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1. Introduction
For the rest of this paper, we let n be a nonnegative integer and I be a finite set of positive integers. (In Section 5 we will
permit I to contain 0.) We will also use the notation
m = max(I U {0}), (M)

where the presence of zero ensures that m is well defined even when I is empty. We also use the standard notation
[n] = {1, 2, ..., n}. More generally, given integers ¢, n we set

[£,n]={¢,£+1,...,n},

and similarly for other interval notations.
Denote by &, the symmetric group of permutations 7 = 77, ... 7w, of [n] written in one-line notation. Note that we
will sometimes insert commas into such sequences for clarity in distinguishing adjacent elements. The descent set of 7 is

Desm = {i| m; > miy1} S [n—1].
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Note that a similar definition can be given for any sequence  of integers and we will have occasion to use that level of
generality. Given I and n > m, where m is defined by (1), we wish to study the set

D(I;n)={r € &, | Desw =1},
and its cardinality
d(I; n) = #D(I; n).

We call d(I; n) the descent polynomial of I. Initially we will be assuming n > m since we will be counting permutations. As
an example, if I = {1, 2} then

D{1,25;n)={r € G, |m1 > 7y >3 <y < -++ < Ty} (2)
It follows that 73 = 1. Furthermore, one can pick any two integers from [2, n] to be to the left of 3. Placing the integers
to the left of 73 in decreasing order and the remaining ones to the right of i3 in increasing order completely determines 7.
Thus

(3)

d((1,2); n) = (”‘ 1) _ (n=1n-2)

2 2 ’

which is a polynomial in n. Using the Principle of Inclusion and Exclusion, MacMahon [ 17, Art. 157] proved that this is always
the case.

Theorem 1.1 ([17]). For any I and all n > m we have that d(I; n) is a polynomial inn. O

Although this result was proved in 1915, very little work has been done in the intervening years to study these
polynomials in more detail. The purpose of this work is to rectify this oversight. We also note that since d(I; n)is a polynomial,
we can extend its domain of definition to all complex n, which will be a useful viewpoint in the sequel.

Another well-studied statistic on permutations is the peak set defined by

Peakrw = {i | mi_1 < m; > mizq} € [2,n— 1]

It is not true that any set of integers I C [2, 00) is the peak set of some permutation. For example, clearly I cannot contain
two consecutive indices. Say that I is admissible if there is some permutation sz with Peak & = I. For I admissible and n > m,
consider the set

P(I;n) = {m € &, | Peakm =1I}.
To illustrate, if | = @, then
PWin)={mreSy|m > -->m<--- <myforsomel<i<n}

Noting that 7; must be 1, such a permutation is determined by picking some subset of [2, n] to be to the left of 7;, then
arranging those elements in decreasing order, and finally making the rest an increasing sequence to the right of 7;. It follows
that

#P(; n) = 2",

which is certainly not a polynomial in n. However recently, Billey, Burdzy, and Sagan [4] proved the following result.

Theorem 1.2 ([4]). For any admissible I and all n > m we have that
#P(I;n) = p(I; n)2" 71,
where p(I; n) is a polynomial in n taking on integer values in the range (m, o). O

As might be expected, p(I; n) is called the peak polynomial of I. Inspired by this theorem, a number of papers have been
written about properties of peak and related polynomials [3,5,11-14,16]. It turns out that many of our results about descent
polynomials have analogues for peak polynomials.

The rest of this paper is organized as follows. In the next section we derive two recursions for d(I; n) that prove useful
in the sequel. Section 3 is devoted to the study of the coefficients of d(I; n) when expanded in an appropriately centered
binomial coefficient basis for the polynomial ring Q[n]. In particular, we give a combinatorial interpretation for these
constants which permits us to prove a log-concavity result. We also explore a conjecture that the coefficients of d(I; n)
when expanded in a differently centered basis alternate in sign. In Section 4, we study the roots of the descent polynomial,
including those which are complex. It will be shown that the elements of I are always integral zeros, and a conjecture about
the location of the full set of roots in the complex plane will be given. Analogues of d(I; n) in Coxeter groups of types B and
D are considered in Section 5. We end with a section containing comments and open questions. There we present a result
that unifies Theorems 1.1 and 1.2 using the concept of consecutive pattern avoidance.
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2. Two recursions

In this section we derive two recursions for d(I; n). The first will be useful in a number of ways, for example in determining
the degree of d(I; n) and in finding some of its roots.
IfI # ¢, then we let

I~ =1—{m}.
We first express d(I; n) in terms of d(I~; n) which will permit latter proofs by induction on m or on #I, the cardinality of the
set I.

Proposition 2.1. If # (J, then

d(l: n) = (;)d(r; m) — d(I~: n). (4)

Proof. Consider the set P of permutations 7 € &, that can be written as a concatenation 7 = 7'%” satisfying

1. #7’ = mand #7” = n — m, where #7 is the number of elements in the sequence 7, and

2. Desz’ =1~ and n” is increasing.

We can write P as the disjoint union of those = where 7;, > n{ and those where the reverse inequality holds. So
#P =d(I; n)+d(I~; n).

