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A Generalization of Rota’s NBC Theorem
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We generalize Rota's theorem characterizing the Mobius function of a geometric
lattice in terms of subsets of atoms containing no broken circuit and give applica-
tions to the weak Bruhat order of a finite Coxeter group and the Tamari lattices.
We also give a direct proof of the fact that in the geometric case any total order
of the atoms can be used. Simple involutions are used in both proofs. Finally, we
show how involutions can be used in similar situations, specifically in a special case
of Rota’s Crosscut Theorem as well as in related proofs of Walker on Hall's
Theorem and Reiner on characteristic and Poincaré polynomials. ¢ 1995 Academic

Press. Inc

1. Rota’s THEOREM AND ITs GENERALIZATION

One of the most beautiful and useful theorems in algebraic com-
binatorics is Rota’s theorem [12] characterizing the Mobius function of a
geometric lattice in terms of subsets of atoms which are NBC, i.e., contain
no broken circuit. In this note we will generalize Rota’s theorem to any lat-
tice satisfying a simple condition and give applications to the weak Bruhat
order of a Coxeter group and the Tamari lattices. The proof of Rota’s
theorem is an easy application of the simplest version of the Involution
Principle of Garsia and Milne [5]. We also use an involution to show
directly that in the geometric case the number of NBC sets is the same for
any total ordering of the atoms. Finally we discuss a related proof for a
special case of Rota’s Crosscut Theorem as well as proofs of Walker con-
cerning the Mdbius function as a reduced Euler characteristic and of
Reiner connecting characteristic and Poincaré polynomials.

We first review Rota’s original theorem. Let L be a finite poset with
minimal element 0. The Mdbius fimction of L is the function u: L —Z
(7. being the integers) which is uniquely defined by

Z plyy=2dq,, hH

rEu

where the right side is the Kronecker delta. In particular, if L is the lattice
of divisors of an integer than u is the number-theoretic M&bius function.
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Suppose that L is a lattice and let A and v denote the meet (greatest
lower bound) and join (least upper bound) operations, respectively. Let
/(L) be the set of atoms of L. i.c.. all ¢ #0 such that there is no ve L with
0 <y <« We say that L is atomic if every xve L is a join of atoms.

Assume further that L is ranked with rank function p, which means that
for all x e L the quantity

plx)=length of @ maximal 0 to v chain
1s well defined (independent of the chain). Such a lattice is semimodidar if
P A DIFplx v PIKplx)+pir)

for all x, ye L. It is casy to prove, using this incquality and induction, that
it B=.o«/(L) then p{V By < |B| where the vertical bars denote cardinality.
So define B to be independent it p(N B) = |B] and dependent otherwise. If
B is independent then we say it s a base for v=V B. If € 1s a minimal
fwith respect to inclusion) dependent set then we say that Cas a cireuit,
Now put a total order on /(L) which we will denote =2 to distinguish 1t
from the partial order < in L. A circuit € has corresponding hroken circuit
C = C\¢ where ¢ is the smallest atom in C. Finally, B< .«/(L) is NBC il it
contains no broken circuit. Note that such a set must be independent.
Rota’s theorem can now be stated.

TioreMm 1.1 (Rota). Let L bhe a geometric (ie., atomic and seini-
modidar) lattice. Then for any total ordering of /(L) we have

()= (=1 tember of NBC bases of ). (2)

To generalize this result to lattices, we first need o redefine some terms
since L may no longer be ranked. Call B< .«/( L) independent W B<V B
for any proper subset B8 of B. Thus if C is dependent then VV C =YV C for
some C < C. Note that it follows directly from the definitions that a super-
set of a dependent set is dependent, or equivalently that a subset of an
independent set is independent. The definitions of base, circuit and broken
circuit can now be kept as before. If Cis a circuit, it will be convenient to
adopt the notation = C\¢ for the corresponding broken circuit. This
done, our generalization is as follows.

Throrem 1.2 Let L be « finite lattice. Let <2 be anv total ordering of

ALY such that for all broken civeuits C= C\e we have

\ C=\/ C
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a

0

FiG. 1. An example lattice L.

Then for all x € L we have
plx) =3 (= 1)” (3)
B

where the sum is over all NBC bases B of .

Before presenting the proof, let us do an example. Consider the lattice L
in Fig. 1 with the atoms ordered ¢« b <s ¢ < d The circuits of L are
ta,b.d}, {a, ¢, d} and {b, ¢, d} with corresponding broken circuits {b, d}
and {¢, d}. It is easy to verify that these circuits satisfy the hypothesis of
Theorem 1.2. Also, the element x =1 has two NBC bases, namely {a. d}
and {a. b, ¢}. It follows that

)y =(=1P+(=1)"=0
which is readily checked from the definition of the Mobius function.
Proof (of Theorem 1.2). Let
fxy=3 (= 1)*
B

Then since (1) uniquely defines x, it suffices to show that 3, . ji(y)=d;,.
If x=0 then both sides of this equation are clearly equal to 1. So we
assume that x >0 and show that

Y Aty =0. (4)

Consider the set
% =1{B: B is a base for some ) < x}
with sign function

g By=(—1)",



198 BRUCE E. SAGAN

Clearly 3, ., «(8) is the left side of (4). so to prove this identity 1t suffice
to find a sign-reversing involution on ..
Let ¢, be the smallest atom under x. Define a map +; /" — ./ by

HBY=B A u,,

where A 1s the symmetric difference operator. This is clearly a sign-
reversing involution as long as 1t is well-defined. 1e., as long as B NBC
implies « B} NBC.

There are now two cases. If 1{ B) = B\u, then «(B) is still NBC because
it is a subset of B. Otherwise let B :=(B)= B U u, and suppose B contains
broken circuit C= C\¢. If «, ¢ C then C < B contradicting B being NBC. If
ay e C then we must have

¢ <3y, (5)

because of the way circuits are broken. But now, using the theorem’s
hypothesis,

eV =\ Cg\ B

Thus ¢ = «, since «, 1s the last atom under x, contradicting (5). |

Note that when L is geometric, then all NBC bases of a given ve L have
the same number of elements. namely p(v). Thus the right sides of (2)
and (3) do really coincide in this case. Furthermore, the hypothesis of
Theorem 1.2 explains why any ordering of .o/{ L) works in Rota’s Theorem:
V' C=V C for any C obtained by removing a single atom from the circuit
. On the other hand. it would be nice to have a direct proof of this fact
using involutions, which we present next.

PrROPOSITION 1.3, Let L be a geometric lattice and let ¢ and ¢ be two
total vrderings of /(LY. Then for all x e L we have

number of NBC bases of x in € =nmumber of NBC hases of x in (5. (0)

Proof. It is enough to prove the proposition in the case where ¢, 1s
obtained from (¢, by transposing the order of two atoms ¢ =1, d adjacent
in ¢,. For i=1.2 let 4%, (respectively, .1 .4%,) be the set of broken
circuits (respectively, NBC bases of x) in the two orders. If C'is any circuit
containing both ¢, ¢ and no « smaller than both then

C'=C\ee #%, and C*=C\de #%,. (7)
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Any other circuit gives rise to
C=C\ae 4%, A%, (8)
Now define a map f: .1 46, \. 1 4%, — .1 8%, \. 1 4%, by
fIBy=B A {c, d}.

We must show that f'is well-defined.

First note that B cannot contain any broken circuit of the form (8) since
Be.1.4%, . but it must contain one of the form (7) since Bé¢. 1 4%,. So for
some circuit C we have B2 C>but B2 C', since Be. 1 4%,. Thus we must
have ce B and d ¢ B and so

f(By={(B\c)ud=Bud, (9)

where B = B\c.

