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ABSTRACT 

Mallows and Riordan “The Inversion Enumerator for Labeled Trees,” 
Bulletin of the American Mathematics Society, vol. 74 119681 
pp. 92-94) first defined the inversion polynomial, JJ9) for trees with 
n vertices and found its generating function. In the present work, 
we define inversion polynomials for ordered, plane, and cyclic trees, 
and find their values at  9 = 0, t l .  Our techniques involve the use of 
generating functions (including Lagrange inversion), hypergeometric 
series, and binomial coefficient identities, induction, and bijections. 
We also derive asymptotic formulae for those results for which w e  
do not have a closed form. 0 1995 John Wiley & Sons, Inc. 

1. INTRODUCTION 

In this paper, a tree, T, will mean a rooted tree labeled with the integers 
1,2,. . . , n that has the label 1 at the root. An inversion in T is a pair of 
vertices labeled i , j  such that i > j and i is on the unique path from 1 to 
j in T. Let 

inv T = number of inversions in T 
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Now we can define the tree inversion polynomials by 

where I I denotes cardinality and IT1 is the cardinality of T ' s  vertex set. 
To illustrate, for ri = 3 we have listed all three trees and their inversions 
in Figure 1.  

Thus J 3 ( 4 )  = 4" + 4' + 4" = 2 + 4. Mallows and Riordan [21] were 
the first to define the inversion polynomial and find its exponential generating 
function. We will investigate analogues of the inversion polynomial for three 
other types of trees. 

An ordered tree is one where the children of each vertex have been ordered 
left to right. For example, the two trees of Figure 2 are the same as ordinary 
trees but different as ordered trees. 

A plane tree is an equivalence class of ordered trees, where two trees T 
and T' are considered identical if T can be transformed into T' by a motion 
in the plane such that edges do not cross. Since all of our trees are rooted, 
this is equivalent to the condition that the subtrees of the root of T' are a 
circular rearrangement of the subtrees of the root of T. Among the trees in 
Figure 3, only the first two are equal when considered as plane trees. 

Finally, define a cyclic tree to be an equivalence class of ordered trees 
where T and T' are considered identical if T' can be obtained from T by 
circularly rearranging the subtrees of every vertex. As cyclic trees, the first, 
second, and fourth trees in Figure 3 are equal, while the third one is still 
in a different equivalence class. Ordered and plane trees are well known in 
the literature, but the cyclic variety have only been considered twice before 
18,191. 

The ordered inversion polwiomial is 

J, : (4)  := 4'"' '. 
171-ti 

The plane inversion polynomial, J l  ( q ) ,  and cyclic inversion polynomial, 
J : ( q ) ,  are defined similarly. We will calculate the values of these poly- 

3 2 
2 3 I :  I :  v T :  

i n v T :  0 1 0 
FIGURE 1. Trees and inversions for n = 3 
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2 3 3  2 

FIGURE 2. Two ordered trees. 

nomials at q = 0, * 1. However, to state these results we need a little more 
notation. 

If n is a non-negative integer, then its double factorial is 

where the last factor of the product is 2 or 1 depending upon whether n 
is even or odd. Although such factorials can always be expressed in terms 
of ordinary factorials and powers of 2. This notation will make our results 
more transparent. (It is also why we have chosen this notation over other, 
equally conventional, notations.) The triple factorial is defined by 

n ! ! !  := n(n - 3 ) ( n  - 6 ) . . .  , 

and similarly for higher factorials. Given another non-negative integer k, we 
will also need to have falling factorials 

and rising factorials 

(n)k := n(n + 1) ( n  + 2). . . ( n  + k - 1 ) .  

Other useful combinatorial functions include the binomial coeficients, ( i  ), 
which count k-element subsets of an n-element set, and (signless) Stirling 
numbers of thejrst  kind, c ( n ,  k ) ,  which count permutations of n elements that 
decompose into k disjoint cycles. Finally, we need the exponential integral 
function defined by 

E ( t )  := lffi $ 
5 \c7. yj :v 4 4  \ 

1 1 1 1 

FIGURE 3. Four trees. 
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TABLE 1. 

q = o  q =  1 q =  - 1  

J3s )  (2n  - 3)1! ;(4" - 6) l l l l  (3m - 1)!!!(3m - 2 ) ! ! !  

