) ifnedS naeT (6b")
L y ~ gy BE 7O o ady 00 G d e N\ 4
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Note that egs. (4) and (5') correspond to inequalities (4) and (5) in Theorem 1
while (6a’) and (6b’) mirror the first and second terms in (6). From the inductive
hypothesis and the placemernt of n’s above we see that f, is one-to-one.

Demonstration 2. Injectivity will follow if we can construct an inverse map from
the image of f, back to its domain. Let (S’, T') be a pair mapped onto by f,. Thus
there must be some index, and so a largest one, such that |T;| = |S;| — 1. Letting
[RS8, T')=(T;US}, S]UT we see that £, is such an inverse. [

We should note that f,, was independently discovered by Butler [2]. See Section
S for details.

Next consider permutations & of [n]. Given a cycle ¢ we define c; to be the
cycle whose elements are those of ¢ N[i] in the same relative order as they are in
c. For example, if c=(1, 6,5, 3,9, 4, 7), then ¢s=(1, 5, 3, 4). But any permuta-
tion & of [n] is uniquely decomposable as a product of disjoint cycles. So let x; be
the permutation of [i] whose cycles are the ¢; for all cycles c in the decomposition
of & {empty cycles are deleted).

From now on we will always write & in standard cycle notation, where each
cycle is ied by its smallest element and the cycles are ordered lexicographically. If

a=(a;,az...,8,)ps1,...,85)...(a,...,8,_1)

is a permutation of [# — 1], then there are n positions where we can insert an n so
as to obtain a permutation x’ of [n] in standard form. Position s, s <n, occurs in
the same cycle with and directly after a,. Position n is a space for forming a new
cycle (n) at the end of s#. Figure 1 shows the result of inserting 4 into a
permutation of [3] in all possible ways.

Let S, be the set of all pairs of permutations (x, ) where & and ¢ are
products of k and / disjoint cycles respectively. Given (¥, 0) € Spi—1x+1, then, as
before, there is a largest index i such that o; has one more cycie than z;. Now
define (%', 0') = g,(, o) by constructing a sequence of pairs of permutations

(Jl',!, U:) = (Ui, ﬂi)) (ﬁ;+h ol!+l): recy (.Tl’,',, 0:1) = (ﬂ, 0)!

where /., (respectively o;.,) is obtained from & {respectively o;) by inserting

Position
of 4 Resulting 7’
~ 2 (1,3,4)(2)
n=(1,3)2} 3 (1,3)(2,4)
4 1,3)(2)(4)

Fig. 1. Insertion of 4 into a permutation of [3].
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j+ 1 in the same position as in passing from z; to &;,, (respectively o; to 0;,.).
For example, if

(@, 0)=((1, 5, 3)(2, 4), (1)(2)3; 5)(4)) = (75, 05),
then

(714, 02) = ((1, 3)(2, 4), (D(2)B)(4)),

(713, 03) = ((1, 3)(2), (D(2)3));

(703, 03) = {((1)(2)(3), (1, 3)(2)),

(3, 02) = (D23, 4), (1, 3)(2)(4)),

(75, 35) = ((1, 5}(2)3, 4), (1, 3)(2, 5)(4)) = (', o).

It is easy to verify that (%', 0') € Sy and that g, has an inverse which is a
step-by-step reversal of the definition of g,. Hence

Theorem 4. g,:S,k—1x+1—> Suxx defined above is an injection.

The construction for partitions A of [r] is similar to the one for permutations.
We will separate the blocks of A using slashes to avoid a profusion of parentheses,

e.g.,
A=1,3,5/2,6/4 hasblocks {1,3,5}, {2,6} and {4}.

The standard notation for partiiions is to write the elements of each block in
lexicographic order and then oricr the biocks lexiographically as was done in the
previous example. As expected, A, is the partition obtained from A by intersecting
each block with [i] and discarding empty blocks.

Given A a partition of [n — 1] with k blocks, there are k + 1 positions in which
to place an 7 so as tc obtain a partition A' of [r]. We can put n in position s by
placing it at the end of the sth block for 1 <s < k. The other possibility is to make
{n} a singleton block at the end of A. For convenience in what follows, this is
called position 0. Figure 2 illustrates all ways of placing a 4 in a partition of [3].

