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Stanley (Algebra Universalis 2, 1972, 197-217) introduced the notion of a 
supersolvable lattice, L, in part to eombinatorially explain the faetorization of its 
characteristic polynomial over the integers when L is also semimodular. He did this 
by showing that the roots of the polynomial count certain sets of atoms of the 
lattice. In the present work we define an object called an atom decision tree. The 
class of semimodular lattices with atom decision trees strictly contains the class of 
supersolvable lattices, but their characteristic polynomials still factor for 
combinatorial reasons. We then apply this notion to prove the factorization of 
polynomials associated with various hyperplane arrangements having non-super- 
solvable lattices. © 1995 Academic Press, Inc. 

1. A T O M  D E C I S I O N  TREES 

In  this section we will in t roduce our  ma in  object of study: a tom decision 
trees. We will show that  the characteristic po lynomia l  for a semimodular  
lattice admit t ing  an  a tom decision tree has non-negat ive  integral roots. In  
fact, these roots count  the sizes of certain sets of a toms of the lattice. We 
will also note  how the semimodular  supersolvable lattices of Stanley [ 18 ] 

have a tom decision trees and  so are a special case. First, however, we must  
give some definitions and  nota t ion.  Any terms not  defined can be found 
described in Stanley's book  [ 19]. 

Let L be a lattice with meet and  jo in  denoted by /x and  v ,  respectively. 
All our  lattices will be finite having a min ima l  element 6 and  maximal  
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element 1. The MSbius function of L is defined inductively on elements 
x e L  by 

1 if x = 0  
It(X)= - - ~ , y < x I t ( Y )  if x > 0 .  

The M6bius function is one of the fundamental invariants of L. Now 
suppose L is graded with the rank of x e L  denoted by rk(x). Then the 
characteristic polynomial o f  L is 

z(L, t) = ~ It(x) t rk(g)- rk(x). (1) 
xEL 

One uses the corank of x, rather than its rank, as the exponent on t so that 
the polynomial will be monic. Since the characteristic polynomial is just the 
generating function for the M6bius function, it is also of fundamental 
importance. 

Now suppose L is semimodular so that 

r k ( x ) + r k ( y ) ) r k ( x  A y ) + r k ( x  v y) for all x, y e L ,  (2) 

and consider the set A of atoms of L. Given a subset B _  A, we define 

Then B is independent if 

xB= V b. (3) 
b~B 

rk(xB) = [B[, 

where I" I denotes cardinality; otherwise B is dependent. If B is independent 
then we say that B is a base for xB. If B is a minimal (with respect to inclu- 
sion) dependent set then we say that B is a circuit. Given a total order on 
A, then a broken circuit is obtained by taking a circuit and removing its 
smallest atom. Rota [ 16] first stated an important theorem giving an inter- 
pretation to the MSbius function in terms of broken circuits. He did this 
for geometric lattices, i.e., those which are semimodular and where every 
element is a join of atoms. It is not hard to generalize this result to lattices 
which are just semimodular, the case that we will need. In fact this theorem can 
be generalized even further, as has been done by Sagan [ 17]. Related results 
can be found in the papers of BjSrner [2]  and Bj6rner and Ziegler [4].  

TIaZOREM 1.1. Let L be a finite semimodular lattice and suppose the 
atoms A of  L are arranged in some total order. Then, for any x ~ L, 

#( x ) = ( -- 1) rk(x) (number o f  bases o f  x that contain no broken circuit). (4) 



SEMIMODULAR SUPERSOLVABLE LATTICES 211 

The bases of this theorem are called NBC (non-broken circuit) bases. 
Furthermore,  an NBC set (one containing no broken circuit) is automati-  
cally independent and so is a base. If L has additional structure, then there 
is a nice way of constructing such bases. A semimodular lattice L is super- 
solvable if it contains a maximal chain C, called an M-chain, such that 
every element of M is modular. Suppose L is supersolvable with M-chain 

= x 0 < x l  < --. < x n = l  and let 

A i = { a ~ A : a < ~ x i b u t a  ~ xi 1}- 

Stanley [18] and independently Garsia and Wachs (unpublished) dis- 
covered the following theorem. 

THEOREM 1.2. Let L be a finite semimodular supersolvable lattice and 
consider any ordering of  its atoms such that the elements of  A i come before 
those of  Ai+ 1 for all i. Then the corresponding NBC bases for L consist of  
all sets obtained by choosing at most one atom from each Ai and 

x(L, t ) = ~  ( t - I A i l ) .  
i 

Thus the roots of x(L, t) are positive integers since they are just the 
cardinalities of certain sets of atoms. 

We can now describe the concept of an a tom decision tree which is 
fundamental to all that follows. For  any terms from graph theory that we 
do not define, see the text of Chartrand and Lesniak [7] .  All our trees will 
be rooted, ordered, and edge-labeled. Each label will be an assignment 
statement (as used in computer  science) which returns a set B of atoms, 
e.g., B : = B u  {a}, where a is an atom. Also, an edge from a vertex v to a 
child w of v will be said to leave v and enter w. Let 2 = (21, 22, ...) be an 
ordered partition of positive integers. If  L is a semimodular lattice then we 
say that L admits an atom decision tree (ADT),  T, of  type 3~ when the 
following two conditions hold. 

1. Every vertex at level i of T has 2i edges leaving it labeled with 
assignment statements that add exactly one a tom to B and one edge that 
leaves B invariant (B := B). 

2. For  some a tom ordering of L, every NBC base is obtained exactly 
once by starting with B = ~  at the root and then performing the 
assignments on the edges of a path from the root of T to a leaf. 

Note that by condition 1, all the leaves of T are at the same level. 
As an example, consider the lattice, L, shown in Fig. 1. Order the atoms 

from left to right: a < b < c < d. Then L has only one circuit {a, b, c} with 
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FIG. 1. A latticeL. 

corresponding broken circuit { b, c}. The NBC bases of each element are 
given in the following table: 

element 

NBC bases 

a b c b w x y z i 

~2~ a b c d a ,b  a , d  b , d  c ,d  a , b , d  
a, c a, c, d 

An ADT for L is given in Fig. 2. For simplicity, each assignment of the 
form B : = B w  {a} (respectively, B : = B )  has been replaced by the edge- 
label a (respectively, ~25). In what follows, we will talk about the 
assignment statement label and its shorthand interchangeably. 