(3m - 2 ) ! ! ! ( 3 m  - 4)!!! 
i f n = 2 m + 1  

i f n = 2 m  

Also given any function f ( t )  expanded as a Maclaurin series, we let 

C , " f ( t )  := coefficient of t" in f ( r )  

We are now in a position to state our main result. 

Theorem 1.1. The values of the three polynomials J : ( q ) ,  J R ( q ) ,  and J,?(q) 
evaluated at q = 0, -C 1 are given in Table 1. 

In the spirit of Moon's book on counting labeled trees 1231, we will 
give as many different proofs as possible of these results. Our techniques 
involve the use of generating functions (including Lagrange inversion), 
hypergeometric series and binomial coefficient identities, induction, and 
bijections. These proofs will be found in Sections 2-5. We conclude with 
sections on asymptotic results and open problems. 

Our three specializations all have combinatorial interpretations. When 
q = 0 we are counting trees with no inversions [4,20], which are sometimes 
called increcrsing. The case q = 1 counts all trees of a given type. Finally, 
setting q = -1 gives the net number of trees with an even number of 
inversions over the number with an odd number. Other interpretations at 
q = -1 can be given (see [24] and Section 7). 

The only formulas in the table that we have found in the literature are 
the ones for J;'(O), J;(l), and Ji(1). The first independently appeared in 
the thesis of William Chen [7], where he uses the term "plane tree" to 
refer to what we have called an ordered tree. He gives a proof using 
generating functions, which is identical to ours, and a bijective demonstration 
(motivated by a comment of Jay Goldman), which is different. He also 
outlines an inductive proof of Stanley, which is the same as the one 
we reproduce in Section 4. The second specialization was derived by 
Rodrigues [27] when considering a problem related to Catalan's [5] .  (Or 
see [lo, pp. 21-27].) In particular, he showed that the number of ways 
to parenthesize a string of n elements that are not in a fixed order is 
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(4n - 6)!!!!. Thus 

nJ:(l) = (4n - 6)!!!! = n!C,-I 

where C,  = l/(n + 1) ( y )  is the nth Catalan number. Rodrigues' demon- 
stration is combinatorial, and can be converted into the corresponding 
bijection in Section 5 with a little bit of work. A different bijective proof 
is given by Chen [7,8]. The third specialization is also in [8] as well as 
following from Corollary 1 of Labelle's article [18]. 

2. GENERATING FUNCTIONS 

We can use generating functions to derive all of the results in Theorem 1.1. 
Define the q-analogue ofn to be 

[ n ]  := 1 + q + q* + . . '  + q"-' 

for any non-negative integer n. Also let 

and similarly for the plane and cyclic cases. It will be seen in the next 
proposition that G i ( f )  is the generating function for ordered trees by 
inversions where any label can be at the root (and similarly for G,P(f), G;(r)) .  
Finally, let D, denote the derivative operator with respect to t. 

Proposition 2.1. 
ferential equations: 

These generating functions satisfy the following dif- 

1. D,F;(r) = 1/(1 - GqO(r)). 
2. D,F,P(r) = 1 + In(l/(l - Gi(r)) .  
3. D,F;(t)  = 1 + ln(l /( l  - GG(t)). 

Pruoj We shall prove the first of these identities, the others being 
similar. From the theory of exponential series [6,12,16,20,29] it follows that 
the derivative counts ordered trees with n + 1 vertices (as the coefficient 
of t f l /n!)  by inversions. Removing the root of such a tree leaves an ordered 
forest of rooted trees. The generating function for such trees is G,"(t) where 
the extra factor of [n] in each term is needed to account for inversions 
from the root (which may no longer be the smallest label). Substituting this 
series into 1/(1 - r )  counts ordered lists of these trees, which is the desired 
result. I 
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J:(O). Substituting q = 0 in part 1 of Proposition 2.1 and noting that 
[n],=o = I yields 

Separating variables and integrating gives 

1 
2 

F," - -(F:)' = t ,  

which can be solved as 

(This generating function is also given in [20].) So, by the binomial theorem, 

JiI'(O) = cf",,l!(l - J1-2r) 
- - - n ! (  I!?) (-2)" 

= (211 - 3)!! 

as desired. I 

J ; ( O ) .  Putting q = 0 in the second part 

1 
1 - F : ( t )  

o,F((r) = 1 + In 

of Proposition 2.1, we get 

= 1 - 1 n J 1 - 2 r .  

