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Abstract

The cyclic sieving phenomenon was defined by Reiner, Stanton, and White
in a 2004 paper. Let X be a finite set, C be a finite cyclic group acting on X ,
and f(q) be a polynomial in q with nonnegative integer coefficients. Then the
triple (X,C, f(q)) exhibits the cyclic sieving phenomenon if, for all g ∈ C, we
have

#Xg = f(ω)

where # denotes cardinality, Xg is the fixed point set of g, and ω is a root of
unity chosen to have the same order as g. It might seem improbable that sub-
stituting a root of unity into a polynomial with integer coefficients would have
an enumerative meaning. But many instances of the cyclic sieving phenomenon
have now been found. Furthermore, the proofs that this phenomenon hold of-
ten involve interesting and sometimes deep results from representation theory.
We will survey the current literature on cyclic sieving, providing the necessary
background about representations, Coxeter groups, and other algebraic aspects
as needed.
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1 What is the cyclic sieving phenomenon?

Reiner, Stanton, and White introduced the cyclic sieving phenomenon in their
seminal 2004 paper [58]. In order to define this concept, we need three ingredients.
The first of these is a finite set, X. The second is a finite cyclic group, C, which
acts on X. Given a group element g ∈ C, we denote its fixed point set by

Xg = {y ∈ X : gy = y}. (1.1)

We also let o(g) stand for the order of g in the group C. One group which will
be especially important in what follows will be the group, Ω, of roots of unity. We
let ωd stand for a primitive dth root of unity. The reader should think of g ∈ C
and ωo(g) ∈ Ω as being linked because they have the same order in their respective
groups. The final ingredient is a polynomial f(q) ∈ N[q], the set of polynomials in
the variable q with nonnegative integer coefficients. Usually f(q) will be a generating
function associated with X.

Definition 1.1 The triple (X,C, f(q)) exhibits the cyclic sieving phenomenon (ab-
breviated CSP) if, for all g ∈ C, we have

#Xg = f(ωo(g)) (1.2)
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where the hash symbol denotes cardinality.

Several comments about this definition are in order. At first blush it may seem
very strange that plugging a complex number into a polynomial with nonnegative
integer coefficients would yield a nonnegative integer, much less that the result
would count something. However, the growing literature on the CSP shows that
this phenomenon is quite wide spread. Of course, using linear algebra it is always
possible to find some polynomial which will satisfy the system of equations given
by (1.2). And in Section 3 we will see, via equation (3.4), that the polynomial can
be taken to have nonnegative integer coefficients. But the point is that f(q) should
be a polynomial naturally associated with the set X. In fact, letting g = e (the
identity element of C) in (1.2), it follows that

f(1) = #X. (1.3)

In the case #C = 2, the CSP reduces to Stembridge’s “q = −1 phenomenon”
[83, 84, 85]. Since the Reiner-Stanton-White paper, interest in cyclic sieving has
been steadily increasing. But since the area is relatively new, this survey will be
able to at least touch on all of the current literature on the subject. Cylic sieving
illustrates a beautiful interplay between combinatorics and algebra. We will provide
all the algebraic background required to understand the various instances of the
CSP discussed.

The rest of the paper is organized as follows. Most proofs of cyclic sieving
phenomena fall into two broad categories: those involving explicit evaluation of
both sides of (1.2), and those using representation theory. In the next section, we
will introduce our first example of the CSP and give a demonstration of the former
type. Section 3 will provide the necessary representation theory background to
present a proof of the second type for the same example. In the following section,
we will develop a paradigm for representation theory proofs in general. Since much
of the work that has been done on CSP involves Coxeter groups and permutation
statistics, Section 5 will provide a brief introduction to them. In Section 6 we discuss
the regular elements of Springer [78] which have become a useful tool in proving CSP
results. Section 7 is concerned with Rhoades’ startling theorem [60] connecting the
CSP and Schützenberger’s promotion operator [70] on rectangular standard Young
tableaux. The section following that discusses work related to Rhoades’ result. In
Section 9 we consider generalizations of the CSP using more than one group or more
than one statistic. Instances of the CSP related to Catalan numbers are discussed
in Section 10. The penultimate section contains some results which do not fit nicely
into one of the previous sections. And the final section consists of various remarks.

2 An example and a proof

We will now consider a simple example of the CSP and show that (1.2) holds by
explicitly evaluating both sides of the equation. For n ∈ N, let [n] = {1, 2, . . . , n}.
A multiset on [n] is an unordered family, M , of elements of [n] where repetition
is allowed. Since order does not matter, we will always list the elements of M in
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weakly increasing order: M = i1i2 . . . ik with 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n. The set
for our CSP will be

X =

((
[n]

k

))

def
= {M : M is a multiset on [n] with k elements.}. (2.1)

To illustrate, if n = 3 and k = 2 then X = {11, 22, 33, 12, 13, 23}.
For our group, we take one generated by an n-cycle

Cn = 〈(1, 2, . . . , n)〉.

Then g ∈ Cn acts on M = i1i2 . . . ik by

gM = g(i1)g(i2) . . . g(ik) (2.2)

where we rearrange the right-hand side to be in increasing order. Returning to the
n = 3, k = 2 case we have C3 = {e, (1, 2, 3), (1, 3, 2)}. The action of g = (1, 2, 3) is

(1, 2, 3)11 = 22, (1, 2, 3)22 = 33, (1, 2, 3)33 = 11,
(1, 2, 3)12 = 23, (1, 2, 3)13 = 12, (1, 2, 3)23 = 13.