On the other hand, the elements of P can be constructed as follows. Pick m elements of [n] to be in 7’ which can be done
in (,':]) ways. Arrange those elements to have descent set I~ which can be done in d(I~; m) ways. Finally, put the remaining
elements in 77" in increasing order which can only be done in one way. If follows that #P = (;)d(ﬁ; m), completing the
proof. O

One can easily use the previous result to provide a new proof of MacMahon'’s theorem and to also obtain the degree of
d(I; n). So we leave the proof of this corollary to the reader.

Corollary 2.2. For all I we have that d(I; n) is a polynomial in n with degree m. O

MacMahon also gave an explicit formula for d(I; n) using the Principle of Inclusion and Exclusion. As a further application

of (4), we will now rederive this expression. Before doing so, we set the following notation. Recall that a composition of n

is a sequence of positive integers summing to n. Given a set of positive integers I = {i; < --- < ix} and n > i it will be
convenient to let iy = 0 and i,1 = n. Now we can form the difference composition

) = (iy —do, B2 — i1, .oy Bkp1 — k). (5)

To any composition § = (41, . .., §¢) of n we associate the multinomial coefficient

ny n!
8§) 7 8. 8!

Finally, we let 2! be the set of all subsets of I.

Theorem 2.3 ([17]). IfI is a set of k positive integers, then

(i m) =y (1) (a?/))' (6)

Je2!

Proof. We proceed by induction on #I. If I = @, then d(I; n) = 1. In this case the right-hand side of (6) is (8&)) = 1. We

assume that the result holds for all sets I with #I < k. Consider #I = k + 1 and m = max(I). Note that if §~ is a composition
of mthen (1)(;") = (§) where § is ~ with n — m appended. Now using this fact, Eq. (4), and the induction hypothesis we
have

d(l; ) = (:1) Z(—1)’<—#f<£)> - Z(—l)'<_#]<88)>

Je2” Je2!I”
_ Z (_-1)k+1—#]< n >+ Z (_1)k+1—#]( n )
Je2!, mej 50) Je2!, mgy 50
_ _qyert=w (1 )7
A

Je2!

as desired. O
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It will be useful to have a recursion that does not contain any negative terms. We will see an application of this recursion
when we investigate the expansion of d(I; n) in a certain binomial basis. A similar recursion was used by Diaz-Lopez, Harris,
Insko and Omar [13] when they proved the peak polynomial positivity conjecture of Billey, Burdzy, and Sagan [4]. To state
our recursion, we need some notation.

Suppose I = {iy, ..., i} where the integers are listed in increasing order. We define two related sets of positive integers.
Specifically, for 1 < k < £ we let
L= {i1, ... k=1, 0k — 1,...,i, — 1} — {0},
and
e =t{in, ooty i — 1, ooy ip — 1)

where repeated elements in these lists are considered as a single element. Note that subtracting {0} in I} is only necessary
when k = 1and i; = 1 so that I, is still a set of positive integers. The reason these sets are interesting is that if one removes
n+1fromasm € D(I; n+ 1) then the resulting 7’ has Des 7’ = I, Des &’ = I, or Des 7’ = I} for some k. Also note that n + 1
can only appear at the end of 7 or at a position iy where iy — 1 & I. So define

I'={ig|i—1¢I}
andI” =1 — {1}.

Theorem 2.4. IfI # (J, then
dil;n+ 1) =dln)+ Y dien)+ Y d(i:n).

iel” iel’

Proof. We partition D(I; n 4+ 1) according to the position of n + 1. If # € D(I; n + 1) then we let 7’ be the permutation
obtained from 7 by deleting n+ 1. If 7, 1 = n+ 1 then the corresponding r’ are the elements of D(I; n) which gives the first
term in the sum for d(I; n + 1). Now suppose 7;, = n + 1 where iy > 1and m;,_; > 7 41. Then the possible i, where this
could occur are exactly the elements of I”, and the " which result form the set D(Iy; n). This explains the first summation.
Similarly, suppose m;, = n + 1 where either iy = 1, or iy > 1and m;,_1 < m; 1. Then the corresponding " are counted by
the second sum and we are done. O

3. Coefficients

In this section we show that the coefficients of descent polynomials, written in a certain polynomial basis, are nonnegative
by providing a combinatorial interpretation for them. Based on a partial result and computer evidence, we then conjecture
that these coefficients form a log-concave sequence. We also make a conjecture that the coefficients in another polynomial
basis alternate in sign and prove it in a special case.

The study of coefficients of polynomials has a rich history and many important examples. For instance, Ehrhart
polynomials [21] and chromatic polynomials [8] can be written in certain polynomial bases using nonnegative coefficients.
In 2013 Billey, Burdzy, and Sagan conjectured that peak polynomials could be written with non-negative coefficients in a
binomial basis [4]. This conjecture was proved in 2017 by Diaz-Lopez et al. [ 13]. We restate their result here and then prove
a similar, but stronger, result for descent polynomials in Theorem 3.3.