We claim that f(B)¢.1 4%, Indeed C' =(C*\¢)ud and C?< B. Thus
Eq. (9) yields C' < f(B).

Now we claim that f(B)e .1 4%;. Suppose not. But f( B) can not contain
a broken circuit of the form (7) since ¢ ¢ f(B) and ce C? for all C of this
type. Thus f(B) must contain a broken circuit of type (8), say f(B)2D.
However, B2 D and so by (9) we can write

D=D"ud,

where D' < B. Also D = D\« where a <1 ¢ (in both orders) since de D. In
fact @ is smaller than every atom in C since no element of C is smaller than
¢, d. Write

D=Duvaud and C=Cud,

where the unions are disjoint. The fact that L is geometric implies that
there exists a circuit £ < Cu D which does not contain de Cn D. Now if
a ¢ F then

EcD UC*cB

which contradicts Be. 1 4%,. On the other hand, if e E then E= E\u
since @ is minimal in C v D. But then E < B contradicting Be. { "4%, again.
This final contradiction finishes the proof that f(B)e .1 4%, and that f i1s
well-defined.

Using precisely the same reasoning, one shows that f has a well-defined
inverse f ' 1A\ N A%, - A%, \. 1 4%, given by

fUBY=B A {e.d =(B\d)uc
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Thus / is a byection and this proves the theorem. Of course, this could
also be expressed in terms of an involution . A% A 147, —
BN A where ((BY=B A e d) ]

A related result is the fact that the Tutte polynomial [ 13] as defined by
external and internal activitics 1s order-independent. Tutte’s original proof
of this fact in the paper just cited s quite involved. It would be interesting
to find an casier proof using involutions.

2. APPLICATIONS

We now give two examples of lattices which are not geometrie, but
whose Mébius functions can be computed using Theorem 1.2, We first note
a general result that follows from our main theorem.

CorOLLARY 2.1, Let L he a finite lattice such that .o/ (L) is independent.
Then the Mabius values of L are ofl O or +1. Specifically, if x e L then

[(—n* it x=\ B  jorsome B<./(L),

plxr= <I 0 else.

Proof. I /(L) 1s independent then so is any B< .«/(L). Furthermore,
there are no circuits so any such Bis NBC. Finally, independence of .o/( L)
implics that \V B#YV B' for any B# B'. The corollary now follows from
Theorem 1.2, |}

We note that Corollary 2.1 also follows easily from a special case of
Rota’s Crosscut Theorem [12], proved by involutions in Section 3.

We now derive the Mabius function of the weak Bruhat order of a
Coxeter group which 1s o result of Bjdrner [27. (We do not consider the
strong ordering because it is not a lattice in general.) Any terminology
from the theory of Coxeter groups not defined here can be found in
Humphreys' book [9]. Let (H..5) be a finite Coxeter system so that H'is
a finite Coxeter group and S is a sct of simple generators of W. The length
of we W o), is the smallest / such that

W=§8 -8, (10)

where s,€85. If ¢,we W then we write e 2w if there s an se .S with
c=ws and fr)=Aw)+ 1. (It is casy to sce that fe)=Hws)=Nw)+ 1, cf.
Lemma 3.3.) Extending this relation by transitive closure, we obtain the
weak Bruhat poset P, on W. Equivalently, this is the partial order
obtained from the Cayley graph of B with respect to S by directing edges
away from the identity element.
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a b
(x1{x2(rsra))) (1,2.3)
(r1{{rars)ry)) (1,2,2)
((zi{x1213))74) ((r1rg)(x3x4)) (1,2,1) (1.1,3)
(((z122)x3)4) (1,1,1)

FiG. 2. The Tamari lattice 7. {a} Parenthesized version. (b) Left bracket version.

The atoms of P, are just the elements of S. The 1 of P, is the element
of maximum length, w,=V S. If J< S is any proper subset, then thesc
elements generate a corresponding parabolic subgroup W, which is a
proper subgroup of W. So none of the elements w(J)=V J is equal to w,
and so S =.«/( W,) is independent. Thus Corollary 2.1 applies and we have
proved the following result.

ProrosiTioN 2.2 (Bjorner). Let (W, S} be a Coxeter svstem and let Py
be the corresponding weak Bruhat order. Then for we W we have

(— 1) i w=wyJ) for some  J< S,
Hiw) =
0 else.

Bjoérner actually derives the Mébius function from any interval [, »w] in
P .. But this follows easily from the preceding proposition since there is a
poset isomorphism [, w]=[0, ¢ "]

Next we consider the Tamari lattices [4, 6, 8]. Consider the set of all
proper parenthesizations of the word x,x,---x,, . It is well known that
the number of such is the Catalan number C, = (})/(n + 1). Partially order
this set by saying that x s covered by o if

n=---({AB)yC)--- and = - (A(BC))---
for some subwords A4, B, C. This poset is the Tamari lattice T, and T, is
illustrated in Fig. 2a.
A left bracket vector, (v, ...rv,). 1s an integer vector satisfying the
conditions
1. I<e,<iforalliand
2. ifwelet S;={v, v, +1,..i} then for any pair S,, S, either one set

contains the other or §,n§,= .

The number of left bracket vectors with »n components is also C,. In fact
given any parenthesized word n we have an associated left bracket vector
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rlmy=(r,....r,) defincd as ftollows. To calculate r,, start at x, in 7 and
move to the left, counting the number of v's and the number of left
parentheses you meet until these two numbers are equal. Then r, = j where
X, 1s the last x which is passed before the numbers balance. 1t is not hard
to show that this gives a bijection between parenthesizations and left
bracket vectors. thus inducing a partial order on the latter. This version of
T, is shown in Fig. 2b.

We will need the following result which is proved (in a dual version)
in [8].

PropositioN 2.3 (Huang and Tamari).  The poset T, is a lattice. In fact,
ifvim)y=(r,,..v,) and vigy=1{w,. .., w,) then

v ay={max}r, o} maxte,, w, ).

We can now calculate the Mobius function of the Tamari lattice.

Prorosimion 24, Let me T, have vector vim) = (v, ... v,). Then
=1y il el Jorall i
m) = %
L0 ¢lse.

where tis the mumber of v,=i# 1. In particular
WTy=(—1y "

Proof. Note that 7, has n—1 atoms ., ..., a, where v(a,) has v, =i

and all other r,=1. From Proposition 2.3 we see that the atom set is
independent. Thus Corollary 2.1 applies and the given formulae follow
easily. |

3. Crosscuts, EuLER CHARACTERISTICS. AND
CHARACTERISTIC POLYNOMIALS

We now present some proofs of related results using involutions. The
following is a spectal case of Rota’s Crosscut Theorem [ 12].

THiorEM 3.1 (Rota).  If L is a finite lattice and x € L then define

a,\x)=number of sets of i atoms whose join is x.
We have

ply)=a,—a,+d>— -
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Proof. The proof follows the same lines as that of Theorem 1.2. In this
case the set is

‘ 1
S =<{A: A< .+/(L) and \/AS.\K

with sign function
sA) =(— DI,

Given any fixed atom « < x we define the involution
HA)=A A

This is clearly well-defined and the proof follows. |}

It would be interesting to find of a proof of the Crosscut Theorem in its
full generality using involutions. The stumbling block is that to apply this
method one would need to have a crosscut C such that for every xe L
not covering 0 we have C~ [0, x] is a crosscut of that interval. But this
condition forces C to be the set of atoms.

The Mobius function of any partially ordered set L can be viewed as a
reduced Euler characteristic. If ve L then a chain of length i in the open
interval (0, x) is

CIXg< N < e <X,
where 0 < x, < x for all j. Let
¢;{x)=number of chains of length i in (0, x).

