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ABSTRACT. We show that with any finite partially ordered set P (which need not be
a lattice) one can associate a matrix whose determinant factors nicely. This was also
noted by D. A. Smith, although his proof uses manipulations in the incidence algebra of
P while ours is combinatorial, using nonintersecting paths in a digraph. As corollaries,
we obtain new proofs for and generalizations of a number of results in the literature
about GCD matrices and their relatives.

1. INTRODUCTION

Let P denote the positive integers and suppose we are given a subset S = {ay,...,a,}
of P. The corresponding GCD matriz is (S) = (s;;) where s;; = (a;,a;), the greatest
common divisor of a; and a;. We say that S is factor closed if given any a, € S and any
divisor d|a; then d € S. H. J. S. Smith [27] proved the following beautiful result about
the determinant of (5).

Theorem 1.1 (Smith). If S = {ai,...,a,} is factor closed then
(1) det(S) = @(a1) - - - d(an)

where ¢ is Euler’s totient function. O

Since Smith’s pioneering paper, a host of related results have appeared in the literature.
For a survey with references, see the paper of Haukkanen, Wang, and Sillanpaa [15]. We
will show that many of these are special cases of a general determinantal identity, see
Theorem 2.2 below, associated with any finite partially ordered set P even if it is not
a lattice. This theorem can be proved by appealing to a result of D. A. Smith [26,
Section 3, Corollary 2]. But Smith’s approach relies on manipulations in the incidence
algebra of P while we choose to give a combinatorial proof based on counting families
of nonintersecting paths in digraphs. This technique is due to Lindstrém [22] who was
motivated by a problem in matroid theory. Related determinantal identities had been
studied earlier by Slater in physics [25] as well as Karlin and McGregor working in a
probabilistic context [17]. Later, Gessel and Viennot [11, 12] showed how the method
could be applied to a whole host of combinatorial problems. More history can be found
in the footnotes of a paper of Krattenthaler [19, pages 9-10].
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The rest of this article is structured as follows. The next section will be devoted to
proving our main theorem and giving some preliminary applications. In Section 3, we
specialize to the case where P is a meet semilattice. This permits us to invert the sums
appearing in the general case. Section 4 investigates what happens to the determinant if
the set S is lower closed (the partially ordered set generalization of being factor closed)
or meet closed. We end with a section containing comments and an open question.

2. THE MAIN THEOREM

We will first review the digraph machinery which we will need to prove our main
theorem. Explanations of any undefined terms from graph theory can be found in the
texts of Harary [13] or Chartrand and Lesniak [6]. For definitions of concepts about posets
(partially ordered sets), the reader can consult Stanley’s book [28].

Let D be a finite digraph with vertices V' and arcs A. Let R be a commutative ring
with identity and suppose we are given a function (weighting) w : A — R. Then any
directed path p: wvgv; ... v, has an associated weight

k
= Hw(vi_lvi).
i=1
U07 Uk: Zw

where the sum is over all directed paths p from vy to vg.

Now suppose we are given two disjoint sets of vertices V' = {v},... v/} and V" =
{v{,...,v} in V. Consider an n-tuple of directed paths m = (p,...,pn) where p; goes
from v} to v/ for all 4, 1 <1i < mn. Then we assign weights to 7 and to the pair (V', V") in
a way analogous to the one used in the preceding paragraph

:ﬁw(pi) and w(V', V") = Zw
i=1

where the sum is over all 7 where no two of the paths in the n-tuple intersect.

Finally, given a permutation g in the symmetric group S, we define 7, = (p1,...,pn)
to be an n-tuple of directed paths such that p; goes from v to v;’(i) for all 7. So the
n-tuples considered in the previous paragraph would have g = e where e is the identity
permutation. If any pair of paths in 7, intersect then we call the n-tuple intersecting
and nonintersecting otherwise. We can now state a corollary of Lindstrém’s Lemma [22]
about enumerating nonintersecting paths.

We also let

Lemma 2.1 (Lindstrom). Let D be a finite digraph with disjoint vertex sets V' =
{vi,...,v,} and V" = {of,... v} such that any w, is intersecting if g # e. Let
(D) = (d;j) be the matriz with

dl] - W(UZ, vj)
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Then
det(D) = w(V',V"). O
Now let P be a finite poset and consider the incidence algebra I(P, R) of P over R

which consists of all functions F' : P x P — R such that F(a,b) = 0 unless a < b. The
identity element of I(P, R) is the Kronecker delta function

1 ifa=0,
6(a,b) = { 0 otherwise.