Taking the coefficient of ?"-'/(ti - 2)! in D ; F ( ( t )  finishes the compu- 
tation. I 

J S ( 0 ) .  We are indebted to Herbert Wilf for this proof and the demonstra- 
tion of the corresponding asymptotic result in Section 6. Using the usual 
proposition and substitution we obtain 

Substituting 

1 - F ; ( r )  = exp(1 - H ( t ) )  (3) 

allows us to separate variables and get 

1 - H' 
H e H  e ' 
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Now we can integrate using the exponential integral function ( 1 )  

or 

t 
e 

- E ( H ( t ) )  + E ( H ( 0 ) )  = - 

But from (3) 

1 
1 - F;(O) 

H ( 0 )  = 1 + In = 1  

so 

Substitution of this expression back into equation (3) and solving for F i  
completes the proof. I 

Ji(1). Start the same way as in the proof of the formula for J,"(O), except 
letting q = 1 .  Multiplying the resulting equation by t yields 

t 
G ; ( t )  = 

1 - GP(t) . 

Next, solve for GP 

and extract the proper coefficient. I 

J;(l). Using the usual method and equation ( 5 ) ,  we get 

Taking the derivative and multiplying by t yields 

The coefficient of t"- l / (n  - l)! gives the desired formula. I 
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Jf(1). Now our functional equation is 

1 - GY(t) 

This can be solved by Lagrange inversion. (See [29, pp. 138-1411.) If 

1 
l - u  

H(u) = 1 + In -, 

then 

J;(-l). Let 

t" 
I1 ! 

E ( I )  = J4(-1) - 
n even 

and 

I" 

n !  
O(r) = J:(-l)- 

n odd 

The substitution q = - 1 in part 1 of Proposition 2.1 yields 

I 
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Equating even and odd powers of t ,  we get 

0' - OE' = 1 (6) 

and 

E' - 00' = 0 .  (7 )  

Substituting 00' for E' in equation (6) yields 

0' - 020' = 1 ,  

which can be integrated to obtain 

0 - 0 3 / 3  = t .  (8) 

Also, integration of equation (7) gives 

E = 02 /2 .  (9) 

Equation (8) can be solved by a more general version of Lagrange 
inversion that will also give the solution to (9). Writing (8) as 

t 
O ( t )  = 

1 - O(t)*/3 

we apply Lagrange in the form 

(10) 
1 
n 

C,nf (O( t ) )  = - C . n - ~ ( D f ( u ) )  ( 1  - u2/3)-". 

Taking the coefficients for f ( u )  = u and f ( u )  = u 2 / 2  gives, respectively, 

(3m)! tZm+l  
" > O  3"m! (2m + l)! 

O(t )  = - 

and 

(3m - 2)! t2" 
E ( t )  = O(t)*/2 = 

m21 3"-'(m - l ) !  (2m)! 

These are equivalent to the formulae in our table. I 

J;(-l). In the manner to which we have become accustomed, 
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where O(r )  is as defined in the previous proof. Applying (10) with the 
function f(u) = 1 + ln(1 - U ) ~ I  yields 

Coefficient extraction completes our demonstration of the final formula in 
Theorem 1.1. I 

3. HYPERGEOMETRIC SERIES AND BINOMIAL COEFFICIENTS 

We first derive recurrence relations satisfied by the ordered and plane 
inversion polynomials. They can all be derived by algebraic manipulations 
from Proposition 2.1. However, we will give a combinatorial proof. 

Proof. Any ordered tree on n + 1 vertices is composed of its leftmost 
principle subtree TI ,  together with the subtree T2 consisting of the root with 
the rest of the principle subtrees attached. If T I  has k vertices, then there 
are (;) ways to choose them (since the root of T2 must be labeled 1). Also 
TI and T2 contribute [ k ] J ; ( 9 )  and J;:-L+l(q)  inversions, respectively, to the 
total, so we are done with the first formula. The proof of the second equation 
is similar except that one selects the principle subtree containing the label 2, 
which accounts for the different binomial coefficient. I 

If a1,a2,  . . . , a p  and bl, b?,. . . , b, are constants, then we can form the 
hypergeometric series 

For information about such functions, see the books of Bailey [ l ]  or Slater 
[28]. In order to convert our results into hypergeometric format, we will 
need to express all our binomial coefficients and multiple factorials in terms 
of rising factorials of the form ( c ) k ,  where c is constant with respect to k .  
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For example, 

( - 1 Y - n ) k  
k !  