Theorem 3.1 ([13]). For any non-empty admissible set I we have

pllsn) = b1(1)(n P ’") T bmqu)(" - m>,

m-—1
where the constant by(I) is positive forall1 <k <m—1. O

Before proving our main result of this section, we need a lemma which is of interest in its own right. For integers £, n we
use the notation [¢, n] for both the set and the sequence ¢, £ + 1, ..., n. Context should make it clear which interpretation
is meant. The next result is easily proved so we omit the demonstration.

Lemma 3.2. For any finite set of positive integers  and n > m we have D(I; n) 2 @. O

We can now state the main result of this section for descent polynomials. We remark that Oguz [19] has recently found
a similar result for peak polynomials and gave a related combinatorial interpretation for coefficients when expanding in
a binomial basis. Key points in her arguments include our Theorem 3.3, the study of a geometric flip of a permutation,
and an expansion of descent polynomials in terms of peak polynomials. This expansion can be obtained by adapting the
combinatorial argument in Proposition 3.2 of [ 1] to Proposition 5.8 of the same paper.
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Theorem 3.3. For any finite set of positive integers I we have that

du;n)za](l)("_]m) +---+amu>(";m>, (7)

where, for k > 1, the constant ay(I) is the number of = € D(I; 2m) such that
{1, ..., N[Mm+1,2m] =[m+ 1, m + k]. (8)

Moreover, ay(I) > Ofor1 <k <m.

Proof. By Corollary 2.2, d(I; n) is a polynomial in n of degree m, so we can write it uniquely as a linear combination of the
polynomial basis

n—m n—m n—m
7)) 7))
For ease of notation, given = € D(I; n) we let
a[m] = {mq, ..., ) N[Mm+1,n].
Now consider
Dy(I; n) = {m € D(I; n) | #x[m] = k}.

Clearly D(I; n) is the disjoint union of the sets Dy(I; n) for k > 0. So to prove the summation formula in (7), it suffices to
demonstrate that #Dy(I; n) = ak(l)(”;m). We also claim that Do(I; n) = @ which forces ap(I) = 0. Indeed, if there is an
element r € Do(I; n) then [m] = @. This implies that {n1, ..., 7y} = [m]. Thus 7, < m and 7,1 > m which contradicts
the fact that m is a descent.

For the rest of the proof we will assume n > 2m. This assumption is without loss of generality since if we can show
that the polynomials on both sides of Eq. (7) agree for an infinite number of values, then they must agree everywhere. For
k > 1, consider the elements & € Dy(I; n). There are (”7{'") ways to pick the k elements of 7 [m]. Furthermore, given any
two k-element subsets X and Y of [m + 1, n], there is an order preserving bijection f : X — Y. This induces a one-to-one
correspondence between 7 € Dy(I; n) with 7[m] = X and o € Di(I; n) with o[m] = Y by applying f to the elements of
7 [m], leaving the elements in the first m positions from [m] unchanged, and then listing the remaining elements in increasing
order. Note that all the elements of [m] remain unchanged as f is only applied to elements of [m + 1, n]. This bijection clearly
preserves the descent set everywhere except possibly at position m. To see that the descent at m is preserved, note that
mTmy1 € [m] since the subsequence w41 - - - 7, is increasing and there is at least one element of [m] not in {my, ..., 7y}
because of the assumption k > 1. But then in o = f(r) we have 0,11 = 7,41 Since elements of [m] are unchanged. So if
mTm € [m] then oy = my > Tmy1 = 0wy and if my, > mthen oy, > m > o1 as desired.

Letting X = [m 4+ 1, m + k] we have shown that

#Dy(I; n) = #X - (" 7{ m).

Furthermore k = #X is less than or equal to m, which means that the largest interval we need to consider is [m + 1, 2m] and
this is contained in [m + 1, n] by our assumption that n > 2m. Thus #X = ay(I) which is clearly a constant independent of
n. This completes the proof of the summation formula (7).

To prove the last statement of the theorem, suppose 1 < k < m. It is enough to show that Dy(I; 2m) # @. By Lemma 3.2
there is 7 € D(I"; m). Thus the concatenation o = 7'[1, k][m + k + 1, 2m] is in D(I; 2m) where 7’ is & with every element
increased by k. O

Toillustrate this result, let] = {1, 2}. Then a{(I)is the number of 7 = mymym3m4 € D(I; 4) such that {1, m2}N[3, 4] = [3].
Similarly, a,(I) is the number of =7 € D(I; 4) such that {7, 72} N [3, 4] = [3, 4]. Out of the three elements in D(I; 4) one
can quickly check that only & = 3214 satisfies the condition for a;(I), thus a;(I) = 1. Similarly, only 7 = 4312 satisfies the
condition for a,(I), so a;(I) = 1. Theorem 3.3 states that

d(l; n) = (";2>+(";2>,

which agrees with (3).

Many coefficient sequences of combinatorial polynomials have interesting properties, one of which we will investigate
in the context of the previous theorem. A sequence of real numbers (ay) = (ax)k>0 is log-concave if, for every k > 1, we
have ay_1ap41 < ai. Log-concave sequences appear naturally in combinatorics, algebra, and geometry; we refer the reader
to [7,9,22] for important examples and results. We make the following conjecture about the sequence (a(I)).