We will also need the zeta function of I(P, R) defined by
1 if a <,
cen={ g S

0 otherwise.
The zeta function is invertible and its inverse is called the Mébius function p of I(P, R).
In other words, p is the unique function in (P, R) satisfying

S wlae) = 3 o) = 5(a,b).

Now fix a linear ordering of P which can be used to index the rows and columns of a
matrix M. Since we will be taking determinants, it will not matter which linear order
is used and we will merely say that the matrix is indexed by P. We can now state and
prove our main theorem.

Theorem 2.2. Let P be a finite poset and let F,G € I(P,R). Let (P)pc be the matriz
indezed by P with entries

(2) Dab = Z F(c,a)G(c,b).
ceP
Then
det(P)pe = [ [ F(a,a)G(a, ).
acP
Proof. Construct a digraph D as follows. For the vertices of D, take three copies of the
elements of P which we denote by P, P”, and P”. Now put an arc from a’ € P’ to
d” € P” if and only if a > ¢ in P. Dually, put an arc from ¢” € P"” to b” € P” if and
only if ¢ < b. Finally, give weights to the arcs by

w(d,d")=F(c,a) and w(c”b") = G(c,b).

Consider paths p from o’ € P’ to v € P”. Clearly all such paths have the form
p:a,d” b where c < aand ¢ < bin P. So if we take V' = P" and V" = P” then we
have (D) = (P)pg since

da’b” = w(a’, b”) == Z F(C, G)G(C, b) = Pab-

c<a, c<b
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b c

a

FIGURE 1. A poset P

The last step follows from the fact that a term in p,;, corresponding to some ¢ not satisfying
the given inequalities is zero.

We need to show that D satisfies the hypotheses of Lemma 2.1. Now take any n-tuple
of paths 7, which is nonintersecting. We will show that this forces g = e. First we claim
that the path starting at any o’ € P’ must then follow the arc to a” € P". Suppose
this is not true for some a’ and let ¢ be the next vertex on the path. Then we must
have @ > ¢ in P. Now consider the path of 7, starting at ¢’. Since it cannot intersect
the previous path, it must go to some d” with ¢ > d. Continuing in this fashion, we can
construct an infinite decreasing chain in P, contradicting the assumption that P is finite.
So our claim is true. By a dual argument, one can show that the path starting at a’ must
continue from a” to a” and so ¢ = e. Furthermore, we have shown that this family x,
is the only nonintersecting path family. So, by the way we have defined the weights and
Lemma 2.1,

det(D) = w(re) = [ [ F(a,a)G(a,a). O
acP

Note that one can directly factor the matrix for P as (P)rg = MLMg where Mp
and Mg are the matrices corresponding to the incidence algebra elements F' and G,
respectively, and t denotes transpose. So one can give a simple linear algebraic proof
of the previous theorem just by using the fact that the determinant of a product of
matricies is the product of the determinants. However, we prefer the approach given
since it combinatorially explains the factorization.

As an example of Theorem 2.2, consider the poset P whose Hasse diagram is shown in
Figure 1. Then using the linear order a, b, ¢ one obtains

F(a,a)G(a,a) F(a,a)G(a,b) F(a,a)G(a,c)
det | F(a,b)G(a,a) F(a,b)G(a,b)+ F(b,b)G(b,b) F(a,b)G(a,c)
F(a,c)G(a,a) F(a,c)G(a,b) F(a,c)G(a,c) + F(c,¢)G(c,c)

= F(a,a)G(a,a)F(b,b)G(b,b)F(c,c)G(c,c)

As a first application, we note a corollary of Theorem 2.2 which simultaneously gener-
alizes a theorem of Apostol [1] and one of Daniloff [10]. Let f, g be arbitrary functions
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from the poset P to the ring R. Then on substituting F'(a,b)f(a) and G(a,b)g(a) for
F(a,b) and G(a,b), respectively, we immediately have the following result.

Corollary 2.3. Let P be a finite poset. Let (P ) be the matriz indexed by P with entries

Dy = ) Fle,a)f(€)G(e, b)g(o).

ceP
Then
det(P H F(a,a)f(a)G(a,a)g(a). O

Now consider the poset defined by using the divisor ordering on P, aof {1,2,...,n}.
Apostol’s theorem is obtained by specializing the previous result to the case where P P,,
F(a,b) = ((a,b), G(a,b) = G(b/a) for any function G : P, — R, and g(a) = 1 for all
a € P. In this case the determinant becomes

det(Py) = f(1)f(2) -~ f(n)G(1)".
With this evaluation in hand, Apostol showed that letting f(a) = a for a € P, and
G(a,b) = p(b/a) where p is the usual number-theoretic Mébius function gives

det(c(a, b)) = n!
where ¢(a,b) is Ramanujan’s sum.
To obtain Daniloff’s theorem, let P = P,, g(a) = 1 for all a € P,, and F(a,b) =
G(a,b) = Q(b/a) where

al/* if a'/*F € P,
i(a) = { 0 else.