For semimodular supersolvable lattices, there is a fixed partition of the 
atoms into subsets and the NBC bases are constructed by picking at most 
one atom from each subset. In the ADT case, the subsets correspond to 
vertices and the atoms chosen correspond to edges. The tree gives one 

b ~d~O a 

FIG. 2. An ADT, T. 
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more flexibility since the subset that you pick from next is allowed to vary 
depending on which atom, if any, you choose from the current subset. This 
situation resembles the relationship between edge-lexicographic and chain- 
lexicographic shellability [ 3 ]. 

The next proposition more exactly describes the connection between 
supersolvability and atom decision trees. 

PROPOSITION 1.3. Let L be a finite semimodular lattice. Then L super- 
solvable implies that L admits' an ADT. 

Proof Let the atoms of L be partitioned into subsets A1, A 2 ,  ... as in 
Theorem 1,2. Construct a tree T satisfying condition 1 of the definition of 
an ADT so that the edges leaving a vertex at level i are labeled by the 
atoms of the set Ai+l and ~ .  (The root  is at level 0.) Then condition 2 
follows directly from Theorem 1.2. | 

Thus the semimodular supersolvable lattices are a subset of those 
admitting atom decision trees. We will see in the following sections that 
this containment is strict. We next show that the characteristic polynomial 
of a lattice with an ADT factors over the integers. 

THEOREM 1.4. Suppose L is a finite semimodular lattice admitting an 
ADT of type )~ = ()01,)~2 .... ). Then 

x(L ,  t) = [ I  ( t  - 2i). 
i 

Proof By Theorem 1.1, the coefficient of t n k in z(L, t) is just 

( - 1 )k (number of NBC bases of elements at rank k in L). (5) 

Since L admits an ADT, T, each such base B can be constructed by 
choosing a path from the root of T to a leaf which chooses an edge labeled 
with an assignment augmenting B exactly k times. Because T has type )~ 
this can be done in exactly ek(21,22, ...) ways, where ek is the k th  elemen- 
tary symmetric function [ 13 ]. But then (5) coincides with the coefficient of 
t . k in I~i(t--2i), SO we are done. | 

2. LATTICES FOR HYPERPLANE ARRANGEMENTS 

We will now consider the semimodular lattices arising from hyperplane 
arrangements. These will provide us with examples of lattices which are not 
supersolvable but which admit atom decision trees. 
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A hyperplane, H, is an n - 1 dimensional subspace of the Euclidean space 
R ". So all our hyperplanes will go through the origin. An arrangement of 
hyperplanes is a set s¢ = {HI, ..., H~}, where each Hi is a hyperplane. Let 
L = L ( ~ 4 )  be the poser of intersections of these hyperplanes ordered by 
reverse inclusion. Thus in L, 0 corresponds to R ", each atom corresponds 
to an Hi, and 1 corresponds to 01<<.i<.eHi. It is well known [15] that L 
is a semimodular lattice with rank function 

rk X = n - dim X 

for any Xe  L. The characteristic polynomial of s¢ is 

X ( d , t ) =  ~ /~(X) t dimx. (6) 
X e  L( ~a¢ ) 

A comparison of Eqs. (1) and (6) shows that the characteristic polynomials 
of an arrangement and its associated lattice differ only by a factor of t ~ for 
some k. In all of the examples that we will consider, k = 0, so we can ignore 
the difference. 

Given any set of vectors in R n, there is a corresponding hyperplane 
arrangement gotten by taking the hyperplanes perpendicular to each 
vector. In particular, there is an arrangement associated with any root 
system. (For more information about root systems see Humphreys [ 10].) 
Let el ..... e, be the standard coordinate vectors in R'. Then the hyperplane 
arrangements corresponding to the root systems of types D,  and B, are 

and 

~n={(e i  e j )± : l<~ j< i<~n}  

&=>.u{<:  1.<iVn}, 

respectively. Thus we can consider the interpolating arrangements 

~,.~<k= ~@~ vo {e/~: 1 <~i<~k}. 

Note that for k = 0 or n, ~Nn, k reduces to ~,, or Nn, respectively. Zaslavsky 
[21] was the first to consider the family of hyperplane arrangements 
interpolating between ~n and Nn. These investigations were continued by 
Cartier [63, G6zefiak and Sagan [12], Orlik and Solomon [14], Orlik 
et al. [ 11, Example 2.6], Ziegler [24], and Hanlon and Zaslavsky [9]. 

To describe the lattices for root system arrangements, we will use 
Zaslavsky's theory of signed graphs [21, 22]. Each element of L(~-~n,k) 
will be encoded using a graph, G, on the labeled vertex set [h i  = 
{ 1, 2 ..... n}. The edges of G will be of three types: 
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• positive edge between vertices i and j, denoted/ j+ ,  

• a negative edge between vertices i and j, denoted ij-, 

• a half edge with only one endpoint i, denoted t h. 

The edges z) "+, 0"-, and i h correspond to the roots e i - e j ,  eg+ej,  and e~, 
respectively. (In the general theory there are also loops, which are edges 
with two endpoints at the same vertex i, corresponding to the root 2%) 
The reason for the choice of signs will be explained shortly. 

To characterize the graphs which appear in L ( ~ n , k ) ,  we need some 
notation. For  any V~_[n], let K~ (respectively, K v )  denote the signed 
complete graph on the vertex set V consisting of all positive (respectively, 
all negative) edges. Similarly, let K+ v,w (Kv, w) denote the complete bipar- 
tite graphs between vertex sets V and W which are all positive (all 
negative). In using this notation, we tacitly assume that Vc~ W = ~ .  
Finally, let K~ (k) be the complete signed graph, i.e., the one that has all 
edges of both signs between vertices in V together with all half edges on 
vc~ [k]. 