Conjecture 3.4. For any finite set of positive integers I, the sequence (ay(I)) is log-concave.
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(y
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Fig. 1. The diagram of a = € D(I; 2m). The binomial numbers correspond to the possible of ways of choosing each of the three highlighted segments.

We are able to prove this conjecture for certain I, but first we need a lemma. In it, the sequence (ay) is said to have a
certain property, such as nonnegativity, if all the individual a; do. Also, the sequence has no internal zeros if the elements
between any two nonzero elements of the sequence are also nonzero.

Lemma 3.5.

(i) If (a) and (by) are log-concave sequences, then so is (ayby).
(ii) Let (ay) be a nonnegative log-concave sequence with no internal zeros and let £ be a positive integer. Then the sequence
(ak + age1 + - - - + agae) is log-concave.

Proof. Statement (i) follows easily from the definition of log-concavity. For statement (ii), note that both sides of the desired
inequality contain the terms in the expansion of

(ak + Q1 + -+ o1 N + gz + -+ -+ Aige).
Subtracting these from both sides leaves us with proving

1041 + AQe—10k+2 + - - + AQg—10ke+1 + Qg1 + - -+ Apepr—10k4041 9)
2 2
= Qi+ Al + - Qe+ Qg1 Qipe + -0+ iy

It is well known that for any sequence of positive reals, log concavity is equivalent to the condition that a;a; < a;;1aj_; for
alli < j. Comparing corresponding terms in (9) finishes the proof. O

The next result shows that the sequence (ax(I)) is log-concave in a special case.
Proposition 3.6. Let £ < m be positive integers and let = {¢, £ + 1, ..., m}. Then (ax(I)) is log-concave.

Proof. We first use the combinatorial description of a,(I) in Theorem 3.3 to derive an explicit formula for this quantity. Let
7 € D(I; 2m) satisfy Eq. (8). In Fig. 1 we create a diagram of the permutation 7z by plotting the points (i, 77;) and connecting
them by, possibly dotted or dashed, segments. Note that the form of I implies that 77 . .. 7, has a single local maximum at
10 Combining this with (8) we see that 7, = m + k and the elements of [m + 1, m + k] are 7wy, Te—krit1s - - - » Teri1 fOT
someiwith1 <i<m— £+ 1. Now there are (’,‘j) ways of selecting the elements 7,1, ..., 7yyi_1. Once these elements
are put in a decreasing sequence just after 7r,, the rest of the elements of [m + 1, m + k] must form an increasing sequence
just before 7r,. Next we choose the elements of the increasing sequence 74, ..., Ty_kyi—1 from [m] in ((_k"li_l) ways. The
remaining m — £ 4+ k — i+ 1 elements of [m] must be arranged as the elements 7, ..., Ty With unique local minimum
at mp,41. So the number of ways to choose 12, - . ., Tmtk IS (m_,ffl"_’). And once these elements are chosen there is only
one way to arrange them and the remaining elements since they are all in increasing or decreasing order. So

nE k-1 m m—4L+k—i
wh= 2, <i—1>(£—k+i—l>< k—1 ) (10)

i=1

Now for any fixed c, the binomial coefficient sequences ((IC‘)) =0 and ((})),-, are well known to be log-concave. It follows
from Lemma 3.5(i) that, for fixed i and varying k, each triple product appearing in (10) defines a log-concave sequence. Now

Lemma 3.5 (ii) shows that the sum itself is log concave. O

If we expand d(I; n) in the binomial basis centered at —1 then these coefficients also seem to be well behaved.
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Conjecture 3.7. For any I we have

(I n) = Z(—l)m*"cku)(” . ]),

k=0
where c,(I) is a nonnegative integer forall0 < k < m.

We are able to prove this conjecture for co(I). To do so, we need a couple of lemmas. Recall that since d(I; n) is a polynomial
in n, it is defined for all complex numbers. The following result follows immediately from Theorem 2.3.

Lemma 3.8. We have
d(I; 0) = (—1)*.
foralll. O
Keeping the notation of Conjecture 3.7, we note that
d(I; =1) = (=1)"co(I). (11)

This is why our next result will be useful.

Proposition 3.9. For any I and any n > m + 2 we have

d(l; n) > |d(I; —1)|.
Proof. Note that d(I; n) is an increasing function of n for integral n > m because any permutation & € D(I; n) can be
extended to one in D(I; n + 1) by merely appending n + 1. So it suffices to prove the result whenn = m + 2.

We proceed by induction on m.If m = 0 thenI = ¥ and d(I; n) = 1 and the result follows. For the induction step, we first
note that by Lemmas 3.2 and 3.8

ld(I;0)] =1<d(I;m+1).
We now apply Theorem 2.4, keeping the notation therein, as well as induction and the previous displayed equation to obtain

d(i; m+2) = d{l;m+ 1)+ Y dlcm+1)+ Y dlcm+1)

ixel” ixel’

> d(l;m+ 1)+ ) |d(l; =]+ Y ld(; —1)|

ixel” ixel’
> |d(1; 0) + Y ld(h =) + Y [d(fi: — 1)
ixel” ixel’
> |d(1;0) = > " d(h: 1) = Y d(li: —1)
ixel” ixel’

|d(I; = 1)1,

as desired. O

Proposition 3.10. For any I we have cy(I) > 0.