Let the set of all pairs (4, u) of partitions of [r] with k and [ blocks respestively
be denoted P,y. If (A, 1) € Ppi_1z41, then we find the largest i such that u; has

Position
of 4 Resulting 7’
0 1,3/2/4
A=1,3/2 1 1,3,4/2
2 1,3/2,4

Fig. 2. Placing a 4 in a partition of [3].
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one more block than A; and build (A', u')=h,(A, u) from (A}, u}) = (u;, A;)
inductively.

It is important to note that whenever (4, ;) € By,,, then A and u/ will be
constructed so that (4, #;) € Bjis1m-1. This is certainly the case for (A;, u!), so
we can assuine that (Aj_,, uj-,) has this property and build A/ from Aj_y
(respectively p; from g]_,) by placing j in the same position as in passing from
Aj—1 to A; {respectively p;_, to ;). The only time this is not possible is when j is
put in position m to form ; since there is no position m in p/_,.

This brings us to two exceptional cases.

(i) If j was put in positions s =1 and m to form A; and g; respectively, then
place j in positicns / + 1 and s to construct A; and u;. Notice that by the inductive
hypothesis on (4;_;, u;_,), positions s and /+1 are guaranteed to exist in this
case.

(i) If j was put in positions s = 0 and m to form A; and p; respectively, then we
proceed as follows. Under these assumptions (4;, ;) € By, implies (A;_,, pj_) €
Bi 11m-1 Wwith (m—1)--1=1 since m—1=2. Hence we can find a largest
index p, i <p <j such that p, has exactly one more block than A,. Let (A, u?) =
(u,, A;) and form the sequence

(A5 15)s (Apsrs Bpsr)s - - - 5 (A1, 1f 1),

using the same rules as above with all unprimed symbois repl ced by primed ones
and all primes replaced by double-primes. Finally we let (4, u;) be (4]-,, uj-,
with j placed in positions /+ 1 and 0 respectively. The astute reader will have
noticed that the double-primed sequence comes from a composition of maps

h, h
q q
Im > Bql+lm—l > Bql+2m—2’

B

q

ie.,
h ’ 4 h n n
(A'q! l“q) . (Aq! Mq) . (lq’ "q *

The following examgple will illustrate the generai method, including both
exceptional cases.
(A, ) = (123456/7/8, 1/28/34/5/67) = (As, s},
(A7, uq) = (123456/7, 1/2/34/5/67),
(Ao, 126} = (123456, 1/2/34/5/6),
(As, us) = (12345, 1/2/34/5),
(As, ma) = (1234, 1/2/34),
(A3, u3) = (123, 1/2/3),
(A2, 12) = (12, 1/2),
(A2, n2) = (1/2, 12),
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(A3, w3) = (13/2, 12/3),

(A4, pd) = (13/24, 124/3),

(As, AS) = (135/24, 124/3/5),

(A, pé) = (1356/24, 124/3/5/6),

(A2, u2) = (124/3/5, 135/24),

(Az, ul) = (1246/3/5, 135/24/6),

(A4, us) = (1246/3/57, 135/24/6/7),

(A%, 13) = (1246/3/57/8, 135/248/6/7) = (A', u").

Theorem 5. Thc map h,(A, u)=(A', u') defined abovc is an injection from
Bt k41 10 By

Proof. The fact that h, is weil-defined is an easy induction. To construct the
inverse, first note that if neither of the exceptional cases have come into play in
the construction of (A’, 1), then one can apply the same steps used in inverting
the map g, of Theorem 4. To recognize when an exception has been used merely
note whether, for some j, the last block of A; contains a j with at least one other
element. Distinguishing between exceptions (i) and (ii) is done by finding the
position of j in i/ (non-zero or zero respectively). Now it is a simple matter to
construct a siep-by-step inverse for the exception. O

4. Graphical inierpretations

Wilf [8,9] has shown that various recursive structures can be modeled using
paths through a iabeled digraph (directed graph). He used this interpretation to
provide a unified method for sequencing, ranking and selecting combinatorial
objects. These ideas will also shed light on the injective proofs of the preceding
section.