( 2 k ) ! !  = 2k(l)k 

( 3k (2k - l)!! = 2k 

( 2 n ) ! !  
( - V ( - n ) k  

(2n - 2 k ) ! !  = 

(2n - l)!! 
(2n - 2k - l ) ! !  = 

J;(O).  Substituting q = 0 in Proposition 3.1 gives 

By induction on n, we can write 

J,"+l(0) = x( ;) (2k - 3 ) ! ! ( 2 n  - 2k - l)!! 
k 2 l  

Converting to hypergeometric format, we get 

\ L - 1  

I - n + I I  3 

This is a special case of the Chu-Vandermonde Theorem [28, p. 281. 

Theorem 3.2 (Chu-Vandermonde). If n is a positive integer, then 

( 1  - b + a),, 
z F l [  -n7 -n a + b I l l =  ( 1 - b ) , ,  ' 

I 
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In our case 

and the formula J:+l(O) = (2n - I)!! follows. 

J,P(O), I,"( I ) ,  J,P( 1). These three proofs are all very similar to the one for 
J,"(O). (In the plane cases, we use the formulae derived for ordered trees, 
instead of induction when substituting into the summation.) The analogues 
of equation ( 1 1 )  for (O), J: ( I ) ,  and J: ( I )  are, respectively, 

- - 

1 
2 

3 
- n  + - 

2 

- 
(2n - 2)!! 
(2n - 3)!! 

All of these follow easily from the Chu-Vandermonde Theorem. 

J : ( -  1). When q = - 1 we have [k] = 0,1, depending on whether k is 
even or odd, respectively. Thus this substitution gives 

h odd 

To apply induction, we will have to break into two cases since the correct 
value for J,"-2 / ( -  1) depends on the parity of n. Also, this time it will 
be convenient to write out results in terms of binomial coefficients. If 
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n = 2m + 1 ,  then 

(2m + l)! (31)! (3m - 31)! 
J 2 q n + 2 ( - 1 )  = ' 120 (21 + 1)! (2m - 21)! 3/1! 3"-'(m - I)! 

- - (2m + l ) !  1 ( 3 1  1 )  ( 3 m  - 31)  
3" 120 31 + 1 m - 1  ' 

Similarly, if n = 2m + 2, then 

m - 1  
( 2 m + 2 ) ! ~  1 ( 3 1 ; l ) (  

31 + 1 3" 120 
J ; " + 3 ( - 0  = 

To evaluate these sums and the ones that appear in the following proof for 
J,"( - l),  we will need a couple of convolutions that can be derived from the 
generalized binomial and exponential series [ 15, pp. 200-2041. (See also 
Gould [14, Formula 3.1441.) 

Theorem 3.3. If n is a positive integer and a, b, c are constants, then 

and 

Plugging a = 1 ,  b = 0, and c = 3 into (12 )  yields the n odd case, while 
a = 1, b = 1, and c = 3 yields n even. 

.I;(--]). Using both the proof and results of the preceding case we can 
obtain 

and 

To show that these are the same as the sums for J:( - 1) in Theorem 1 . 1 ,  use 
(13) with a = 0, b = 0, c = 3, n = m (n even) or a = 0, b = 1, c = 3,  
n = m - 1 (n  odd). 
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It has been shown that these sums do not have a closed form. Doron 
Zeilberger has an algorithm for producing recurrences satisfied by hy- 
pergeometric sums [ 3  11. First Zeilberger, with the computational help of 
Shalosh B. Ekhad, provided us with relations satisfied by the sums. Then 
Marko PetkovSek reduced the order of one of the recursions and applied his 
algorithm for determining all hypergeometric solutions to linear difference 
equations with polynomial coefficients [25] .  Since these sums were not 
among them, they have no closed form. For completeness, we state the 
recurrence relations here; the reader should consult PetkovSek’s article for 
details of the proof. In what follows, E denotes the shift operator with 
respect to m, i.e., E ( f ( m ) )  = f ( m  + 1). 

Proposition 3.4. Let 

3m - 31 
m - 1  

and 

Then f ( m )  satisfies the second-order recurrence 

[2(m + 2) (2m + 3 ) E  - 3(3m + 2 ) ( 3 m  + 4)][4E - 2 7 ] f ( m )  = 0 

and F (  m )  satisfies the second-order recurrence 

[2(m + 1 )  (2m + 3)E - 3(3m + I )  (3m + 2 ) ]  [ 4 E  - 2 7 ] F ( m )  = 0 .  I 

4. INDUCTIVE PROOFS 

For some of the formulae which are in the form of a product, we can 
give inductive proofs. We will sometimes abuse notation and write u = m 
when the vertex u is the one with label m. Remember that u = 1 is always 
the root. 