THEOREM 2.1. The lattice L ( ~ n , k )  is isomorphic to the lattice of 
subgraphs G of K~,~ #) such that each component of G is of the form 

1. K~ vO K~vu Kv, w, or 

2. K~ (~). 

Furthermore, there can be at most one component of type 2. 

If edge e corresponds to root e, then the isomorphism of the preceding 
theorem is obtained by sending G to 0e~G e±- The reason for our choice 
of edge signs is as follows. A cycle of length n in G is a sequence of vertices 
v,, v2, ..., v,, where vi and vi+l are connected by an edge for all i modulo 
n. We include the cases when n = 2 and there is a pair of edges between vl 
and v2, or when n = 1 and there is a half edge at Vl. A cycle is balanced if 
the product of the signs of its edges is positive and unbalanced otherwise. 
A cycle consisting of a half edge will be considered to be unbalanced. 
Now a component of type 1 can be called balanced (all of its cycles are 
balanced), while a component of type 2 is unbalanced (at least of its cycles 
is unbalanced). Be sure to distinguish a cycle from a circuit as defined in 
Section 1. 

Finally, it is convenient to attach a new component, denoted ~ ,  to every 
G which does not have an unbalanced component. The new component 
will have no vertices or edges and will be considered to be unbalanced. 
Thus every graph in L ( ~ , , ~ )  will now have exactly one unbalanced 
component. 
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To show that most  of the lattices L ( ~ , , , k  ) are not supersolvable we will 
need a result which, while part  of the folklore of this subject, does not seem 
to have been explicitly stated before. 

PROPOSITION 2.2. Let L be a semimodular lattice such that Z =Z( L, t) 
factors over the positive integers. Fix some r >~ 1 and let R be the sum of  the 
smallest r roots of  Z. I f  every element x ~ L o f  rank r is above less than R 
atoms, then L is not supersolvable. 

Proof  Suppose, to the contrary, that L is supersolvable with M-chain 
C. Let x be the element of rank r in M. Then by Theorem 1.2, the number  
of atoms that x is above must be a sum of r roots of Z. But by assumption, 
x is above fewer than R atoms, and R is the smallest such sum. This is a 
contradiction. | 

The polynomial Z(~Nn, k, t) factors, as was noted by Cartier [6, p. 14]. 

PROPOSITION 2.3. The roots o f  x (~N, ,k ,  t) are 

1, 3,..., 2 n - 3 ,  n + k -  1. 

We will also need an expression for the rank and number  of atoms below 
a graph G in L ( ~ , , k ) .  The following result can be easily deduced from 
Theorem 2.1. 

PROPOSITION 2.4. Suppose the graph G ~ L ( ~ N , , k )  has components on 
the vertex sets Vo, V1 ..... 1/l, where the unique unbalanced component is on 
the set Vo. Let vi = I Vii for all i. Then the rank of  G is 

rk(G) = n - I 

and the number of  atoms below G is 

v ° ( v ° - l ) + h +  ~ 2 ' 
i>~ l 

where h = I Vo c~ [k] l .  

We can now combine the previous three propositions to determine for 
which n, k the lattice L(~Nn, k) is not supersolvable. 

THEOREM 2.5. I f  k<~n--2 then L(@~,,k) is not supersolvable unless 
k --- O and n <~ 3. 

Proof  First consider the case k > 0. Let G be an element at rank k + 1 
in L ( ~ , , ~ ) .  By Proposit ion 2.4, G will be above a maximum number  of 
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atoms if it has a unique nontrivial component  on the first k + 1 vertices 
which is unbalanced. In this case, G covers 

(k + 1)k + k = k 2  + 2k 

atoms. 
Now look at the roots of X(~Nn,~, t) as given in Proposition 2.3. If  n >~ 

k + 2 then the root n + k - 1 is at least 2k + 1. Thus the k + 1 smallest roots 
are 1, 3 .... , 2k  + 1. But then the sum of these roots is 

( k +  1)2 = k 2  + 2 k  + 1. 

So the lattice satisfies the hypotheses of Proposit ion 2.2 and is thus not 
supersolvable. 

For  the case k = 0, we consider all elements G at rank 2 (since the ones 
at rank k + 1 = 1 are just atoms). Now an element with the largest number  
of atoms below is K ~ l .  The number  of such atoms is 3. But if n t> 4, then 
the two smallest roots o f z (N , ,  t) are 1 and 3. Since 3 < 1 + 3, we are again 
done by Proposit ion 2.2. | 

In the next three sections we will show that every L(~Nn,k) admits an 
a tom decision tree. First, however, we will need more information about  
the lattice. This is provided in the next section, where we concentrate on 
the case k = 0. Then in Sections 4 and 5 we construct the trees. 

3. THE LATTICE L(~ , )  

In this section we will characterize the NBC bases of L(~n). Along the 
way we will mention characterizations of its independent sets and circuits 
as well. 

Let G be a graph in the lattice for ~n. Then when we write an edge of 
G in the form i/~ for some sign e, we are assuming that i>j.  We say that 
there is a simple edge of G between i and j if/ j  + ~ G or 0"- ~ G but not both. 
We say that there is a double edge of G between i a n d j  if {ij +, i j-} ~_G. 
Recall that a set B of atoms of L(~n) corresponds to a set of edges (one 
for each a tom in B) and so can be considered as a graph. 

The next two propositions are special cases of  [22, Theorem 5.1]. They 
are also straightforward to prove directly from Theorem 2.1 and Proposi- 
tion 2.4, so we will content ourselves with stating the results. 

PROPOSITION 3.1. A set B of atoms of  L(~,) is independent if and only 
if every component of B has at most one cycle, and that cycle (if it exists) 
must be unbalanced. 
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PROPOSITION 3.2. A set B o f  atoms o f  L( ~ , )  is a circuit i f  and only i f  

1. B is a balanced cycle or 

2. B contains exactly two cycles, both unbalanced, with a path con- 
necting them. 

Note that in the second case, the path connecting the cycles may have 
length zero, so that the cycles intersect in precisely one point. 