Proof. By Eq. (11), it suffices to show that the sign of d(I; —1) is (—1)™. We will proceed by induction on #I. As usual, the
case I = (Jis trivial. For I # @, applying recursion (4) yields

di; —1) = (;11)(1(1‘; m) —d(I~; —1) = (—=1)™d(I~; m) — d(I"; —1). (12)

By Lemma 3.2 we have d(I~; m) > 0. And by induction, the sign of d(I=; —1)is (—1)™ where m~ = max(I~ U {0}). So if m
and m~ have opposite parity, then the result follows from (12). If they have the same parity, then m > m~ + 2. Applying
Proposition 3.9 to I~ we get d(I™; m) > |d(I"; —1)|. So, using Eq. (12) again, the sign of d(I; —1) is (—1)™ in this case as
well. O
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4. Roots

Although we defined d(I; n) only for n > m because we wished to count a nonempty set of permutations, by Theorem 1.1,
d(I; n)is a polynomial in n so we can extend the definition to d(I; z) for any complex number z. In this context, it makes sense
to talk about the roots of d(I; z) and we study them in this section. We start by showing that elements of I are roots of d(I; z),
aresult analogous to one for peak polynomials [5].

Proposition 4.1. If] is a set of positive integers and i € I then d(I; i) = 0.

Proof. We induct on #I using the recursion (4). The result is vacuously true when I is empty. If i € I~ then, by the induction
hypothesis, d(I~; i) = 0. Also ( ) = 0 since i < m. Substituting these values into (4) shows that d(I; i) = 0. The only other

1
case is i = m. But then, using ng. (4) again, we have that

d(l: m) = (Z)d(r; m)—d(I~: m) =0,

as desired. O

Now that we have established that the elements of I are themselves roots of d(I; z), the remainder of this section focuses
on understanding the remaining roots of this polynomial lying in the complex plane. Throughout we denote by |zy|, 2i(zp)
and J(zy) the norm, real and imaginary parts, respectively, of the complex number z,.

We begin by commenting on the analogous problem for peak polynomials. Billey, Fahrbach and Talmage [5] extensively
studied the roots of peak polynomials. Their observations led to the following conjecture regarding the position of the roots
in the complex plane.

Conjecture 4.2 ([5]). For any admissible I and zo € C which is a root of p(I; z), we have

(i) |zo| < m, and
(ii) R(z0) > —3.
In fact, in Section 2 of their paper, Billey, Fahrbach and Talmage establish that Theorem 3.1 for peak polynomials was

implied by this conjecture. They verified Conjecture 4.2 computationally for all polynomials p(I; z) where m < 15. We have
a similar, but more restrictive, conjecture.

Conjecture 4.3. For any I and zy € C which is a root of d(I; z) we have
(i) |zo| <m, and
(ii) R(z0) = —1.

Since the current article was written, this conjecture has been proved by Jiradilok and McConnville [15]. Also, a very
different proof of (i) was given by Bencs [2]. So here we will content ourselves with some results concerning the case #I = 1.
This special case is assumed for the proof of the full conjecture in [15].

Theorem 4.4. IfI = {m} and d(I; zy) = O then

(i) |zo] < m, and
(it) R(zo) = —1.

Proof. Consider the equation

0=d(l:z)= (;) —1

First suppose that |z| > m. Then, by the triangle inequality, |z — k| > |z| — k > m — k and it follows that

z
m
So such z cannot be a root of d(I; z) and the first statement in the theorem is proved.

Now suppose R(z) < —1.Then |z — k| > |9R(z — k)| > k+ 1 and the previous displayed equation still holds. This finishes
the proof of the second statement. O

lz| -z = 1]z —m+1|
>
m!

1.

For #] = 1 we can also improve over some of the bounds implicit in Conjecture 4.3. We will need some background on
bounding the moduli of roots of polynomials. Given a polynomial f(z) = Z?:o ciz', with ¢g # 0, the maximum modulus
of a root of f(z) is bounded above by the Cauchy bound of f, denoted p(f), which is the unique positive real solution to the
equation

d—1

col + lc1lz 4 - - - + lea—1127" = |cal2?, (13)
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when f is not a monomial, and zero otherwise [20, Theorem 8.1.3]. It is possible to obtain bounds for polynomials expressed
in other bases, such as Newton bases, which we now define. Given a sequence of complex numbers &1, &, .. ., & the set of
polynomials

k
l_[z_‘i:l
i=1

0 < k < d,is called the Newton basis with respect to the nodes &1, &, ..., &;. Since deg(Py(z)) = k we have that
{Po(z), P1(2), ..., P4(z)} forms a basis for the vector space of polynomials of degree at most d.