J,’;(O). It suffices to show that 

J ; + , ( o )  = (2n - 1)J;(o). 

Take any ordered tree T,  on n + 1 vertices with no inversions. Then n + 1 
must be a leaf. Delete this leaf to obtain a tree T’ on n vertices. This defines 
a map 

T d- T’ (16) 
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To finish the proof we only need demonstrate that each such T' is the image 
of 2n - 1 trees, T. 

Consider how many ways one can add back a leaf labeled n + 1 to TI. 
Given a vertex u E T',  

i f u  # 1 ,  
+ 1, if = 1 ,  number of ways to attach n + 1 to u = 

where deg v is the degree of v. Thus the total number of ways to add back 
n + l i s  

1 + deg u = 1 + 2(n - 1) = 2n - 1 
VET'  

since the sum of degrees in any graph is twice the number of edges. 

J,P(O). Now we must show 

If T is a plane tree, we can insist that it always be written in standard f o m  
with the children of u = 1 ordered so that the smallest child is on the right. 
We now follow the same argument as for J,"(O). The only change is that 
there are only deg u ways to add n + 1 at the root, so the sum becomes 
2n - 2 as desired. I 

J,"(l). We want nJ,"( l )  = (4n - 6)!!!!. Note that 

is just the number of labeled ordered trees with any label at the root. So 
we must show 

0,+1 = (4n - 2 ) 0 , .  

Let T be an ordered labeled tree on n + 1 vertices rooted at an arbitrary 
vertex, and consider vertex n + 1. Obtain a tree T' on n vertices, denoted 

T A T' (19) 

as follows. If n + 1 is a leaf, just delete it. Otherwise, let u be the leftmost 
child of n + 1. Then T' is formed by contracting the edge from n + 1 to 
v and labeling the node obtained by the identification with the same label 
as u.  Note that the subtrees of v in T become the leftmost subtrees of u in 
T' in their same relative order. while the subtrees of n + 1 in T become the 
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rightmost subtrees of u in T‘ in their same relative order. Figure 4 contains 
an example. 

Now given T’, how many trees T map to it? We can add n + 1 as a leaf 
in any of 2n - 1 ways, according to equation (17). If n + I is to be added 
back as an internal vertex, then it can replace any u E T’, pushing u off as 
a new left child. Also consider the subtrees of u in T ’ ,  which we will call 
T I ,  T2..  . . , T k ,  listed in left-right order. Then in T,  u has subtrees T I , .  . . ,Ti, 
and n + 1 has subtrees corresponding to u and then T,+ I , .  . . , Tk for some 
i with 0 5 i 5 k .  Since 

deg u - 1, if u is not the root, 
if u is the root. 

We get 2n - I possible T in this way. Thus the total number of preimages 
of T’ is (2n - 1) + (2n - 1)  = 4n - 2. I 

5. BIJECTIONS 

We can turn the inductive proofs of the previous section into bijective ones 
as follows. 

JZ(0) .  It is enough to construct a bijection 

where T ranges over all ordered trees with T = n and no inversions, and 
a2a3 . . . a, is a sequence of integers with 1 5 a ,  5 2i - 3 for all i. Given 
T,  we perform a depth-first search, always following the leftmost available 
edge. Now record the label of each node each time it is visited to form a 
sequence 

2 4 

T =  

5 5 
FIGURE 4. Contraction. 
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For example, the first tree in Figure 3 would yield the sequence 

Now define the ith element of the sequence a2 . . . a,  by finding 

if := number of visits prior to the first visit to i 

and computing 

To illustrate, let us compute a2 for the sequence (21). There are 7 visits 
prior to the first (indeed, only) visit to 2, and there are 3 numbers among 
those prior visits larger than 2 (namely the three, four and five), so we have 
a2 = 7 - 2(3) = 1. Similar computations yield, for this example, 

T L l  1 2  2 9 .  

To show that the function f defined in the previous paragraph is a well- 
defined bijection, it suffices to prove the following lemma. In it, the map 
T A T’ is the map defined in (16). 