To characterize sets containing broken circuits, we will need a few defini- 
tions. First of all we must introduce the a tom ordering that we will use. 
Define the positive lexicographic ordering (PLO)  of the atoms of L(~ , )  by 
taking the lexicographic ordering on unsigned edges and then replacing 
each unsigned edge ij by 0 "+ < 0"-. So, for example, the P L O  for L(~3) is 

2 1 + < 2 1  < 3 1 + < 3 1 - < 3 2 + < 3 2  - . 

Next, we will need names for the graphs whose presence indicates a broken 
circuit. A camelhump, H, is a pair of edges lj ~, ik ~ where i > j ,  k a n d j  ~ k. The 
hump is so-called because of Fig. 3a, where the relative sizes of i, j, k are 
indicated by their heights. A decreasing snake from Xo to x~, S, is a set of edges 

XoX~- ' XoX~ ' ~2 ~3 . ~k X l X 2 ~  X 2 X  3 , ..., .Xk_ l X k ,  

where Xo>X 1 > . - .  > x k .  The mouth of the snake is the double edge 
between x0 and x]. A snake may simply consist of a mouth  with no other 
edges. Such an animal is depicted in Fig. 3b. An almost decreasing snake is 
like a snake except that we must have ek negative and we only insist that 

xo > x1 > • • - > xk ~ and xk < X k  2" 

Thus the tail of such a snake is either x k _ l x [  or x k x [ _  1. An almost 
decreasing snake with the latter choice for a tail is shown in Fig. 3c. Some- 
times we will denote these snakes simply by x0, xl .... , xk if it is clear where 
the head and tail lie. 

i 

k 

x2"o X21D 

X k ~  Xk_I"O"--- 

FIG. 3. A menagerie. (a) camel hump; (b) decreasing snake; (c) almost decreasing snake. 
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PROPOSITION 3.3. A set B of  atoms of  L(~n) contains a broken circuit 
under the positive lexicographic ordering if  and only if  B contains one of  the 

following: 

1. a camel hump, H, 

2. two disjoint decreasing snakes $l from Xo to Xk and $2 from Yo to 
y~, such that x~_ 1 > Y~ > Xk, 

3. an almost decreasing snake S. 

Proof We will keep the notation of the previous definitions and 
consistently use Proposit ion 3.2 without mention. 

For  the "if" direction, it suffices to show that each of the three choices 
is a broken circuit. It is easy to check that in all three cases we can form 
a circuit C by adding a smallest edge, e as follows. In case 1, C =  
H w  {jk~}, where the sign 7 is chosen so that the cycle is balanced. In case 
2, C = S l W S z w  { y l x ] } .  And in case 3, C = S u e  + where e + is the other 
edge connecting the two vertices of the tail. 

For  the "only if" direction, suppose B contains a broken circuit. Then 
this broken circuit comes from removing the smallest edge of one of the 
graphs G of Proposit ion 3.2. There are two cases depending upon whether 
G contains a cycle of length at least three or not. 

In the first case, let C be the cycle x0, x~, ..., xk, where k 1> 2. Then B ~_ 
C - { e } ,  where e=x~X~o is C's smallest edge. Now x k > x o  implies that 
x~ > x ~ >  x0, otherwise the edge connecting x 0 and xl would be smaller 
than e. So the previous sequence of vertices starts off increasing and must 
eventually decrease to get to xk. Thus if x i is the first vertex of this 
sequence with xi>xi+~,  then we have i~> 1. Hence xix7 ~,xix~+ 1 is a 
camel hump in B. 

Now suppose the only cycles in G are of length 2. Thus these cycles must 
be unbalanced. So, by the second condition in Proposition 3.2, B_~ 
P -  {e}, where P is a path with a double edge at each end. First note that 
if P contains a camel hump, then we are back in the first case. So we may 
assume that the vertices of P from a reverse unimodal sequence: decreasing 
first and then increasing. Thus removing the least edge e results in 
either two decreasing snakes as described or an almost decreasing snake, 
depending upon whether e is a simple or double edge of P, respectively. | 

We have the following useful corollaries: 

COROLLARY 3.4. Suppose a set B of  atoms of  L(~,,) is NBC and pick 
any vertex x e [n] .  Then there is at most one vertex a < x such that 

{xa+,xa  } ~ B # ~ 5 .  

582a/72/2-3 
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Proof I f  there are two such vertices, then B contains a camel hump, 
contradicting the previous proposition. | 

COROLLARY 3.5. Let B be an NBC base of  L (~ , )  under the positive 
lexicographic order. Then, the set 

Ba= { x S E B  l x, y<~a} 

is an N BC  base o f  L (~ , )  under the positive lexicographic ordering. 

Proof If  B does not contain any of the configurations listed in Proposi- 
tion 3.3, then B a cannot either. | 

We are now ready to give an inductive characterization of the NBC 
bases of L(~,) .  It  is this theorem that will permit us to construct an ADT. 
In all that follows, ~ stands for disjoint union. 

THEOREM 3.6. The set B is an N B C  base of  L (~ , )  if  and only i f  B = 
X ~  Bin, where Bm is an NBC base for L(~m) , and the pair X, m satisfies 
one o f  the four following mutually exclusive conditions: 

1. X = ~ j , m = n - 1 .  

2. X = { n x + } , m = n - 1 .  

3. X = { n x  } , m = n - 1 .  

4. X~_ {nx~-, n x [ }  for some x, ,  where these are the only edges in B 
containing n; m = a - 1 ,  where "a" is the smallest label on a vertex in the 
connected component of  B containing n, and both of  the following hold. 

(a) There is a decreasing snake in X on a vertex set n = x o >  
Xl > .. .  > xk = a with all simple edges positive. 

(b) For all y , n >  y > a ,  there is at most one edge of  the form 
yz  ~ ~ X. Moreover, i f  xi_ 1 >i Y > z = xi for some i, then e = +. 