Theorem 4.5 (Theorem 8.6.3in [20]). Let f(z Zk _o CkPr(2) be a polynomial of degree d where the Py’s form the Newton basis
with respect to the nodes &1, . .., &;. Then f has all of its zeros in the union of the discs

={zeCllz—&l =< p}, (14)
wherek = 1, ..., dand p is the Cauchy bound ofzgzo azf. O

Theorem 4.5 played an important role in the work of Brown and Erey that improved known bounds for the moduli of the
roots of chromatic polynomials for dense graphs [10]. Because of recursion (4) we consider the Newton bases with respect
to the nodes 0, 1, 2, 3, ..., which is

Zyk=2z2(z—1)---(z—k+ 1),
k > 0. This is known as the falling factorial basis. Expanding d(I; z) in terms of this basis and using the previous theorem
immediately gives us the following bounds on the roots of d(I; z).
Lemma 4.6. Suppose d(I; z) = Z,T:O ckz | k. Then the roots of d(I; z) lie in the union of the discs
Dy ={z€C|lz—kl = p(D)},
wherek =0, ..., m — 1and p(I) is the Cauchy bound of the polynomial Z,T:O azf. O
We now specialize to the case #I = 1.

Theorem 4.7. Let = {m} and
m

m

om = — N/me.
e

Then the roots of d(I; z) lie in the union of the discs
={zeCllz—-kl < pn},
wherek=0,...,m—1.
Proof. By Lemma 4.6, it suffices to show that p(I) < pp. Since d(I; z) = (rzn) — 1 which has the same roots as z |, —m!,
it suffices to show that p,, is an upper bound for the unique positive real solution to the equation z™ = m!. This solution is

/m!, and using lower Riemann sums to estimate the function Inm! from f Inx dx establishes that m! < m™*1/e™~1, The
result follows. O

To emphasize how the region in the previous theorem is in some ways an improvement over that given in Conjecture 4.3,
we prove the following result.
Corollary 4.8. IfI = {m} and d(I; zy) = O then
|j(ZO)| = Pm-
Furthermore, for allm > 1, we have

m
— < pm =m.
e

Proof. The first assertion follows immediately from the description of the discs in Theorem 4.7. To obtain the bounds on p;,,
consider the function f(m) = {/me. Taking the derivative gives

f'(m) = e o

- =<0,

form > 1.So f(m)is decreasing on the interval [1, oo) and thus is bounded above by f(1) = e. Applying 'Hopital’s Rule shows
that limy— » f(m) = 1 and this limit is a lower bound. The desired inequalities follow from observing p,, = mf(m)/e. O
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We should mention that Bencs has proposed another conjecture about the roots of d(I; n) which substantially improves
on Conjecture 4.3.

Conjecture 4.9 ([2]). For any I and zy € C which is a root of d(I; z) we have

m—1 m+1
A

5. Other Coxeter groups

For information about Coxeter groups, see the book of Bjorner and Brenti [6]. Recall that for any finite Coxeter system
(W, S), the (right) descent set of w € W is

Desw = {s € S| £(ws) < £(w)}, (15)

where ¢ is the length function. In this section we will consider the Coxeter groups B, and D,. We will use symbols near the
beginning of the Greek alphabet for elements of B, and D, to distinguish them from the permutations in A,_1 = &,.

We view B, as the group of signed permutations 8 = ;... 8, where §; € {#1, ..., £n} foralli € Z and the sequence
|B1l ... |Bnlis a permutation in A,_1, and we view D, as the subgroup of B, consisting of all 8 = B ... B8, where there are an
even number of §; in {—1, -2, ..., —n}. Since D, is a subgroup of By, the notation defined below in terms of B, also applies

to D,,. We will use the common convention that —b will be written as b. For example two elements of Bs are § = 341562
and y = 341562, and the second element is also an element of the subgroup Dg, whereas the first is not.

The simple reflections in B, are S = Si U {so} where s, = (1, 1) and S, denotes the set of adjacent transpositions
generating the Coxeter group of type A,_;. Identifying reflections and subscripts as we have done in the symmetric group,
we see that for 8 € B, we have Des 8 C [n — 1] U {0}. Because of this, it will be convenient to extend permutations in

By, by writing 8 = BoB1 ... B where o = 0. In this notation, our previous examples would be written 8 = 0341562 and
y = 0341562. Translating definition (15) using our conventions, we see thatif § = SoB1 ... Bn € B, then

Desp ={i= 0] > Bis1}, (16)

where we are using the usual order on the integers for the inequalities. To continue our examples in Bg, we have Des 8 =
{0,2,3,5}and Desy = {0, 1, 3, 5}.
Now given a finite set of nonnegative integers I and n > m where m continues to be defined by Eq. (1), we let

Dg(I;n) = {B € By | Des(B) =1} and dg(I; n) = #Dg(I; n). (17)

We will first derive a recursive formula for dg(I; n) analogous to the one for d(I; n) in Proposition 2.1.

Theorem 5.1. Let I be a nonempty, finite set of nonnegative integers. Then we have

dg(I; n) = (;) 2" Mdp(I” 5 m) — dg(I™; n). (18)

Proof. Consider the set P of signed permutations 8 € B, which can be written as a concatenation 8 = 08’g” satisfying

1. #8' = mand #8” = n — m, and
2. Des B/ =1~ and B” is increasing.