Note that if x>0 then ¢ ,(x)= | because of the empty chain. Walker [ 14,
Theorem 1.6] notes that the following result, usually known as Philip
Hall’s Theorem [7, 12], can be proved using involutions.

Tueorem 3.2 (Hall). If L is any partially ordered set with a 0 and x € L,
then

3| if x=0

11
—¢ ((X)+colx)—eq(x)+ - else. (b

uix)=

Proof. Again, the proof follows the lines of Theorem 1.2. Let
& =10} U{le, ¥): ¢ is a chain in (0, 1), 0 < y < v}
with sign function

s0y=1 and sle, v)=(—1)",



204 BRUCE E. SAGAN

where /ie) s the length of the chain. The nvolution 7 s defined by
05 (P v

and for (¢, y)e YN0, (. x)! let

(N, ) i y=ux,
e, yy=
(¢ < y.x) clse,
where ¢ 1s the largest element of ¢, and ¢ < v is the chain formed by
adjoming v to ¢. The fact that this is a sign-reversing involution can now
be used to show that the right side of (11) satisfies the same recursion as
ux)

If a geometric lattice comes from a hyperplane arrangement, even more
can be said about its Mobius function. Any terms in the following discus-
sion which are not defined can be found in the book of Orlik and Terao
{10]. Let W be a finite Euclidean reflection group acting on a vector spice
I Let .o/} be the corresponding hyperplane arrangement with intersection
lattice L, 1.e. Ly, is the set of all subspaces of 17 that can be obtained as
intersections of hyperplanes in ./, ordered by recerse melusion.

Define the absolute length of we W, fiw). to be the smallest / such that
w can be written as

ny (12}

with the ¢, coming from the set of all reflections T'= W. This difters from
the definition of ordinary length given in (10) in that one is not restricted
to a set S of simple reflections. An expression of the form (12) will be called
absolutely veduced. We will need the following result about absolute length.

Limma 3.3, Let W obe a finite reflection group and consider we W If
te Wis any reflection then

fowt) = (wy+ 1.

Proof. W w=1tt,--t; 1s an absolutely reduced expression then wi=
ty-- 1ot so that Jovt) <liw)+ 1. Now replacing w by wr in the last
inequality yields fwr) > foe) — 1. Finally, we cannot have fowe)y = oy sinee
det(wry= —det(w) and det(uy=(— 1}"* for any uve . |

For any clement we W let

Vr=ldre b wir) =1t
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It follows from an easy-to-prove result of Carter [3] that if "= X for

some subspace Xe L then /(w)=codim X. This makes the statement of
the following theorem unambiguous.

TueOREM 3.4. Let W be a finite reflection group with corresponding

intersection lattice Ly-. Then for any X e L we hare
WXy=(—1 )i(numbvr of we Wwith 1= X)), (13)
where izﬂ\t') of some (any) w with 1" =X

Proof. This proof was discovered by Victor Reiner (personal com-
munication) using the ideas in our proof of Theorem 1.2. 1 thank him for
letting me reproduce it here.

If X=0=J then both sides of (13) are clearly 1. If X >0 then consider
the set

W'={weW: 1™ 2x}
with sign function
ew)=(—1 )’A"”‘

Clearly the right side of (13) is given by >, _ - &(w} But B is just the
stabilizer of X, and so is a non-trivial reflection group in its own right. Let
t be any fixed reflection in W’ and define an involution /: B — W' by

w) =t

By Lemma 3.3 this is sign-reversing and so we are done. ||

We should note that there is a direct connection between absolutely
reduced expressions and NBC bases. Specifically, in [1] Barcelo and
Goupil show that if H,, .., H,, is an NBC base of .</;- then the corre-
sponding product of reflections r,; ---r, is totally reduced and this gives
a bijection between NBC bases and .

We end by showing how Theorem 3.4 relates the characteristic polyno-
mial of L, to the Poincaré polynomial of W. The characteristic polynomial
of L - 1s the generating function for its Mobius function:

X(LH'» t)y= Z [I(X) Idlm 4\'.
Xeln
The Poincaré polynomial of W is the generating function for its elements by

absolute length:

W, =Y

we Il
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THEOREM 3.5, Let W be a finite reflection group in 1, dim V'=n, with
corresponding intersection lattice L. Then

AW, 1) = — 1) 4Ly, —1i1),

Proof. Using Theorem 3.4 and the lemma of Carter cited previously, we
have the following scrics of equalitics

( __[)n /' L”v. _ 1““‘,() — Z ,U( ‘X)' _ ['cndlnl N

Ve oLy

— 2 tit\\‘i

we ll

=W, 0. §
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Let g denote a semisimple Lie algebra over an algebraically closed field & of
charuacteristic zero and (. a finite group of A-automorphisms of the enveloping
algebra U of g, In this paper. it is proved that, if the subalgebra U is k-isomorphie
to an enveloping algebra, then G s trivial. A similar result for Weyl algebras over
K is also obtained. ¢ 1995 Acudemic Press. Ine

INTRODUCTION

Let & denote an algebraically closed field of characteristic zero. A well-
known theorem of Shephard Todd and Chevalley asserts that, if ¢ is a
finite group of automorphisms of & finite dimensional vector space 1 over
k, then the algebra of invariants of G acting in the symmetric algebra of 17
is 4 polynomial algebra over & if and only if G is generated by pseudoreflec-
tions. In searching for eventual noncommutative analogues of this result,
the following rigidity property is observed to hold for certain strongly
structured algebras such as enveloping algebras of semisimple Lie algebras
and Weyl algebras:

For any k-algebra A of cither kind above and any non-trivial finite
group G of k-automorphisms of 4, the subalgebra A9 of fixed
points is not A-isomorphic to A; we shall say that 4 does not
admit Galois embeddings nto 1tself.

Note that this property also holds when A4 is the tensor algebra of a finite

dimensional vector space ¥ and G is a fimte subgroup of GL{}'). Indeed,

in that case, by [Kar] the algebra of invariants is also a tensor algebra,

whereas, by [Di Fo]. it 1s finitely generated o and only if G consists of
208
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scalar multiples of the identity, in which case it is isomorphic to the tensor
algebra of V®“!; in particular, the algebra of invariants is isomorphic to
the initial tensor algebra if and only if G is trivial. On the other hand, in
[A-H-V] a complete classification of finite group actions in the first Weyl
algebra and of their invariants is given: in particular, one can observe that
the first Weyl algebra admits no Galois embedding into itself. Finally, in
[Smi] and later in [Mo-Gu] in a more general form, it is shown that
the first Weyl algebra never appears as the invariant subalgebra of a
non-perfect finite group of automorphism of any k-algebra without zero-
divisors. The case of a simple group seems still open. In this paper, we
establish the following two theorems.

THEOREM 1. Let G be a finite group of k-automorphisms of the enveloping
algebra Ulg) of a semisimple Lie algebra g over k; if U(g)“ is k-isomorphic
to the enveloping algebra of some Lie algebra g', then @ ~¢g and G i trivial.
In particular, U(g) does not admit any Galois embedding into itself.

THEOREM 2. Let G be a finite group of k-automorphisms of the nth Weyl
algebra A, (k). if A (K)C is k-isomorphic to A,(k), then G is trivial. In other
words, A,(k) does not admit any Galois embedding into itself.

We could remark that no linearity is assumed on the action of G indeed,
the usual filtrations of U(g) and A4,(k) are not supposed to be preserved by
G and this forces to look for finer automorphism invariants of these algebras.
On the one hand, both proofs use general results relating the structure of a
ring R to the structure of the fixed subring R of a finite automorphism
group G. On the other hand, the proof of Theorem 1 is based on very precise
information available about primitive ideals of U(g), whereas the proof of
Theorem 2 goes by reduction to positive characteristic.