Proof  Suppose B is an NBC base for L(~,) .  Then B m is an NBC base 
for L(~m) by Corollary 3.5. We will now verify that one of the four condi- 
tions holds. (It is easy to see that they are mutually exclusive.) We will also 
say that a base is of type t if it satisfies condition t, t = 1 ..... 4. 

By Corollary 3.4, (nx +, n x - }  c~B~O for at most  one x < n .  So B falls 
into one of the following four cases: 

(i) B = B n _  1 

(ii) B = { n x + } t ~ B n _ l  

(iii) B =  { n x - } ~ B . _ ~  

(iv) 
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Clearly, cases (i)-(iii) correspond exactly to bases of types 1-3, 
respectively. It  remains to show that (iv) and 4 correspond. 

So let a be the smallest label on a vertex in the connected components 
of B containing n. Thus there is a path  n = x0, xl .... , xk = a. The vertices on 
the path must decrease, otherwise B contains a camel hump and so is not 
NBC by Proposit ion 3.3. Furthermore,  all the edges except nx~-, n x ~  on 
this path  must  be simple and positive, otherwise B contains an almost 
decreasing snake, again contradicting Proposition 3.3. This verifies 
condition 4a. 

For  4b, we proceed by contradiction. By Corollary 3.4 the only way to 
have two edges of the given form is if { yz  +, y z - }  ~_ X. We now have two 
cases, depending on whether xi_ 1 ~> Y > z = xi for some i, or not. 

If  xi_ 1 ~> Y > z = x~, then the presence of yz  - = y x ~  will force X to 
contain an almost decreasing snake, a contradiction to Proposition 3.3. 
Thus we can only have yz-- ,  and this proves the "moreover" statement. 

The only other possibility is to have xi_ 1 ~> Y > xi for some i but z < x~. 
Then XoX~-, XoX[-, x l x  + ..... x ~ _ i x  + and y z  +, y z -  are a pair of decreasing 
snakes satisfying the second condition of Proposit ion 3.3. This contradic- 
tion ends the proof  of the forward direction of the theorem. 

For  the reverse implication, suppose B has one of the types 1 through 4. 
It  will suffice to show that B contains no broken circuit (since then B must 
be a base). We now consider each of the four possibilities in turn. 

Type 1. B is an NBC base of L ( ~  1). The fact that B is also an NBC 
base of L (~ , )  follows immediately from the equivalence in Proposition 3.3. 

Type 2. B = { n x  +} u B n _ l  with B~_ 1 an NBC base of L(~n_l) .  
Suppose, to the contrary, that B contains a broken circuit. Then B contains 
one of the three graphs G in Proposit ion 3.3. If  we can show in each case 
that B , _  1 ~- G then this will contradict B~_ ~ being NBC. Equivalently, we 
must demonstrate that we always have nx + (~ G. Now vertex n has degree 
one in B. (The degree of a vertex is the number of edges containing it.) But 
if n were a vertex in any of the three possible G's, then it would have to 
have degree 2. Thus nx  + ~ G in all cases. 

Type 3. The same argument as for type 2 can be applied, with nx  + 
replaced by n x - .  

Type 4. We note that by the arguments for types 2-3 and condition 4b, 
the sets Ba ~ , B a , . . . , B ~ _ l  are all NBC bases of L ( ~ ,  1). Moreover, 
applying the same arguments, we must have that B~_ 1 u {nx(}  and 
Bn_ I U {nXl} are both NBC bases for L(~n). 

Now suppose that B is not NBC, and let D be a broken circuit contained 
in B. From the previous remarks, { n x ~ - , n x F }  c D .  By Proposit ion 3.2, 
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D must come from removing an edge of a path  with both ends double. 
Thus D = S or D = $1 w $2 where these snakes are as described in Proposi- 
tion 3.3, parts 3 and 2, respectively. Furthermore n x  +, n x {  must be the 
mouth  of S in the first case, or of one of $1, $2 in the second. Note  that 
by the definition of type 4, any path  with decreasing vertices that starts at 
n must be contained in the snake 

S r : F / =  X o ,  x 1 ,  ..., Xk=a.  

So in the case D = S, S cannot  have a down tail because all the simple 
edges of S' are positive. S cannot  have an up tail since that would 
contradict the second half of condition (b). Thus D = S is impossible. 

But if D = $1 w $2 then one of the snakes must be contained in S'. All 
double edges other than n x ~ ,  n x  I must lie in Ba 1 by the first half of  (b). 
Thus all vertices on one snake are ~> a while all vertices on the other are 
< a. Thus it is impossible for the ends of $1 and $2 to dovetail as they must 
in the second part  of Proposition 3.3. This eliminates the final case, D = 
$1 u $2, and proves the theorem. | 

4. THE DECISION TREE FOR L(N,,) 

To build the tree for L = L(~n) we will also need conditional assignment 
statements for edge labels. Specifically, consider an edge e entering a vertex 
v of the tree, where v has 2s edges leaving it for some s. Then we can give 
e the label 

B : =  ~B u {0"-} if the next edge traversed is one of the firsts leaving v, 

B w { 0 + } if the next edge traversed is one of the last s leaving v. 

(Recall that our trees are ordered, so "first" and "last" make sense.) It  will 
simplify things to abbreviate this label to ty -+. After following the next tree 
edge, we will say that the choice for •-- has been resolved. 

The atom decision tree for the L(~,,) will be denoted Tn, and it will have 
height n. For ease of reference, in addition to labeling each edge of the tree we 
will add a color to the non-root vertices, namely green (G), white (W), red (R), 
or silver (S). Hence, we will define the tree by stating the labels on the edges and 
the colors of the respective children. Also, for a given vertex it will be convenient 
to let t denote its level and s = n - t denote its colevel. 

The root has n children; the labels and colors are 

colored white 

na +- for a = 1, ..., n - 1 colored green. 
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A whi te  ver tex at  level t has  2s chi ldren with  edge labels  and  ver tex 

colors  

co lored  white  

s a  +- for a = 1, ..., s -  1 co lo red  green 

(s + 1) a + for a = 1 ..... s co lored  white. 