Now Corollary 2.3 becomes Daniloft’s result,

det(Pn) = f(1)£(2) - f(n).
Note that one obtains the same evaluation not just for €2, but also for any functions
F,G : P — R such that F(a) = G(a) =1 for all a € P.

3. MEET SEMILATTICES

Now suppose that our poset is a meet semilattice L so that every pair of elements
a,b € L have a greatest lower bound or meet a A b. Note that in this case the sum (2)
can be restricted to ¢ < a A b. This special case of Theorem 2.2 was discovered by
Haukkanen, Wang, and Sillanpédé [15]. They also showed that by further specialization
one could obtain a theorem of Jager [16] concerning a unitary analogue of (1), Smith’s
evaluation [27] of the LCM determinant, as well as a number of other results.

It would be nice to be able to compute the value of determinants where each entry is a
single term, as in Smith’s original case, rather than a sum. Since (2) now consists of a sum
over all ¢ below a certain element in L, one can use Mobius inversion to accomplish this.
Thus we can prove the following theorem of Lindstrém [21] as a corollary to Theorem 2.2.
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Theorem 3.1 (Lindstrom). Let L be a finite meet semilattice and let f € I(L, R). Let
(L)s be the matriz indexed by L with entries

law = flaNnb,a)
Then

) det(L H(zuca )

acl ceL

Proof. Define a function F' € I(L, R) by

b) = Z M(C’ a)f(ca b)

c<a

if @ < b and F(a,b) = 0 otherwise. By M&bius inversion, this is equivalent to

b) =Y F(c,b).

c<a

law = flaNb,a) ZFca ZF(C,a)C(c,b).

c<aNb ceLl

It follows that

So applying Theorem 2.2 we obtain

det(L f—HFaa a,a) H(Z,uca ) O
acL a€Ll \ceL

This result can also be found as an exercise in Stanley’s book [28, Chapter 3, Exercise
37]. The special case where f(a,b) depends only on a was proved independently by
Wilf [32]. Smith himself [27] noted that this theorem holds under the further assumption
that L is a factor closed subset of P.

To see how Smith’s determinant (1) follows from Theorem 3.1, just let f(a,b) = a for
all @ € S. Then s;; = f(a; A a;,a;) and, since S is factor closed,

Y oulea)fe,a) =) ula/c) c = dla).

ces cla
4. LOWER-CLOSED AND MEET-CLOSED SETS

In work on analogues of Theorem 1.1, there are two conditions that are commonly
imposed on the set S. If S C P for some poset P, we say that S is lower closed or a
lower order ideal if a € S and b < @ in P implies b € S. This corresponds exactly to S
being factor closed if it is a subset of P ordered by division. If, in particular, our poset
is a meet semilattice L and S is lower closed, then S is also a meet semilattice with the
same Mobius function as L. So our previous results cover this case without change.

If S C L for a meet semilattice one can also talk about S being meet closed which
means that if a,b € S then aAb € S where the meet is taken in L. Again, S is also a meet
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semilattice and so Theorem 3.1 still applies and in fact generalizes a result of Bhat [4]
who considered the case when f is a function of only one argument.

However, if S C L is meet closed we will show that there is also an analogue of (3)
which involves the Mobius function of L, rather than that of S. This result will generalize
a theorem of Haukkanen [14] who, as in Bhat’s paper, only looked at functions of a single
variable. Specializing yet further to L = P, and the function f(a) = a for all a € P, one
obtains a theorem of Beslin and Ligh [2].

To state our result, it will be convenient to have some notation. Let ¢ be a linear
extension of the partial order on S so that if £ = ay,aq,...,a, then a; < a; implies ¢ < j.
If d € L then we will write d <a; if d < a; and d £ a; for any j <.