The paper i1s organized as follows: Theorem | is proved in Section 1.
whereas Section 2 contains a proof of Theorem 2 as stated above, as well as
a shorter proof in the case of a linear action.

We thank M. Van den Bergh for allowing the publication of Theorem 2.
which was elaborated jointly with the first author. Also, the first author
would like to thank M. Chamarie, S. Donkin, H. Kraft, and M. Lazarus for
various helpful discussions.

1. ENVELOPING ALGEBRAS OF SEMISIMPLE LIE ALGEBRAS

1.1. Throughout this section, let & denote an algebraically closed field
of characteristic zero, g a semisimple Lie algebra over A, U=U(g) its
enveloping algebra, and G a finite subgroup of Aut, Ulg). We shall then
prove the following.
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TueOREM 1. Assume that U(g)" is k-isomorphic to the enveloping
algebra of some Lie algebra g'; then g' ~g and G is trivial. In particular,
Uig) does not admit any Galois embedding into itself.

1.2. During the Oberwolfach conference on “Noncommutative
Algebra and Representation Theory™ (August 16 21, 1993), L. Small
informed the first author of some results in the forthcoming paper
[Kr-Sm], which imply in particular that the subalgebra of invariants of
U(sly) under a non-trivial finite cyclic subgroup of the adjoint group is not
even a quotient of the enveloping algebra of any semisimple Lie algebra.
This issue was further discussed with L. Le Bruyn, and we would like to
thank them both for their interest, which led us to observe that our proof
gives, in fact, a stronger result in the case of a subgroup of the adjoint
group. Namely, one has the following.

PROPOSITION.  Keep notation as in U1 and assume further that G fixes
pointwise the center of U (which is the case if G is conjugate in Aut, Ulg)
to a subgroup of the adjoint group). Then, unless G is trivial, UY is not even
a guotient of the enveloping algebra of any senrisimple Lie algebra.

1.3. Consider the following assertions:

(A} Every irreducible finite dimensional U(g)-module remains
irreducible by restriction to L(U)“.

(B) The annihilator of each irreducible finite dimensional U(g)-
module 1s G-invariant.

Then one has the following.

PROPOSITION.  Assume that assertions (A) and (B) hold. Then G =11},

Proof. Let nelU and geG. Consider an arbitrary irreducible finite
dimensional {/(g)-module E. Since E remains irreducible by restriction to
L1g)“ then, by Jacobson’s density theorem, the map L(g)" - End (E) is
surjective. Therefore there exists xe U(g)“ such that «— xe Ann E. Since
Ann £ is G-invariant and v a fixed point of G one obtains gir — v e Ann E,
hence u — gie Ann E. Since E was arbitrary and since the intersection of
the annihilators of all irreducible finite dimensional U(g)-modules is
reduced to {0} by a theorem of Harish -Chandra, together with Weyl's
complete reducibility theorem (see [ Dix, 2.5.7 and 1.6.3]). it follows that
u= gu. This proves that G={1}.

Remark. Note that the finiteness of G was not used in this subsection.
Also, let us mention that Theorem | was first proved for g=sl. by
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M. Chamanie and the first author (unpublished), by using the above
argument.

1.4. Let us denote by Z(A) the center of a ring 4. Then we have the
following.

PROPOSITION.  Z(UY)= Z(U)".

Proof. First, recall the definition of X-inner automorphisms of a {semi-
prime) ring; see [ Mo 1, Chap. 3]. Then, by [ loc. cit., 6.17], the proposition
will follow if one checks that U(g) has no X-inner automorphism but the
identity. So, let t be an X-inner automorphism of U(g). Then, by [ Mo 2,
Proposition 1], t preserves the canonical filtration of U(g), and induces the
identity on the associated graded ring. Hence, there exists a linear form 4
on g such that r(x)=x+ A(x) for all xeg, and 2 satisfies A({g,g])=0.
Indeed, if x, v e g then

e, yD=ryw—rx)=ux)r(p)—dpy)ex)=xy—yx=[x, r]

hence A([x, ¥])=0. But g=[g, g] since g is semisimple; hence £=0 and
t=1id. This proves the proposition.

1.5. In this subsection we record several facts about finite dimen-
sional irreducible U-modules and their central characters. For short, we
denote the center of U simply by Z. Recall first that, since & 1s algebraically
closed, any maximal ideal of Z is the kernel of a (unique) k-algebra
homomorphism Z — k, and such a homomorphism is called a central
character. Hence there is a bijection between the set Max Z of maximal
ideals of Z, and the set Char Z of central characters of Z. Also, any e Z
can be regarded as a regular function on the affine variety Max Z.
Moreover, if y € CharZ, and m = Ker y then y(:z) is precisely the value of
- on the point m. For this reason, we shall denote y(z) by {z, 7> or
{zom).

Now, a U-module is said to admit a central character y if it is
annihilated by the (maximal) ideal Ker y of Z. By Schur’s lemma, every
(finite dimensional) irreducible U-module E admits a central character,
denoted by y,. Let us denote by .#7(g) the set of isomorphy classes of
irreducible finite dimensional {-modules, and by I the set of all y,’s, as E
varies through .#/(g). Then one has the following.

PROPOSITION. (a) For any y eI, there exists a unique element of .97(g).
denoted by Ely), whose central character is .
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(by The set [Kery|zel') is dense in Max Z, for the Zariski
topology.

(¢c)  There exists a (unique) element D of 7 such that, for all yel,
D,y = (dim E(z)):

Proof. This 1s well known: parts (a) and (b) can be found iIn
[ Bou. VIII, Section &, No. 5, Théoreme 2 et Corollaires |: part {¢) in [loc.
cit., Section 9, Exercice 27.

1.6. Recall the definition of Gelfand Kirillov  dimension, sce
[Kr Le]. which we shall denote by 7). Then, for future use, we record
here the following.

LiMMA.  Let A be a noetherian k-algebra, H o finite  group  of
automorphisms of A, and J a two-sided ideal of A. Then, d( A"/ A" ~ J) =
diA).

Proof.  This follows from [Mo 1, 59: Kr Le, 5.5].

1.7. From now on. we assume that Uig)” is k-isomorphic 1o the
enveloping algebra of some Lie algebra g'. Then, by the previous lemma,
dUg )y =d(U(g)), and by [Kr Le, 6.5 69], 1t follows that g' is finite
dimensional and dim,(g")=dim(g). Morcover, g is semisimple. as it
follows from the lemma.

LeMMA.  Every finite dimensional UL V-module is the restriction of a
finite dimensional Ulg)-module and is, therefore, semiisimple. As a conse-
quence, g Is semisimple.

Proof. Set U'=Uig)”~U(g') and let M’ be a finite dimensional
U'-module. First, since chartk)y=10, then. as a U'-bimodule, U7 1s a direct
summand of . Namely. onc has U= U" @ Ker p, where p is the projector
p=1Gl '3, g Itfollows that M’ is a U'-submodule of M|, where A
denotes the left U-module U® - M'. Moreover, a result of Farkas and
Snider [ Mo 1, 597 asserts that U is a finite right {”-module. This gives
that M 1s a fimte dimensional, hence completely reducible, U-module.
Then, by a result of Lorenz and Passman [Joc. cir, 7.604)], M, is a
completely reducible U/-module, and so is its submodule M. The lemma
1s proved.