A green ver tex at  level t has  2s chi ldren with  edge labels and  colors  of  

ch i ldren  given by  

co lored  white 

s a  + for a = 1, ..., s - 1 co lored  green 

(s + 1 ) s - co lored  red or  silver 

s a  +- for a = 1, ..., s -  1 co lo red  green. 

To decide on  the choice of  red or  silver, we make  the fol lowing observa-  
t ion,  which will be verified after comple t ing  the defini t ion of  the tree. No te  
tha t  when  we reach a vertex v of T n then the set of ( resolved)  elements  on 
edges f rom the roo t  to  v form a g raph  G~. If  v is at  level t, then there will 
be at  mos t  one c o m p o n e n t  of  Gv conta in ing  bo th  a doub le  edge and  a 
ver tex with  label  less than  or  equal  to s + 1. Fu r the rmore ,  this ver tex will 
be un ique  (if it  exists),  so let its label  be I. F inal ly ,  if v is to be co lored  red 

or  silver then  such a c o m p o n e n t  mus t  exist, so we can  choose  

~red if l = s + l  
co lor  = ( s i l v e r  if 1 < s + 1. 

A red  ver tex at  level t ( and  hence l = s + 1) has 2s chi ldren with  edge 

labels and  ver tex colors  

co lored  white 

s a  + for a = 1, ..., s - 1 co lored  green 

(s + 1) a + for a = 1, ..., s co lored  red or  silver, 

where  the  red co lor  is chosen  if and  only if a = s. 
A silver ver tex at  level t (with l < s + 1) has 2 s  chi ldren with edge labels  

and  ver tex  colors  

~3 

( s +  1 ) a -  

( s +  1) a + 

for a = l ,  ..., s ,  a # l 

for a =  1, ..., s 

co lored  red or  silver 

co lo red  red or  silver 

co lored  red or  silver, 

582a/72/2-4 
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where the red color is chosen if and only if l - - s .  As an example, the tree 
T3 is displayed in Fig. 4. 

To see that T, is well defined, we must make several observations. First 
of all, we need to see that all edge labels of the form /j-+ are resolved 
by the time we reach a leaf. Note that an edge with such a label will 
always lead to a green vertex, and the choice is always resolved by any edge 
leaving that vertex. So we only need to check that no leaf is colored green. That 
is guaranteed by the next lemma, which is easily checked by inspection. 

LEMMA 4.1. Suppose i is given 1 < i <~n. Then elements o f  the f o r m  ij "~ 
can only label edges leaving level n -  i + 1. Also, elements o f  the fo rm 0 "+- can 
only label edges leaving level n - i. 

We must also check our method of determining whether a vertex is red 
or silver. For  the purposes of this proof  it will be convenient to call a 
component  double if it contains a double edge. 

LEMMA 4.2. I f  V is at level t in T , ,  then there is at most  one double 
component o f  G~ containing a vertex with label less than or equal to n - t + 1. 
The vertex itself, i f  it exists, is unique. Finally 

such a component does not exist <=~ v is to receive color W or G, 

equivalently 

such a component exists ~:~ v is to receive color R or S. 

P r o o f  We induct on the level t. The lemma is readily checked for t ~< 1. 
Suppose the result holds for levels up through t and that w is a vertex at 
level t + 1. Let v be the parent of w. By the induction hypothesis, all double 
components of Gv contain only vertices ~> n - t + 2, except for one called C. 
(We allow C =  ~ to cover the case when such a component  does not 
exist.) But all of the edges ij ~ that can be added in passing from v to w have 
i~< n -  t + 1 by Lemma 4.1. So all of the double components of G~, except 

W 

~/\ oi \ ~/ \ ~/ \ 0/ \ 
i W i \"/ WI W i 

W W W  R W W W W W W W  R 

21  ± 3 1 -  

Y\- i - 
W R R R W W W  R W R W R 

FIG. 4. The tree T3. 
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possibly C, remain unchanged in Gw. Thus we only need to worry about  
what happens to C. There are several cases depending on the color of v. 

Suppose first that  v is W or G. Then C = ~ by induction. Now a quick 
check of the definition of Tn shows that a double component  (actually a 
double edge) with a vertex <~n - t will be created if and only if w is R or 
S. Thus the lemma is true in this case. 

Now suppose v is R. Thus C's smallest vertex is labeled n -  t + 1 by 
induction and the definition of red vertices. If  vw comes from the last 
choice in the definition of a red vertex, then C is extended to a vertex a ~< 
n - t by the edge (n - t + 1) a +, and w is R or S. In the other two choices, 
C remains the same in passing from G~ to Gw and no new double edge is 
added. Thus no double component  with vertices ~< n - t exists in Gw and w 
is W or G. Thus the lemma holds in this case, too. 

Finally, suppose v is S. Now C's smallest vertex is labeled < n -  t + 1. 
But in all three choices listed for silver vertices, at most  a simple edge is 
added, which cannot intersect a double component  other than C. Thus C 
still exists as the unique double component  with vertices ~<n-  t and w 
must be colored R or S. This successfully concludes the last case, so we are 
done with the proof  of the lemma. | 

We are finally in a position to show that Dn admits T,, as an ADT tree. 
It is clear that Tn satisfies condition 1 of the definition of an ADT. It  
remains to check condition 2. To do this we define a branch as a rooted 
tree whose root has degree one. In any rooted tree, an edge leaving v and 
entering w has a corresponding branch consisting of vw and the subtree 
rooted at w. Also, any tree isomorphisms mentioned in the proof  of the 
following theorem will also preserve vertex colors and (to a certain extent) 
edge labels. 

THEOREM 4.3. Paths from the root, r, to a leaf in the decision tree T n are 
in one-to-one correspondence with the N B C  bases of  L( ~n) under the positive 
lexicographic ordering. 