We can write P as the disjoint union of those 8 where 8, > pB{ and those where the reverse inequality holds. So
#P = dg(I; n) + dg(I”; n).

On the other hand, the elements of P can be constructed as follows. Pick a subset T of m elements of [n] which can be done
in (:1) ways. Form a signed permutation from the elements of T whose descent set is I~ which can be done in dg(I~; m) ways.
Next choose the sign of the n —m elements in [n] — T which can be done in 2"~™ ways. Then arrange them in increasing order
to form B” which can be done in only one way. It follows that #P = (!)2"~™d(I~; m). Comparing this with the expression
for #P at the end of the previous paragraph completes the proof. O

Next we prove the type B analogue of Theorem 2.3. To state it, we let
I™ =1—{0}.
Also, if ] is a set of positive integers then we will let §;(J) denote the first component of the composition §(J). Note that

) minj if] #9,
‘W)—{ no it =0
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Theorem 5.2. IfI is a set of nonnegative integers with #I* = k, then

T on-si) ;
X’;( 1) (am) 2 o ¢l,
dy(l;m) = § /< N (19)
_1\k—#/ L (on _ on—=581(J) .
g;( 1) (50)) (2" -2 ) ifoel

Proof. We first consider the case where 0 ¢ I so that I = I, and proceed by induction on #I. If | = @, then dg(I; n) = 1.In
this case, the right-hand side of Eq. (19) also gives (5(”@)) = 1. We assume that the result holds for all sets I not containing 0
with #I < k. Consider #I = k + 1 and m = max(I). Using recursion (18), and the induction hypothesis we have

oy [ M\ gnem k= T\ ome—sig) k=T \on—s10)
dB“’")_(m)z 2D (80))2 21 (80))2

Je2l™ Je2l™
_ e T \on—s0) = U \on—s,0)
=2 <80))2 PR (60))2 ]
je2!, mef Je2!, mgj
_ Z(_])k—#]Jrl( n )211—51(])'
o s

Since I = I when 0 ¢ I, this completes the proof for this case.
Next we consider when 0 € I.If | = {0} then Theorem 5.1 shows dp(I; n) = 2" — 1, and the right hand of Eq. (19) gives
(5&))(2“ — 2" ™). So Eq. (19) holds in this case. The induction argument is exactly the same as that of the case when 0 ¢ I,

but one replaces 2™~%10) with 2™ — 2m=%10) and 2"~510) with 2" — 2410, O

Using Theorems 2.3 and 5.2, we can also give a simple numerical relationship between the descent formulas in types A
and B.

Corollary 5.3. Let be a finite set of positive integers and Iy = I U {0}. Then
dg(I; n) + dg(lo; n) = 2"d(I; n). O

Since the right-hand side of Eq. (19) is well defined for all real numbers n, we use it to extend the definition dp(I; n) to R
and talk about its roots. The proof of the following theorem is similar to that of Proposition 4.1 and so is omitted.

Proposition 5.4. If] is a set of nonnegative integers and i € I thendg(l;i)=0. O

The remaining results of this section pertain to the Coxeter group D,,. We continue to use all the conventions for B, with
this subgroup. In particular, we will use the same definition of Des 8 as in Eq. (16), and the notation Dp(I; n) and dp(I; n) is
defined exactly as in Eq. (17) except that § runs over D, rather than B,. Our results in type D, are very similar to those in
type B, except with some changes imposed by using a different power of two and the intermingling of dp and dj in the same
formula.

Theorem 5.5. Let I be a nonempty, finite set of nonnegative integers. Then

dp(I; n) = (;)2"_”1_1%(1_; m) —dp(I™; n). (20)

Proof. Consider the set P of signed permutations 8 € D, satisfying the same two conditions as in the proof of Theorem 5.1.
As before, #P = dp(I; n) + dp(I~; n).

An alternative construction of the elements of P is as follows. Pick m elements from [n] which can be done in (;) ways.
Use those elements to create a type B signed permutation 8’ with descent set I~ which can be done in dg(I~; m) ways. Since
a type D, permutation must have an even number of negative signs, of the remaining n — m elements choose the sign of the
first n — m — 1 of them; the sign of the last element in the set of numbers appearing in 8” is then determined by the number
of negative signs assigned previously. Thus choosing the signs of the elements appearing in 8” can be done in 2"~™~! ways.
Now form the unique increasing arrangement of these signed integers to form 8”. It follows that #P = (::1)2“‘"“1(13(1 ~;m)

and we are done as in the proof of Theorem 5.1. O

Next we can use Theorem 5.5 to prove a Type D, analogue of Theorems 2.3 and 5.2. As the proofs are similar to those we
have seen before, we omit them.
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Theorem 5.6. IfI is a set of nonnegative integers with #I* = k, then

k+ Z k #]( > . 2”751(1)71 lfO ¢I,

Je2™

dp(I; n) =
(—DK 2™ — 1)+ Z 1% #J< ) L= a1y fo el

Jeal™

foralln >m O

Finally we present the analogues of Corollary 5.3, and Proposition 5.4 for type D,

Corollary 5.7. Let I be a nonempty set of positive integers and Iy = I U {0}. Then

1. dp(I; n) + dp(Ip; n) = 2"~ 1d(I; n), and
2. dp(I; i) = dp(lp; i) = O wheneverie I—. O

It would be interesting to discover properties of the roots of dg(I; n) and dp(I; n) other than the fact that we have zeros at
the elements of I. However, this may be difficult because these quantities are no longer polynomials and so there are fewer
techniques available to analyze their roots.