1.8. Proof of assertion {A). From now on, we denote Uig)” =
Utg') simply by U, its center by Z', and introduce notations .#’(g’) and
I similar to those for g. Applying Proposition 1.5 to g' instead of g, we
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denote, for every ¥ eI, by E'(x') the corresponding element of .#7/(g").
Also, let D' denote the unique element of Z', similar to the element D of Z.

Now, let ¥ € I and let E(y) be the corresponding element of .7 /(g). Since
Z' = Z, by Proposition 1.4, then E(y), regarded as a U'-module, admits the
central character ' =y|,. On the other hand, by Weyl's complete
reducibility theorem, E(y)|,- is a direct sum of (finite dimensional)
irreducible U'-modules, and each of these admits the central character y'.
Hence y' e I'', and E(y)|,~ is a direct sum of copies of E’(y"). Let m(y)
denote the multiplicity of E'(x') in E(¥)|,.. Then:

(D, 7> =(dim; E(x) =mix)? (dim, E'(y)V=m(y) XD, 7> (%)

Also, 7' = x|, hence (D', ¥'> is nothing but (D', y>. Moreover, m(y) is
the length of E(y) as a U'= U“-module, and by a result of Lorentz and
Passmann [ Mo 1, Theorem 7.6(3)], one has for all ye I

m(y) =length .( E(y}|,-) < |G| length .(E(y))=|G]|.

Hence, m(y) € {1, ... |G|} for all y € I'. Thus, the element P=TT'", (D—iD")
of Z satisfies {P, Ker y> =< P, y>=0"forall ye I Since {Kery|{yel'} is
a dense subset of Max Z, then P vanishes identically on Max Z, and since
the latter is irreducible (Z being a domain), some factor of P also vanishes
identically. Hence D =i*D’ for some ie {1, .., |G|}. Consider now the one-
dimensional represenation of U. It certainly restricts to a one-dimensional
representation of U, and this gives /i=1; hence D= D'". It then follows
from (*) that m{y)=1 for all y e I This proves assertion (A).

1.9. Proof of Proposition 1.2. First, it is easy to see that, if U” is
only assumed to be a quotient of U(g'), with g’ semisimple, then the argu-
ment of the previous subsection applies just as well and gives that assertion
(A) also holds in this case. Second, under the hypothesis that G fixes
pointwise the center of U, it is immediate that assertion (B) is satisfied,
since every finite dimensional irreducible U-module is determined by its
central character. This proves Proposition 1.2

1.10. Towards the proof of assertion (B). For each deN™. set
Figy={Ee #/(g)| dim, E=d}, define .7/(g') similarly, and. taking the
truth of assertion (A) into account, denote by ¢, the map from the former
into the latter, which takes £€.#/(g) to ¢ (E) :=E|,-e.7/(g"). It is clear
from the proof of Lemma 1.7 that every ¢, is surjective. For future use, we
record this fact as the:
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COROLLARY. ¢, is surjective, for every de N7,

Also, observe that there is a natural action of G on .#7(g). Indeed, if
Ee.#’/(g) and ge G, define the twisted module “E to be the vector space
E with the U-module structure givenby n - ¢=g "(u)e,forallue U, ce E.
Then note, on the one hand, that Ann *E = g(Ann E), and, on the other
hand, that ¢ ,(*EY=¢ (E), where d=dim, E. Therefore, assertion (B)
would follow from the injectivity of the ¢,. But it is well known that .#/(g)
and ¢ /(g') are finite scts {see Lemma 1.16 below); therefore, in view of the
previous corollary, injectivity will follow if we prove that, for every deN*,
Fig) and 7/%(g) have the same cardinality. It is certainly enough to
prove that g ~ g’, and this is what we shall do.

1.11. Let h be a Cartan subalgebra of g, R the root system of (g, h),
A4 a basis of R, and define h" < g', R', and 1’ similarly. Then one has the
lemma.

Lemma. (a) dim, g=d(U)=d(U")=dim, g’
by |Al=d(ZV=dZ")=|A"]
{c) IR|={R'|.

Proof. Since dim; g = |4| + |R|, and similarly for g’, assertion (¢) is a
consequence of assertions (a) and (b), which themselves follow from
Lemma 1.6, together with [ Kr- Le, 6.9; Dix, 7.3.8].

1.12. Primitive ideals. Keep the notations of 1.11, and, in addition,
introduce: g=h®(E,, rg,) the corresponding weight space decom-
positon, RV =!1H, |ae R} ch the set of coroots, ¥ the Weyl group,
R’ = R~ N4 the set of positive roots corresponding to A, p the half-sum
of the elements of R*, and w, the unique element of W such that
wolR" )= —R"*. Recall that to each xe 4 is associated an element of W,
the reflection s,. Then, for cach subset S of A, set R.=RNZS,
R: =R nR', let W, be the subgroup of W generated by the reflections
$,, where x€ S, and let w denote the unique element of W such that
W RIV=—R{.

Now, set n=@ ., g, and b=h®n. Then b is a Borel subalgebra of
g and n an ideal of b. Let 2eh* Then 2 defines a one-dimensional
representation of h. Since b/n =~ h, then 4 also defines a one-dimensional
representation of b, which we shall denote by k,. Onc then defines the
Verma module M(4)=U(g)®,,,, k,. By [Dix, 7.1.11- 7.1.13 . M(Z) has a
unique simple quotient, denoted by L(2), and L{4) is characterized by the
existence of a non-zero vector v € L(4) such that ne=0 and (h— 2(h))e=0
for all e h. (Beware the change of notation: our M(2) 1s denoted M(/ + p)
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in loc. cit.). Since the unique one-dimensional g-module is annihilated by
[g. g] =g, and in particular by b, this module is indeed L(0). Also, for every
Aeh* set I{A)=Ann, L(2). Recall the definition of the dot-action of W
onh*: foranywe W, ieh* w.2=w(i+p)— p. Then one has the following.

PROPOSITION.  Let yo denote the central character of L(0)., and set
I'=U(Ker y,). Then:

(a) [1is left invariant by every automorphism of U.

(b) [ is completely prime, and I=Iw,-0).

(c) The prime ideals of U, minimal among those strictly containing I,
are exactly the Ks,w,-0):=1_, where a€ 4.

(d}  For any subset S of 4, one has T, Hs,wy-0)=I0wow,-0):=

I this ideal is completely prime, and d(U/g)=|R|—|R¢|. Also,
d(U/I)y = |R].

Proof. Since g has a unique one-dimensional representation, then U has
a unique two-sided ideal of codimension one, which we shall denote by
U, . Clearly, U, is left invariant by every automorphism of U; hence so
is Ker y,= U, nZ. This proves assertion (a). Assertion (b) follows from
{Dix, 84.3-8.44, 74.7, and 7.6.24]. Assertion (c) and the first part of asser-
tion (d) follow from [ Duf, Corollaire 2 de la Proposition 10, Proposition
12]. The second part of assertion (d) follows from [ Jan, 15.3(5) and 15.6].
Finally, the assertions concerning Gelfand—Kirillov dimension follow from
[loc. cit., 15.3(1) and 10.9].

1.13. Set y4=xol,, and I'=U'(Ker y3). Since y; is the central
character of L(0}] ., the unique one-dimensional U/’-module, then Proposi-
tion 1.12 also applies to /'. In particular, the prime ideals of U, minimal
among those strictly containing /', are denoted by [I,, where 2’ runs
through 4. Then we have the following.

PrOPOSITION. (a) InU' =1T".
(b) There exists a bijection @:A—> 4" such that, for all xe 4,
I,nU =1

@i
(¢) I, is G-invariant, for every a € A.
Proof. Clearly, (Inl")21'. Moreover, by 1.6, 1.11(c), and the last
assertion of 1.12 applied to both U and U’, one has
dU U ny=dlUD=|R = |R|=d(U"/1").