Proof  We proceed by induction on n. For  the case where n - -2 ,  the 
result is easily verified. Assume the result for Tm for all values of m < n. I t  
suffices to show that paths in T,, correspond to the bases of types 1~4 in 
Theorem 3.6. 

To begin, consider the white child of the root, Vw. Remove all branches 
starting with edges leaving v w of the form na +. What  is left of the subtree 
at Vw is isomorphic to T,,_ i, by construction. Moreover,  since the label of 
the edge rvw is ~ ,  this part  of the subtree will produce all bases of type 
1 exactly once, by induction. 

For  the bases of type 2, pick any x < n and consider the vertex, v~, 
entered by leaving the root along the edge labeled nx +-. Take the branches 
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starting with edges of the form nx +, (n - 1 ) a -+ leaving vG together with the 
branch starting with nx + leaving Vw, and paste their roots together. The 
resulting tree will again be isomorphic to Tn_l.  The only difference in 
the edge labeling is that every edge leaving the root will also contain the 
label nx +, indicating that these branches will yield all type 2 bases exactly 
o n c e .  

The bases of type 3 are handled in the same way as those of type 2 with 
nx + replaced everywhere with n x - .  The only difference is that, instead of 
a branch from Vw, one uses the branch leaving vG labeled n x - ,  ~ .  

For  the final stage, we must show that the paths in Tn not using any 
edges in subtrees of previous cases correspond to type 4 bases. Note  that 
such paths are exactly those that follow an edge nx + to a green vertex 
and then leave it by an edge nx+, n x - .  Thus if B is the set of elements 
corresponding to a given path, P, then {nx +, n x - }  ~B .  

We will first show that B is of  type 4, and thus an NBC base of ~n. So 
let a be the smallest label on a vertex in the component  C of B containing 
n. Because of Lemma 4.2, all vertices v2, v3, ..., Vn-a+l on P from levels 2 
to t = n - a + 1 must be R or S. Any tree edge between two vertices which 
are both R or S must be labeled with a single element. This covers the first 
half of 4b. Now v,, 2 ~ t < n -  x + l, must be silver since at this point of the 
construction C's smallest vertex is x (because of the snake nx +, n x - ) .  
Thus, by the second choice for S vertices, we can never have an edge yx  
in C. Furthermore,  when we reach Vn-x+l it will be red, by definition. The 
only way to leave this vertex for another R or S vertex is to choose a 
positive edge x x ~ ,  which will extend our snake to n > x > x 2. Iterating this 
argument shows that 4a and the second half of 4b hold. 

To complete this part  of the proof, we must examine Ba_ 1. By the 
arguments in the previous paragraph,  v~_ a +1 must be red. It follows that 
P must continue to a W or G vertex at level n -  a + 2, since otherwise C 
would be extended to a smaller vertex. But the branches corresponding to 
the edges available to P at this point from a tree isomorphic to ira_ 1, so 
Ba_ 1 is a base of ~a 1 by induction. 

Last, we must show that given any NBC base B of type 4, there is a 
unique path  corresponding to B. By definition 

n- -1  

B = { n x + ,  n x - }  U A y u B a  1, (7) 
y = a + l  

where a is the smallest vertex label in the component  of the graph of B 
containing n, and Ay = { yz  ~} if an edge of the form yz  ~ E B, and Ay = ;25 
otherwise. In this case we make the initial choices of edge labels 

nx+-; { n x + , n x - } ; A , _ ~ ;  ...; Aa+l  
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ending at a vertex v on level n - a + 1. Then, as has been previously noted, 
the tree Ta_ ~ is isomorphic to the subtree consisting of all branches from 
v to a W or G vertex. Therefore, by induction, there exists a continuation 
of the initial path giving the NBC base B. Since the expression (7) is 
unique, the initial part of the path is uniquely determined. By induction, 
the terminal portion is also unique. This concludes the proof of the 
theorem. | 

Thus the tree T, gives a combinatorial explanation for the factorization 
of the characteristic polynomial of L(@n). 

5. THE DECISION TREE FOR L ( ~ N . , k )  

To handle the L ( ~ , , , k  ) case, we will first restate some of the proposi- 
tions from Section 3 in this setting. The proofs are similar to those 
previously given and so will be omitted. Note that Propositions 3.1-3.2 
continue to hold, remembering that a half edge is considered to be an 
unbalanced cycle. 

To characterize the broken circuits, we need to extend the PLO ordering. 
First order all the half edges lexicographically, and make them all greater 
than every edge of the form ijL By way of illustration, the ordering for 
L ( ~ 3 , 2 )  is 

2 1 + < 2 1  < 3 1 + < 3 1  < 3 2 + < 3 2 - < l h < 2 h < 3  h. 

We also need to define the analogs of our various snakes. A decreasing 
worm f rom Xo to x,,  is a set of edges 

h 81 82 am 
X , X o X l , X I X 2 , . . . , X  m 1 , X m ,  

where x0 > x l  > ..- ) x  m. An almost decreasing worm has a negative tail 
which can be either increasing or decreasing. A reptile is a graph which is 
either a snake or a worm. 

PROPOSITION 5.1. A set B o f  atoms o f  L ( ~ , k )  contains a broken circuit 
under the positive lexicographic ordering i f  and only i f  B contains one o f  the 
following: 

1. a camel hump, H, 

2. a decreasing snake, x 0 > . . . > x m ,  disjoint f r o m  a decreasing 
reptile, Yo > • • • > Yl, such that x ~ _  1 > Yt > Xm, 
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3. a decreasing worm Xo > ""  > Xm, disjoint f r o m  a decreasing reptile, 
Yo > " • > Yt, such that Xm < YO, 

4. an almost decreasing reptile. 

Rather than stating an analog of Theorem 3.6, we will prove a proposi- 
tion that will characterize the NBC bases of L(~Mn,~) in terms of those of 
L(~,)  and L ( ~ + I ) .  