Lemma 5.1. 
suppose 

Fix an ordered tree TI with IT’) = n and no inversions, and 

f TI c--* a243 . . . a,, . 

Let T be any of the 2n - 1 ordered trees on n + 1 vertices such that 
T 6 TI. Then 

where b; = a; for i I n and 1 5 b,+l 5 2n - 1. Furthermore, the 2n - 1 
choices for T each yield a different b,+~. 

Proof. Suppose that n + 1 is attached to some vertex labeled u in 
passing from TI to T. Then the effect on the sequence (20) is to insert 
the pair n + 1 u after some occurrence of u .  Now the computation of b; 
for i I n falls into two cases. If the first visit to i was before the insertion, 
then clearly b; = ai. If the visit was after, then the insertion increases the 
value of if by two. But this also increases the cardinality of the set in 
equation (22) by one, so the net change is 2 - 2(1) = 0 again. 

Now we claim that b,+l takes on the values from 1 to 2n - 1 each exactly 
once. But adding n + 1 to TI in all possible ways corresponds to inserting 
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a pair starting with n + 1 after every possible element of the sequence (20) 
for T. Thus in+ takes on these values and the set in equation (22) is empty. 
The claim and the lemma are now proved. I 

J,P(0). We can construct a map 

where T is a plane tree in standard form and a, is defined exactly as before. It 
is easy to verify that the standardness of T implies that we get exactly those 
sequences with 1 I a ,  5 2i - 4 for all i. This completes the proof. I 

J;(l). Now we want a bijection 

where T ranges over all ordered trees with any number at the root and 
1 I a,  I 4i - 6. Such a map can be constructed along the same lines as 
the one for J:(O), but it is more complicated and so not as interesting. We 
omit the details. 

J ,P(I ) .  We will provide a bijection to show that 

2(n - l)J,P(l) = o n ,  

where on is as defined by (18). This proof is actually a translation of a 
generating function argument. 

The factor ( n  - I)J,P(l) counts plane trees where some vertex other than 
the root has been marked. Such trees are clearly equinumerous with ordered 
trees having a marked vertex in the leftmost subtree of the root. Thus 
2(n - l)J,P(l) counts the disjoint union of two sets of ordered trees: one 
with each leftmost subtree of the root containing a distinguished vertex and 
the other with each rightmost subtree of the root containing a marked node. 
If the root of T has only one subtree, then T appears twice, once with the 
subtree being leftmost and once with it being rightmost. (This is what we 
mean by the union being disjoint.) 

To show that these are in bijection with ordered trees having any label at 
the root, first consider T with a marked node labeled I in the leftmost subtree. 
Exchange 1 with the 1 at the root of T to form a new tree 7". Note that the 
mark can be removed in T' since the 1 indicates which vertex had been 
distinguished. This is clearly a bijection whose image is all trees counted 
by on having vertex 1 in the leftmost subtree of the root. 

If T has the mark in the rightmost subtree of the root, then start out as 
before, exchanging the labels 1 and 1 of the marked vertex and the root, 
respectively. Now continue by taking the edge connecting 1 to its rightmost 
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child r and rotating this edge through 90" clockwise. This has the effect of 
making r the new root of the tree and turning 1 into its leftmost child. As 
an illustration, see Figure 5. It is not hard to see that this map gives the rest 
of the trees counted by 0,. 

It is possible to turn the above proof into an inductive demonstration by 
combining it with the mapping T 6 T'. However, there does not seem to be 
an easy way to describe the result except as a composition of functions. I 

6. ASYMPTOTIC RESULTS 

J,'(O). From the formula for F i  that we derived in Section 2, we see that the 
growth of the coefficients is controlled by the singularities of x = E - ' ( u ) ,  
the inverse of the exponential integral function. In particular, we see that 
x = E- ' (u )  - w as u - O+. It will be easier to work with D,Fi ,  so 
combining equations (2), (3), and (4), 

1 
1 - F;(r) 

= E - ' ( E ( ~ )  - r /e) ,  

D , F i ( t )  = 1 + In 

Thus we want to see what happens as r - e E ( l ) - .  
Integration by parts in the definition of the exponential integral, ( l ) ,  gives 

1 
xex 

E ( x )  = -(l + o(1)) as x - ~0 

so 

x = ~ - ' ( u )  - -In u as u - Ot 
and 

E - ' ( E ( l )  - t / e )  - -In(E(l) - t/e) 
- -ln(l - t /eE(l))  as t - eE(1) - . 