6. Comments and open questions

We end with some comments about our results. These include avenues for future research and more conjectures.

(1) Consecutive pattern avoidance. One way to unify Theorems 1.1 and 1.2 is through the theory of consecutive pattern
avoidance. Call two sequences of integers aa; . .. a, and b1b, . .. b order isomorphic provided a; < q; if and only if b; < b;
for all pairs of indices 1 < i, j < k. Given o € &y, called the pattern, we say that 7 € &, contains a consecutive copy of o at
index i if the factor mjmi, 1 ... mik—1 is order isomorphic to o. If ¥ contains no consecutive copies of o then we say that
consecutively avoids o. Note that a consecutive copy of 21 is just a descent while a peak is a consecutive copy of 132 or 231.

Given any finite set of patterns /7T and a finite set of positive integers I define

II(I; n) = {w € &, | 7 has a consecutive copy of some o € IT precisely at the indices in I}.
Also define the function
avp(n) = #I1(4; n),

the number of permutations in &, consecutively avoiding all permutations in I7. Given IT C &y, say that [T is nonoverlapping
if for any (not necessarily distinct) o, t € IT and any [ with 1 < | < k the prefix of o of length [ is not order isomorphic to
the suffix of t of length I. We will now prove our analogue of Theorems 1.1 and 1.2 in this setting.

Theorem 6.1. Let IT C &, be a nonoverlapping set of patterns and let I be a finite set of positive integers. Then for alln > m-+k—1
we have #I1(I; n) € V7 where Vg is the vector space of all Q-linear combinations of functions in the set

(nfavy(n+1) | k € Z=o, | € 7).

Proof. We induct on m. We have #I71(#; n) = avz(n) and so the result clearly holds when m = 0. For m > 1, consider the set
P of permutations w € &, which can be written as a concatenation 7 = 7’w” suchthatnz’ € I1(I~; m)and " € I1(%; n—m).
Since IT is nonoverlapping, copies of consecutive patterns from /7 in 7t occur at the positionsin I~ and possibly also at exactly
one of the indicesm, m — 1, ..., m — k + 2. It follows that
k=2
#P = #IT(I7; n) + #11(I;n) + Y #IT(I~ U {m — i}; n).
i=1

We can also construct the elements of P as follows. Pick the m elements of [n] to be in 7’ which can be done in (,'7’1) ways.
Arrange those elements to have consecutive copies of elements of IT at the indices of I~ which can be done in #I1(I~; m)
ways. Finally, put the remaining elements in 77" so that it avoids consecutive copies of elements of IT which can be done in
av(n — m) ways. Equating the two counts for P and rearranging terms we get

k—2
#I1(I; n) = (;) avp(n —m)#II(I"; m) — #I1(I"; n) — Z#H(I‘ U{m—i};n),
i=1

from which the theorem follows by induction. O
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Note thatif IT = {21} thenav(n) = 1foralln.So V7 = Q[n] and thus Theorem 1.1 is a special case of the previous result.
On the other hand, if IT = {132, 231} then av;;(n) = 2"~ which explains the appearance of the power of 2 in Theorem 1.2.
Theorem 6.1 suggests that there might be other sets of patterns which would yield interesting enumerative results, and that
such sets could be found by looking at I7 such that the numbers avy;(n) have nice combinatorial properties.

(2) The sequence (ai(I)). On reading a version of this paper on the arXiv, Ferenc Bencs [2] has found a proof of
Conjecture 3.4. But there is a stronger condition which could also be investigated. Consider a finite, real sequence (ax)o<k<n
and the corresponding generating function f(x) = ), agx*. It is well known that if the a; are positive and f(x) has only real
roots then the original sequence is log-concave. However, if one takes I = {1, 3} then the corresponding generating function
is f(x) = 2x> + 6x% + 5x which has complex roots. So this stronger condition does not always apply to the (a(I)) sequence.

(3) Remarks on Conjecture 3.7. Bencs [2] has proved this conjecture as well. His argument is inductive, using the
recursions we derived in Section 2 as well as Proposition 3.10 as the base case. It would be very interesting to prove
nonnegativity by finding a combinatorial interpretation of the ci(I).

(4) Limiting behavior of roots. Bencs [2] has proved a result about the limiting behavior of the roots of d(I; n) for certain
sets I. Given I, consider the set [ = [ U {m+ 1, m+ 2, ..., m + k}. Using Neumaier’s Gershgorin-type results on location of
polynomial roots [ 18], Bencs has demonstrated the following.

Theorem 6.2. Suppose I is a finite set of positive integers with m — 1 & I. Then as k — oo the roots of d(I; n) converge to
[0,m+k]—{m—1}. O
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