Since U'/I' is prime noetherian, this gives U' ~n /=1, by [Kr-Le, 3.15]
together with Goldie’s theorem (see, e.g., [ Dix, 3.5.10]). Thus, since 7 is
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G-stable by Proposition 1.12(a), setting A = U/l and A'=U"/I' one then
has A" = A". Recall then that, by a result of Montgomery [ Mo 3, 4.2 and
3.6], there exists a biyjective, order preserving, correspondence between
G-orbits in Spec A and certain equivalence classes in Spec A°. In our case,
a part of this correspondence can be expressed in a simple manner, since
some equivalence classes in Spec A" are trivial. Indeed, for every minimal
non-zero prime ideal J of A, the ideal J ~ A" 15 completely prime since J is
so. 1t then follows from [ loc. ¢it.] that the map ¢ : Jr—J A" is a surjective
map from the set of minimal non-zero primes of 4 onto the set of minimal
non-zero primes of A’ and every fiber of ¢ is a G-orbit. But we saw alrcady
that 4 and A’ have the same number of minimal non-zero prime ideals,
namely |4} =]4"|. This simultaneously gives that ¢ is bijective and hence
induces a bijection ¢ : 4 — A" such that U'n/l, =1, for all xe A, and
that all /. where x e A, are G-invariant. The proposition is proved.

1.14. Coxeter graphs.  For any pair a, f§ of clements of 1, denote by
m,, the order of the clement 5,4, of W. Then recall (see [ Bou, IV, Scction
I, No. 9]) that the Coxeter graph of g is the labelled graph defined as
follows: its set of vertices is 4, and {a. 8} is an edge if and only if m,, > 3,
in which case the edge |, ff} carries the label m,,.

Lemma. One fas 2o, = |Ry, 01, for every pair of elements o, fi in A,

Proof. Let W, . be the subgroup of W generated by s, and s,. Recall
that the length /ov) of an clement we Wy, 4 15 the smallest integer ¢ =0
such that »w can be written as a product of ¢ elements of the set {s,.5,}.
By [Bou, IV, Section I, No. 2, Remarque]. W, , contains a unigque
clement of maximal length, denoted by w, 4. and 10wy, ;) =n1, On the
other hand, by [ Bou, VI, Section I, No. 6, Corollaire 3 de la Proposition
171, one has /(wy, 4 )=|R/, ,|. The lemma follows.

Provosimion.  The bijection @ A4 — A" of Proposition 1.13(b) is an
isomorphisn of Coxeter graphs.

Proof. Let |« fi} be a pair of clements of A. Since [, and [, arc
G-stable by Proposition 1.13 and since the functor M — M is exact (recall
chartk)=0) one has (I, +1,)" =1y +1=1, ,+1,,. Thercore, by
Lemma 1.6 and by Proposition 1.12(d) applied to {7 and to U’. we obtain

U
RI= 1Rl =d ()

Wy + 7

{

T
2(1( >:|R’| *IR"(( Lwt/ib"'
‘\14//”‘”+ 1;7‘/" Al N7 !
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Since |R|=|R’| by Lemma 1.11, it follows that [R, ;| =R\ s, ol
Applying the previous lemma on both sides. we obtain m_,=m

This proves the proposition.

Pl iy

1.15. Recall (see, eg. [Bou, VIII, Section4, No.4, Théoreme
2(1ii)]) that a semisimple Lic algebra over an algebraically closed field of
characteristic zero is determined up to isomorphism by its Dynkin graph
(defined, e.g., in [loc. ¢it, VI, Section 4, No. 2]). In particular, the latter
determines the Coxeter graph. Conversely, it is well known (see, e.g., { foc.
cit., Section 4, Théorémes 1 and 3]) that two connected Dynkin graphs
having the same Coxeter graph are isomorphic, unless they are of types B,
and C,, for some # > 3. This leads us to introduce the following notations.
First, denote by 7(g) the Dynkin graph of g and by X the set of connected
components of {g). Then recall (see [Joc. cit.]) that the set of vertices of
{g) may be identified with A, the set of simple roots. Making this iden-
tification, let us then denote, for every % € X, by g, the subalgebra of g
generated by the subspaces g,,, where ae%. Then g, is a simple Lie
algebra, and % is its Dynkin graph. Moreover, g is the direct product of the
g, . as t runs through X. Define similarly X', and the subalgebras g/ . of
g’ for %' e X', Also, for every integer > 3, let us denote by:

b, (resp. ¢,) the simple Lie algebra of type B, (resp. C,).

r, (resp. s,) the number of connected components of (g) of type
B, (resp. C,,).

X _, (resp. X)) the set of connected components of ~/(g) which are
of type B, or C,,, with p>n (resp. p=n).

pu = n’(' ¢ N, g‘/»’ gn = n'(. e Xy, g(' . qn = 1_['(, 3, WY g‘(r ’

Then, one has g ~p,xg,xq, and g, >~ (b,)"" x(¢c,)™"
Define similarly r/,s,, p,.,g,. and q,. Then, with these notations,
Proposition 1.14 has the following consequence.

COROLLARY. One has py = p,. and r,+5,=v,+5s, for everv nz=3.

By induction on n, we are going to prove that p, ~p,,. for all n>3. We
shall need several lemmas.

1.16. Set #* =].eh* | A{H,)eN Vaxed}, and let {w,},. , denote
the basis of h* dual to the basis {H,},., of h; the w, are called the
fundamental weights, they form an N-basis of .# *. Indeed, for any /e .# "
and xe A, set A, =A(H )eN; then 2=3%,_,/,w,. Define a partial order
< on 2" as follows: A=<y if and only if £, <y, for all xe 4. Also, set
=<yt if 2=yt and 7 # u. Then, one has the following.



218 ALEV AND POLO

LemMmA.  (a)  The map 2w [ L(2)] is a bijection from 2 1o .7'(g).
(b) .7(g) is u finite set, for cvery deN ',
(¢) Let ioue #' . If <, then dim, L) <dim Lu).

Proof.  Assertion (a) follows from { Dix, 7.2.6], whereas assertions (b)
and (¢) will follow from the Weyl character formula: for all 1e.2*,

{(p+ 2L

dim, Liz)y =[] o)

ve RY

Indeed, recall first that p(H,)=1 for all xe A, whence p(H,) and
(44 pY H,) are positive integers for all xe R, Now, if dim, L{4) =, then
1. ke (p+2NH)=dT1,, o ptH,):=d"eN"'. This gives. for instance,
that 2, <d’ — 1 for all xe A, and assertion (b) follows.

Cosider now assertion (c). First, for cvery ffe R', one has H,=
.. 1, Tor some ¢, e N hence, it 2, pe# ' and 2 <y then

(p+H)=Y cplp,+i0< ) Conl P00 = (p - H ).

ER | re .

Morecover, if 2 < then the above inequality is strict for at least one ffe A,
and assertion (¢) follows.

1.17. LiMMma. Let n =3 Then:

{ay  Every non-trivial irreducible representation of b, has dimension
220+ 1. and there is a unique, up to isomorphism, such representation of
dimension 2+ 1.

(b)  Every non-trivial irveducible representation of ¢, has dimension
=20, and there is a unique, up to isomorphism, such representation of dimen-
sion 2n, but none of dimension 2n + 1.

Proof.  In both cases, we fix numberings x,, ..., %, and. correspondingly,
)y, ..., of the simple roots and fundamental weights. as in [ Bou, VI,
Planches 1 111]. Then, one has dim, L(w,)=2n+1 for b,, whercas
dim, L{w,)=2n for ¢,. Hence, by Lemma 1.16, 11 is enough to prove. in
both cases, that dim, L(2) > 21+ 2 when 2 is cither 2w, or o, for some
iz2.