But exercise 2, page 147, of De Bruijn's book [9] states the following: 

1 3 6 

FIGURE 5. The bijection with I = 3 and r = 6 
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Lemma 6.1. Suppose 

In k 
ak > -c- 

k 

for some positive constant C and k 2 1. Then 

g a k  - - I n n  as n -  =. 
A =o 

I 

In our case, we have : = r /eE(l)  and are approximating the coefficients of 

We have already verified the first condition of the lemma and the second is 
obvious since uk 2 0 for all k.  Thus 

Using the fact that €( 1) = 0.21938.. . and Stirling's approximation, we can 
also write 

11 

J;+,(O) - (ck)"aiJ2rrk where c L- 0.6169 and x a h  - In n .  I 

We wish to thank Ed Bender for his help in obtaining the next two results. 
!l =O 

J:(1). We need the following theorem of Meir and Moon [22]. 

Theorem 6.2. Suppose 

is a regular function of u when ( i d 1  < R and let 

G ( t )  = t + gzt? + g3t3 + . . . 
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be the solution of G ( t )  = t H ( G ( t ) )  in the neighborhood o f t  = 0. If 

1. hi > 0 for all i, and 
2. v H ' ( v )  = H ( v )  for some 0 < v < R 

then G ( t )  is regular in the disk 

except at t = p .  Furthermore, 

where 

I 
In our case 

and 

1 
1 - u  

H ( u )  = 1 + In -. 

Solving 

v 1 
- l + I n -  

1 - v  1 - v  
-- 

for 0 < v < 1 using the algebra package Maple yields 

v = 0.6822. 

Finally, applying Theorem 6.2 together with Stirling's approximation yields 

where 

1 12 

a = (=) = 0.4656 and b = - H ( v )  = 1.1574. I HI/( v) ev 
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.I:(-]). We will use a technique that the reader can find outlined in 
Bender [2, pp. 487-4881 or Bender and Williamson [3, p. 3861. Consider 

J[(-l) = ( n  - 2)! 
k S l n  -?)I? 

It does no harm to assume that n is even, since the gamma function can 
be used to continuously define the binomial coefficients for all positive 
arguments. Now we reverse the order of summation so that the series 
is weakly decreasing with its maximum term first, i.e., we replace k by 
( (n  - 2)/2) - k to obtain 

Let r k  denote the kth term of this sequence. Then 

4 
k 3 ( ( n  - 2)/2) - k 3n 

- -  1 - ( t k + l / t k )  - 2 - 

for n - x whenever k = o(n).  Since this last fraction is independent of k, 
we can call it r,, and conclude that the sum in equation (23) is asymptotic 
to r o , / m .  Thus 

by Stirling's approximation. Using the fact that ( n  - 2)n-2 - F 2 n f ' - *  , we 
finally obtain 

2e 
I 

7. OPEN PROBLEMS 

The main result of the paper of Mallows and Riordan [21] is the determi- 
nation of the generating function for J , , (q)  itself. Specifically, they show 
that 
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Unfortunately, we have not been able to do the same thing for the other 
cases. The problem is that, at a crucial step in their proof, they use the fact 
that ex+Y = ex@‘. Since this property is not shared by the other functions 
in Proposition 2.1, one cannot mimic their demonstration. 

From the preceding generating function, one can easily see that 

Jn(2) = number of connected graphs on n vertices. 

It also follows from the work of Robinson [26] that if N = deg J , (q)  = 

(nil), then 

1 
2”Jn( 5) = number of initially connected acyclic digraphs, 

where a labeled digraph is inirially connected if there is a directed path 
from the vertex labeled 1 to any other vertex. Gessel and Wang [13] have 
given combinatorial proofs of these facts. It is unclear what combinatorial 
significance, if any, can be attached to the values of our other polynomials 
for q = 2 or q = 5. 

Egecioglu and Remmel [ 113 have considered statistics on trees that are 
related to the major index, maj, of a permutation. For permutations, inv and 
maj are equidistributed, but there does not seem to be any relation between 
the two for ordered, plane, or cyclic trees. 

William Chen [private communication] has provided answers to a number 
of the questions that we left open. He has found a formula for Jf( - 1) using 
a function similar to the exponential integral. He has also combinatorially 
explained the product formula for J , “ ( -  1 )  using involutions, bijections, and 
depth-first search. 

I 
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