Let our digraph have as vertices the set of all integrai lattice points (x, y) of the
Cartesian plane satisfying x=0 and 0<y=<x. Given a triangular array ¢,
satisfying the recurrence (3), we direct ¢, labeled arcs from vertex (n, k) to
vertex (n — 1, k — 1) and d,,, labeled arcs from (n, k) to (n — 1, k). These arcs are
called diagonal and horizontal arcs respectively. The boundary vertices (n, 0)
(respectively (n, n)) are only assigned horizontal (respectively diagonal) outgoing
arcs. If toy =1, then i’ is clear that ¢,, counts the number of paths from (n, k) to
(0, 0). We should note that the labeling of arcs in our examples will differ slightly
frem that found in [9] but this will have no effect on the overall content.

For the binomial coefficients, all horizontal arcs are labeled 0 and the diagonal
arc leaving (n, k) has label n. The set formed by the non-zero labels on a path
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(S,T = (13,6}, {1,2,4,5}) (§', T) ={{1,2,6l, {3,4,5))

Fig. 3. Graphical inierpretation of f;: B, — Bgss.

from (n, k) to (0, 0) is thus a k-element subset of [#]. The map f, of Section 3 has
a straight-forward interpretation in terms of such paths.

A pair (S, T) € Bux-1x+1 is a pair of paths from (n, kK — 1) and (n, k + 1) back
to (0,0). The index i represents the first time that the T-path is exactly one unit
above the S-path. Finally (S', T') =£,(S, T) represents the result of moving the
portion of the S-path between x =i and x =n one unit up, and moving the
corresponding piece of the T-path down in the obvious way. Notice that S’ refers
to the path which agrees with T for x<i and is a translate of S for x =i,
vice-versa for T'. An example is given in Fig. 3.

The digraph for permutations has # — 1 horizontal arcs and one diagonal arc
emanating from (n, k). (We can disregard any arcs from points (n, 0), n=1,
since it is impossible to reach (0,0) from such vertices.) Label these arcs 1
tirough n, with the sole arc to (n — 1, k — 1) receiving the label n as in Fig. 4.
Thus traveling along arc s represents passing from & = &, to x,,_, by eliminating n
from the sth position. Index i plays the same role as before and the paths are
exchanged via a pair of label-preserving translations. Figure 5 illustrates the
example of gs:Ss2;—> Ss33 workea out in the previous section.

In the partition digraph the outdegree of {(n, k) is k + 1 with a unique diagonal
arc labeled 0 and the rer:aining horizontal arcs labeled 1 tc k, see Fig. 6. The
reason why the injection is more complicated in this seiting is now apparent:
vertical label-preserving transiations are not always possible. However, the reader
should have no trouble formulating the exceptional cases (i) and (ii) in graphical
terms, so this is left as an exercise.
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¥ig. 4. Digraph for permutations.

5. Concluding remarks

Injective proofs of log concavity results have appeared elsewhere in the
literature. Daykin, Daykin and Paterson [3] used explicit injections to prove that
various sequences counting order preserving maps of posets were log concave.
Building on an idea of Bhatt and Leiserson [1], Lynne Butler |2] has investigated

(m,0) = ((1,5,3)(2,4), (1) (2" (3.5) (4)) {m, o) ={(1,5)(2)(3,4), (1,3)(2,5)(4))

Fig. 5. Graphical interpretation of g5:5:,— Sq11. Note: labels and arrows have been suppressed for
readat:ility.
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Fig. 6. Digraph for partitions.

log concavity of the Gaussian polynomials

] - (@ - 1)@ -1)-- (g -1
Lkl (g -D@ "= @-D@*-1)g"™* "' =1 -(g-1)
In particular, she showed combinatorially that

[:]: - "[k i 1],,[k : 1],,

has nonnegative coefficients and when ¢ =1 her construction specializes to the
map f, of Theorem 3.

The graphical interpretation in Section 4 bears a resemblence to work of Gessel
and Viennot [4] on combinatorial proofs of determinantal identities. By assigning
signs to an n-tuple cf raths, the exchange of a path pair can be interpreted as
cancellation in a determinant and many beautiful results follow. This lcads one to
wonder whcther there are other settings where path interchzages can be brought
into play.
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