Consider b,. By [Bou, VIII, Section 13, No. 2], one has Liw,) >

A Liey) for 2<i<n -1, and dim, Liw,)=2". Hence, one has

) n+1 R i
dim, L{w,) = ) >0+ 1 for 2<ig<n— 1.
L
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Taking the hypothesis # >3 into account, one also obtains

"

dimg L(w,)=2"= Y ('f>> L4n+ ("> +1>m+2
J 2

j=10

Also, direct computations, using Weyl's character formula, together with
the lists of positive roots in [ Bou, VI, Planches II-1II]. give, on the one
hand, that

n(2n+3) for b
n2n+1) for ¢

dim, L(2w,)= { "

n

and, on the other hand, that, for ¢, and any i€ {2, .., n},

S 2n—j | 2n+1—i
dim, L(w)=2n+ Dx || = x o
Llw)=(2n+1) ,1:[()2)1—j—-f 2)1+1—i< 1 >

with the convention that the factor in the middle equals 1 if the indexing
set 1s empty, that is, if /=2, Otherwise, if /> 3, this factor is a rational
number >1. Moreover, since binomial coefficients are unimodal, then the
last factor 1s also a rational number > 1, unless i=2n — i, that is, unless
i=n. Since 1= 3, the conditions i=2 and /=# cannot simultaneously be
realized, hence dim, L(w,)>2n+ 1. The lemma is proved.

1.18. For each % € X, the linear span of the H,, where x€%, is a
Cartan subalgebra of g, ., denoted by h,; we set 2} ={ieh}|iAH )eN
Yxe%}. Then h h* and #* are respectively the direct product of the
h,.h¥, and £, as 4 runs through X

Now, consider A=(/4,), _, In h* For every % e X, one defines the
irreducible Ufg, )-module L, (4,) as in 1.12. Moreover, if 2€#* then
every 4, belongs to #;, so that L (/,) is finite dimensional. by
Lemma L.16(a) applied to g, . Finally, since g=T1], g, . then every L {2,)
1s a g-module and so is their tensor product. Then one has the following
(well-known ) lemma (see, e.g., [ Bou, VIII, Section 7, Exercice 2]).

LEMMA.  For every 2= (4,), .y in A 0one has LiZ)~ &, L, (4,)

Proof. Set M=&, L,(~,). Clearly, M contains a non-zero vector
annihilated by n and by /i — A(#), for all 1eh. Hence, by [ Dix, 7.1.13], it
1s enough to check that M is irreducible. Since M is finite dimensional, as
we already observed, it is completely reducible. Therefore, irreducibility will
follow if we check that End, M = k. But, since each g, acts trivially on all
factors of the tensor product, except the one corresponding to %, it easily
follows that Endg M>®, Endgl L, (%,) >~k This proves the lemma.
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1.19. Completion of the proof. We can now finish the proof of
Theorem 1. Recall the notations of Subsection 1.15 and let # > 3. By induc-
tion hypothesis, we may assume that p, ~ p,,. Il follows from Lemmas 1,18
and .17 that

!yéu‘g” = ‘yérr( pu)‘ + "7é/l(gu)| = |‘7gn(pu)| +‘\‘u
and
"7£1r t l(g)l = "7211 + I(pu)‘ + "7éu + l'gn)l = |_¢£” + I'pu” +)'”.
Similarly,
‘yéu(g’)‘ - |7.£Jl(p:l)| +'\v:!‘ |'7£/r + I(g’” = }’yéu + I(p;l)‘ +ru'

On the other hand. by Corollary 110, one has [77(g)| = .7 /(g for all
de N’ and, in particular, for ¢ =2n and 2n+ 1. Taking the isomorphism
p, ~p, into account. onc therefore obtains s, =y, and r,=r,. Since
r,+s,=r,+s, by Corollary .15, this gives s,=s, and r,=r. hence
P =P, Since g=p, and g'=p; for ¢ large enough, onec therefore
obtains g ~ g'. As noted in Subsection 1.10, this completes the proof of
Theorem 1.

2. WEYL ALGEBRAS

2.1. In this section, let K denote 4 field of charactenstic zero, and let
G be a finite group of K-automorphisms of the nth Weyl algebra 4 (K).
We shall then prove the following.

ThroriM 2. If A JK)YY is K-isomorphic to A (K), then G is wrivial. In
other words, A,(K) does not admit any Galois embedding into itself.

2.2. Recall that the #th Weyl algebra A,(K) 1s the K-algebra with
generators  py, ¢, . ... p,.y, and relations: [ p. p,1=[¢; ¢,]1=0, and
[p,.q,]=20,. It 1s a simple noetherian domain, and 1ts only units are the
non-zero ¢lements of K (see. ¢z, [ Dix, 4.6.3-4.66]).

2.3. Separability.  Consider an inclusion of rings R< S, After
{L V V_ILS L], one says that S is separable over R if the S-bimodule map
S®,S— S, s® 55, admits a splitting. This generalizes the classical
notion of separable extension when R 1s commutative (see, ¢.g., [De In])
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24. Let S be a ring, H a finite group of automorphisms of S, and
R=S" For every he H, there exists an S-bimodule map ¢, : S®,S—
WS1.s® s > his)s', where S| denotes S, regarded as a S-bimodule for the
actions: s-t=~h(s)t and t-s"' =1ty for all 5,5'€ S, te,S,. Note that ¢, 1s
precisely the map considered in the previous subsection. Then, one has the
following.

PROPOSITION.  Keep the above notations and assume that there exist
clements a,,b,, .., a,,.b, in S such that ¥ | glayhb,)=0,, for all

g heH Then the map @, @, SQrS— &, .5, iy an isomorphism of
S-bimodules. In particular, S is separable over R.

Proof. Set ¢=@, ¢,. It is clear that ¢ 15 an homomorphism of
S-bimodules. On the other hand, define  : @, ,5, = S®4 S as follows: if

u, €,S, then Y(u,)=Y"  a,®h(h)u,. One then checks that

(p W)=Y Y glayhb)u, =3 6, u,=u,

eeld iy

and also, if x, y €S,

(W dx@y) =1 ( Y /1(.\‘),\'>

e 1

=3 Y a,®@h(h,) hix)y

o

= Z a4, ® Z hib,x)y
i /]

:Za,—(Z lz(b,..\-)>®.1‘ (since Y hibx)e R)
i h

N h

=YY ahh) Hx)® ¥
o
= Z 5, x)®@ v
h
=x® ).
Therefore  is the inverse of ¢. This proves the proposition.

2.5. Now, set 4=A,(K), and recall that G is a finite group of
K-automorphisms of 4. Then, one has the following.

PROPOSITION.  There exist elements a,. by, ...a,. b, in A such that
SV glayhby=0,, for all g, he G.
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Proof.  Since the only invertible elements of 4 are the nonzero scalars,
which are central, then 4 has no inner automorphism, but the identity.
Therefore, it follows from [ Mol, 2.3] that the skew group ring S=4x G
is a simple ring. Recall that S is a free left A-module with basis ¢,, for
ge G, and multiplication is given by («e )d'e,)=ug "(a')e,, for all
a,a'eA. g, heG. Now, consider the element f=3,¢, of S. Note
that ¢, /= fe, = f for all ge G hence SfS = AfA. Therefore, since f#0
and S is simple, there exist elements «,.b,,...qa,, b, in A such that
> uafb,=1. Then

L= N ae,b, =Y ah ‘(h,}v,‘=2<}:u,h l(h,])(',,

i h i h h i

and. therefore. X, a,h '(b,)= 4, ,: applying another clement ge G to this
cquality, we get ¥, gla) gh '(h)=03,=0, ., 1. Up to the change of
variables /' = g ', this is the sought for equality.