PROPOSITION 5.2. A n y  N B C  B base o f  L(~Mn,k) contains at most  one 
ha l f  edge. Moreover,  

1. B contains no hal f  edge i f  and only i f  B is an N B C  base o f  L( ~n), 

2. B =  {x  h} w B' i f  and only i f  B' is a set o f  atoms o f  L(~n)  and B" = 
B' w {(n + 1) x +, (n + 1) x - }  is an N B C  base o f  L ( ~ +  1). 

P r o o f  By condition 3 of Proposition 5.1, B cannot contain two or 
more half edges. Furthermore, if we eliminate the possible graphs with half 
edges from the list in that proposition, then we get the list in Proposition 
3.3. This proves the first equivalence in the theorem. 

The proofs of the forward and reverse implications of the second 
equivalence are very similar, so we will only do the former. So suppose 
B =  {x h} u B '  is NBC. Thus, as already noted, B' contains no half edges. 
So B' is a set of atoms in L(~,).  To show that B" is NBC, we proceed by 
contradiction. 

If B" contains a broken circuit, C, then we go through the possibilities 
in Proposition 3.3 one at a time. First note that if C ~  B' then C_~ B, 
contradicting Proposition 5.1. Thus we can assume that { ( n + l ) x  +, 
(n + 1) x -  } n C ¢ ~ .  This rules out the camel hump, since these are the 
only edges of B" containing n + 1. If C is a pair of decreasing interlocking 
snakes, then { (n + 1) x +, (n + 1) x -  } must be the mouth of one of them. 
Hence replacing that pair with x h will give either configuration 2 or 3 from 
the previous proposition, a contradiction. The same replacement works if 
C is an almost decreasing snake, turning it into an almost decreasing 
worm. This last contradiction exhausts the possibilities for C and finishes 
the proof. | 

Finally, we define the tree Tn, k as follows. Take the tree T n and add k 
new edges leaving the root given as follows: 

jh for j = 1 .... , k colored red (k = n) or silver (k • n). 

We then let all succeeding vertices have descendents as before. However, 
the general choice of whether a vertex is red or silver depends on the 
unique component with either a double or half edge that contains a label 
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l ~ < n - t + l .  The choice being R or S if l = n - t + l  or l < n - t + l ,  
respectively. Again, the first two conditions for a modified ADT are clearly 
satisfied. The next theorem takes care of the third. 

THEOREM 5.3. Paths .from the root, r, to a leaf in the decision tree Tn, k 
are in one-to-one correspondence with the NBC bases of  L(~N,,,k) under the 
positive lexicographic ordering. 

Proof By Proposition 5.2, the NBC bases of L(~N,,,k) are of two types: 
those that contain no half edge and those that contain exactly one half 
edge. By Theorem 4.3, those of the first type are each given exactly once 
by the part of T,,k which is isomorphic to Tn. 

We must also show that those bases containing a single half edge are in 
one-to-one correspondence with paths in branches added to T,, to form 
T~,k. But by construction, the branch starting with the edge labeled x h is 
isomorphic to the branch of T,,+I corresponding to the edge labeled 
(n + 1) x +, (n + 1) x - .  By Theorem 4.3 and Proposition 5.2, again, the 
bases and paths match up. | 

6. COMMENTS AND OPEN QUESTIONS 

We hope that this paper is only the first to work on this topic. The 
following is a list of possible avenues for future research. 

(1) It would be simpler if the only assignment statements need to 
label the edges of our ADTs were of the form B := B w {a}. Unfortunately, 
we were only able to construct such trees for ~ .  when n ~< 4. (Note that this 
includes the first non-supersolvable case.) It is possible for general n? 

It would be interesting to extend this method to other non-supersolvable 
lattices such as those for the exceptional roots systems, lattices associated 
with certain free arrangements of hyperplanes [20, 11, 12], the generalized 
Dowling lattices [8] ,  certain lattices associated with partitions into even 
and odd block size [5] ,  and frame matroid lattices [23].  Since some of 
these posets are not semimodular lattices, an appropriate analog of 
Theorem 1.1 will also have to be found for such cases. 

(2) The reader may be wondering how to construct an ADT, T, for 
a given lattice, L. The following method, while lengthy, may work. First, 
list all the NBC bases of L. Next, choose a subset A = {al,  a2, ..., ar}  of the 
atoms of L, where r is a root ofx(L,  t). Now construct, if possible, a parti- 
tion of the NBC bases into subset $1, $2 ..... Sr+ 1 SO that ai is a member 
of all bases in S i for 1 ~< i ~< r. (It is convenient, but not necessary, if every 
base in Sr+l  is disjoint from A.) This construction is now iterated, using 
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a new root of the characteristic polynomial, and using the NBC bases in 
Si to find the labeling of the edges leaving the corresponding vertex. If the 
initial set of atoms does not work, then try a different set (possibly with the 
cardinality of a different root of z(L, t)). 

It would be nice to have a construction process that more closely mirrors 
the way an atom partition is found in the supersolvable case, using an 
M-chain. Perhaps there is some small set of elements at each rank of L 
such that every element of L forms a modular pair with at least one of the 
elements of this set. In addition, there should be some nice condition on the 
covering relations between elements of these sets in adjacent ranks. 

(3) There are other ways to explain the factorization of characteristic 
polynomials, Z ( d ,  t), for a hyperplane arrangement. In particular, one can 
associate a module of derivations with the arrangement. If this module is 
free, then the degrees di, ..., dn in a homogeneous basis is an invariant of 
the arrangement. In this case, the roots of the characteristic polynomial are 
just dl + 1 ..... dn + 1. Thus, finding a homogeneous basis is a way to 
algebraically explain the factorization ofx(~4, t). This technique is used for 
various subarrangements of Coxeter arrangements, including ~ ,~ ,k ,  in the 
paper of J6zefiak and Sagan [ 12]. 

(4) HU~ne Barcelo and Alain Goupil [ 1 ] have independently come up 
with a factorization of the NBC complex of L(~n) which is similar to ours. 
Their paper also contains a nice result (Theorem 3.1, joint with Garsia) 
that relates the NBC sets with reduced decompositions into reflections of 
Coxeter group elements. 
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