Theorem 4.1. Let L be a finite meet semilattice and let f € I(L, R). Suppose S C L is

meet closed and fix a linear extension { = ay,aq,...,a, of S. Then
det(S H(ZZucd cal>
i=1 \d<a; c€L

Proof. We will use unsubscripted variables for elements of L which are not necessarily in
S. Define F' € I(L, R) as in the proof of Theorem 3.1 so that we have

(4) f(ai,a;) Z F(d,a;).

d<a;

Also define F' € I(S, R) by

F(ai,a;)) ZZucd (c,aj) ZFda]

d<a; c€L d<a;

if a; < a; and F(a;,a;) = 0 otherwise. If we can show that

flaia;) = Y Flay,ay)
ap<a;
then the rest of the proof will follow as in the demonstration of Theorem 3.1. So, by the
definition of F', it suffices to show

(5) flaa;) =" Y F(day).

ap<a; d<ay

We will do this by showing that there is a one-to-one correspondence between the terms
in (5) and those in (4).

First note that each d € L occurs at most once in (4) and at most once in (5) (since
d <ay, for at most one a € S). If d occurs in (5) then d < a < a; and so d occurs in (4).
Conversely, if d occurs in (4) then d < a; and so we must have d < a;, for some a; with
k <. But now d < a; A a,, = a; for some [ since S is meet closed. Furthermore, a; < ay,
implies [ < k, and so [ = k since d < ay. It follows that d < ay where a;, = a; < a;. Thus
d occurs in (5) and we have finished the proof. O
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We should note that Breslin and Ligh [3] have derived a formula for (.S); for any subset
S C P in terms of an arbitrary lower-closed set containing S. Since this identity expresses
(S) s as a product of two (not necessarily square) matrices, one can appy the Cauchy-Binet
formula to it, as done in Li’s paper [20], to obtain det(S); as a sum of determinants. This
approach was also generalized to meet semi-lattices in an article of Haukkanen [14].

5. COMMENTS AND AN OPEN QUESTION

Our results can also yield other information about the matrices (P)pg and (L)f. The
following theorem is an example of this. In it, we specialize the ring to be the complex
numbers C for simplicity, although more general rings can be used.

Theorem 5.1. Let P be a finite poset and let F,G € I(P,C).

(1) The matriz (P)pq is invertible if and only if F(a,a),G(a,a) # 0 for all a € P.
(2) The matriz (P)pg is positive definite if and only if F(a,a)G(a,a) > 0 for all
a€P.

Proof. Part (1) follows immediately from Theorem 2.2 and the fact that a matrix over C
is invertible if and only if its determinant is nonzero.

For part (2), let the total order used to index the rows and columns of P be a linear
extension of P. Then each principal submatrix of P is indexed by a lower-closed subset
S of P. It follows that the submatrix indexed by S is exactly (S)rg. But now we are
done by Theorem 2.2 again, since a matrix is positive definite if and only if the principal
subdeterminants are all positive. O

If L is a finite lattice, then one can compute the determinant of a matrix involving joins
(least upper bounds) a V b of elements a,b € L by working in the dual of L so that joins
become meets. For general results about join and meet matrices, see the paper of Korkee
and Haukkanen [18].

However, there are factorizations of such determinants which we have been unable
to obtain by our methods. As an example, we consider the matrix 7),(q) of chromatic
joins introduced by Birkhoff and Lewis [5] to study the chromatic polynomial of planar
maps. To define this matrix, let ¢ be a formal parameter. Let II, denote the lattice
of partitions of {1,2,...,n} ordered by refinement and let NC,, denote the lattice of
noncrossing partitions of the same set. (An excellent survey about noncrossing partitions
can be found in the article of Simion [24].) Then Tutte [31] showed that the matrix of
chromatic joins could be defined as

Tn(Q) = (qbk(avnnb))a,bGNc’n

where bk(a) is the number of blocks (subsets) in the partition a.
Tutte [30] also derived a product formula for the determinant of T,,(¢) in terms of
Beraha polynomials. (See also Dahab [9].) Letting |-| denote the floor or round down
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function, the nth Beraha polynomial is defined to be po(q) = 0 for n =0, and for n > 1

& n—i—1
(q) = 1) [n/2)—i.
i) = 2 (")
Using the version of Tutte’s formula in the paper of Copeland, Schmidt, and Simion [§]
gives
n—1 m_ﬂ( 2n )
2n—1 pm+2(q) n n—m-—1
det T}, (q :q( ) [7]
) 1 apm(q)

The same paper also contains a related determinant-product identity which the authors
note that they were unable to prove using Lindstrom’s Theorem (Theorem 3.1 above),
although other proofs exist. It would be interesting to find a way to apply the machinery
of this paper to these identities.

m=1
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