2.6. From now on, we make the assumption that 4,(K)“~ A,(K),
and we shall obtain the conclusion that |G| =1 by carrying the whole
situation over a finite field. First, one has the following.

PrROPOSITION.  There exists a finitely generated Z-subulgebra A of K, such
that, first the subalgebra A,(A) of A (K) is G-invariant and, second, for any
maximal ideal m of A, with residue field k = Ajm, the following hold:

(a)  The action of G on A, (A)mA(A) =~ A (k) is faithful.
ib) A k) is separabe over A,1k)Y.
(c) Ak is k-isomorphic to A, (k).

Proof. Being finitely generated over K, 4,(K} is the union of its sub-
algebras A,(4), where .1 runs through the finitely generated subrings of K.
Since G 1s finite, it follows that there exists a subring .1, as above, such that
A,(1,) 1s G-stable. Up to enlarging A,,, we may assume that the elements
a,. b, of 2.5 belong to A,. and also that |G| 'e.4,. Thanks to the latter
assumption, one can consider the projector p=|G| '3 g, and this has
the consequence that, for any over-ring A of .1,,, one has

AL = plAA)) = plAALA)) = Ap(A(A)) = AA (A7 (%)

Moreover, under the same assumption, A4,(.1,)" is a finitely generated
Ay-algebra, by [ Mo Sm, Theorem 1]. On the other hand, by our main
assumption, 4,(K)” is also a Weyl algebra, say with generators P,, O;:
hence there exists a finitely generated subring . of K, containing A,,. such
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that the generators of A,(A4,)¢ belongs to the subalgebra A{P, Q.}.
Taking () into account, one then obtains that A,(4) equals A{P;, Q,}
and is, therefore, A-isomorphic to A,(A).

Let now nie Max A and set k = A/m. Then A,(A)/mA,(A) = A,k); also,
mA,(A) is G-stable and, since |G| "' e A4, then

A K) ~(A,(A)/mA (AN = A A)/mA (A
> A, (AYmA,(A)~ A, (k).

Finally, the identities 3, g(a,) i(b,) =d,, In A,(k) give both the faithful-
ness of the action of G and the separability over A4, (k)°.

2.7. From now on, we fix a maximal ideal m of A and set k = A/m.
Then k is a finite field, say of characteristic /. Note that / is prime to |G|,
since |G| 'eA. Set A,(k)=B and A, (k)°=PB and denote by Z and Z’
their respective centers. Then, one has the following.

PropoSITION. G acts faithfully on Z.

Proof. Denote by k the algebraic closure of k, set B=B®, k. and
define Z and B’ similarly. Then B ~ A4,(k); its center is Z. The action of G
extends to B, and B¢ equals B’, hence is k-isomorphic to B. Now, by
[Rev], B is an Azumaya algebra, of rank /*' over its center Z; in par-
ticular, every simple quotient algebra of B has dimension /%" over k, and
the same is true for B’, which is k-isomorphic to B. It follows that, for
every maximal ideal J of B, the inclusion BY/(B“ ~nJ)c B/J is in fact an
equality.

Assume now that g€ G acts trivially on Z, and let 6 =0 ® 1 denote its
extension to B. Let Je Max B; since B is Azumaya, J is generated by its
intersection with Z and is, therefore, &-stable. Hence & acts on B/J, and this
action is trivial, since B/J= B“/(B“~J). Therefore, for every he B,
b—a(b)eJ. Since J is arbitrary and since the intersection of all maximal
ideals of B is reduced to {0}, this gives ¢ =id. It follows that ¢ =id; the
proposition is proved.

COROLLARY. One has Z' = Z°.

Proof. Certainly, any X-inner automorphism of B acts trivially on Z;
therefore the previous proposition says that B has no such automorphism
but the identity. The corollary then follows from [Mo 1, 6.17].

2.8. Combining 2.6 and 2.7, we are now able to obtain the
following.

607 111 2-3
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PROPOSITION. (a) Z is separable over Z'.

(by For erery meMax Z of codimension 1, the orbit Gm has
cardinality |G|

Proof. By Proposition 2.6(b), B is separable over B, whereas B’ is
separable over Z' by [Rev]. By transitivity of separability [L V-V,
[1.5.1.2], B is separable over Z'. Then, by [ De-In, [1.3.8], so 1s Z.

Consider now assertion (b). First, denote by F and F’ the fraction fields
of Z and Z'. One has F’=FY and, since G acts faithfully on Z, then
dim,. F=|G|. As 1s well known, it follows from Nakayama’s lemma that,
for every maximal ideal m’ of Z', one has

dim,.,, Zim'Z>=dim,. F =G| (%)

Now, let m be a maximal ideal of Z of codimension 1, and w' =mn Z.
Then the maximal ideals of Z containing m’'Z are precisely the G-con-
jugates of m, say m=m,, ..., m,, where t = |Gm|; they have codimension 1
as well. On the other hand, since Z is separable over Z', then Z/m'Z is
separable over Z'/m' =4k by [De-In, 11.1.7]. Hence, by [loc. cit., 11.2.4],
the finite dimensional k-algebra Z/m'Z has zero radical. It follows that
Z/m'Z is the direct product of the Z/m,, where 1 <i<t; hence has dimen-
sion t. Together with (x), this gives 1 = |G|. The proposition is proved.

2.9. Completion of the proof. We can now conclude as follows. It
is well known and easy to see that Z is a polynomial algebra over & in 2n
variables; therefore the set of maximal ideals of Z of codimension 1 is in
bijection with the affine space k*". Proposition 2.8(b) then implies that |G|
divides |k*|. which is a power of /. Since, on the other hand, our construc-
tion was made so that [/ is prime to |G|, this gives |G| =1. The proof of
Theorem 2 is complete.

2.10. Linear actions. Recall the notations and hypotheses of
Theorem 2: in particular. K denotes a field of characteristic zero. For the
sake of completeness, we shall give a shorter proof, under the additional
hypothesis that the action of  is linearizable; which means that some
conjugate of G in Auty 4,(K) preserves the natural filtration of 4,(K).
Namely, let us prove the following.

PROPOSITION.  Let G he a finite group of K-automorphisms of A, (K);
assume that the action of G is linearizable, then K(A,(K)) ~ Z"" " where
irr (G} denotes the mumber of irreducible representations of G over K. In
particular, if A, (K)Y is K-isomorphic to A,(K), then G is trivial.
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Proof. Set A, K)=A. Firstly, note that K, (A4)>~Z by Quillen’s
theorem [ Qui, Section 6, Theorem 7]. Second, since conjugate subgroups
have isomorphic algebras of invariants, we may assume that G itself
preserves the canonical filtration of 4. Then, as observed in [A-H-V,
Theorem 2.17], it also follows from Quillen’s theorem that K (A4 + G) =
Ky(KG), and the latter is isomorphic to Z™*“’_ On the other hand, since
the only invertible elements of 4 are the nonzero scalars, which are central,
then 4 has no nontrivial inner automorphism. Therefore, it follows from
[Mo 1, 25-26] that A x G and A“ are Morita equivalent; thus K,(4“) ~
KyA*G)=Z"™

Assume now that 49 ~ 4. Since K,(A) = Z, it follows irr (G) = | hence
G has only one irreducible representation over K, the trivial one. But, since
KG 1s semisimple, the sum of all its irreducible representations is faithful;
it follows that G is trivial.
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