(2.3)

To define the polynomial we will use, consider the geometric series

[n]q = 1 + q + q2 + · · · + qn−1. (2.4)

This is known as a q-analogue of n because setting q = 1 gives [n]1 = n. Do not
confuse [n]q with the set [n] which has no subscript. Now, for 0 ≤ k ≤ n, define the
Gaussian polynomials or q-binomial coefficients by

[
n
k

]

q

=
[n]q!

[k]q![n− k]q!
(2.5)

where [n]q! = [1]q[2]q · · · [n]q. It is not clear from this definition that these rational
functions are actually polynomials with nonnegative integer coefficients, but this is
not hard to prove by induction on n. It is well known that #(

([n]
k

)
) =

(n+k−1
k

)
. So,

in view of (1.3), a natural choice for our CSP polynomial is

f(q) =

[
n+ k − 1

k

]

q

.

We are now in a position to state our first cyclic sieving result. It is a special
case of Theorem 1.1(a) in the Reiner-Stanton-White paper [58].

Theorem 2.1 The cyclic sieving phenomenon is exhibited by the triple

( ((
[n]

k

))

, 〈(1, 2, . . . , n)〉,

[
n+ k − 1

k

]

q

)

.
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Before proving this theorem, let us consider the case n = 3, k = 2 in detail. First
of all note that

f(q) =

[
3 + 2− 1

2

]

q

=

[
4
2

]

q

=
[4]q!

[2]q![2]q!
=

[4]q[3]q
[2]q

= 1 + q + 2q2 + q3 + q4.

Now we can verify that #Xg = f(ωo(g)) case by case. If g = e then o(g) = 1, so let
ω = 1 and compute

f(ω) = f(1) = 6 = #X = #Xe.

If g = (1, 2, 3) or (1, 3, 2) then we can use ω = exp(2πi/3) to obtain

f(ω) = 1 + ω + 2ω2 + ω3 + ω4 = 2 + 2ω + 2ω2 = 0 = #Xg

as can be seen from the table (2.3) for the action of (1, 2, 3) which has no fixed
points.

In order to give a proof by explicit evaluation, it will be useful to have some more
notation. Another way of expressing a multiset on [n] is M = {1m1 , 2m2 , . . . , nmn}
where mi is the multiplicity of i in M . Exponents equal to one are omitted as are
elements of exponent zero. For example, M = 222355 = {23, 3, 52}. Define the
disjoint union of multisets L = {1l1 , 2l2 , . . . , nln} and M = {1m1 , 2m2 , . . . , nmn} to
be

L ⊔M = {1l1+m1 , 2l2+m2 , . . . , nln+mn}.

Let Sn denote the symmetric group of permutations of [n]. Note that (2.2)
defines an action of any g ∈ Sn on multisets and need not be restricted to elements of
the cyclic group. We will also want to apply the disjoint union operation ⊔ to cycles
in Sn, in which case we consider each cycle as a set (which is just a multiset with
all multiplicities 0 or 1). To illustrate, (1, 4, 3) ⊔ (1, 4, 3) ⊔ (3, 4, 5) = {12, 33, 43, 5}.
To evaluate #Xg we will need the following lemma.

Lemma 2.2 Let g ∈ Sn have disjoint cycle decomposition g = c1c2 · · · ct. Then
gM = M if and only if M can be written as

M = cr1 ⊔ cr2 ⊔ · · · ⊔ crs

where the cycles in the disjoint union need not be distinct.

Proof For the reverse direction, note that if c is a cycle of g and c is the correspond-
ing set then gc = c since g merely permutes the elements of c amongst themselves.
So g will also fix disjoint unions of such cycles as desired.

To see that these are the only fixed points, suppose that M is not such a disjoint
union. Then there must be some cycle c of g and i, j ∈ [n] such that c(i) = j but i
and j have different multiplicities in M . It follows that gM 6= M which completes
the forward direction. �

As an example of this lemma, if g = (1, 2, 4)(3, 5) then the multisets fixed by g of
cardinality at most 5 are {3, 5}, {1, 2, 4}, {32, 52}, and {1, 2, 3, 4, 5}. We now apply
the previous lemma to our case of interest when Cn = 〈(1, 2, . . . , n)〉. In the next
result, we use the standard notation d|k to signify that the integer d divides evenly
into the integer k.
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Corollary 2.3 If X = (
([n]
k

)
) and g ∈ Cn has o(g) = d, then

#Xg =







(
n/d+ k/d− 1

k/d

)

if d|k,

0 otherwise.

Proof Since g is a power of (1, 2, . . . , n) and o(g) = d, we have that g’s disjoint
cycle decomposition must consist of n/d cycles each of length d. If d does not divide
k, then no multiset M of cardinality k can be a disjoint union of the cycles of g. So,
by Lemma 2.2, there are no fixed points and this agrees with the “otherwise” case
above.

If d|k then, by the lemma again, the fixed points of g are those multisets obtained
by choosing k/d of the n/d cycles of g with repetition allowed. The number of ways
of doing this is the binomial coefficient in the “if” case. �

To evaluate f(ωo(g)), we need another lemma.

Lemma 2.4 Suppose m,n ∈ N satisfy m ≡ n (mod d), and let ω = ωd. Then

lim
q→ω

[m]q
[n]q

=







m

n
if n ≡ 0 (mod d),

1 otherwise.

Proof Let m ≡ n ≡ r (mod d) where 0 ≤ r < d. Since 1+ω+ω2+ · · ·+ωd−1 = 0,
cancellation in (2.4) yields

[m]ω = 1 + ω + ω2 + · · · + ωr−1 = [n]ω.

So if r 6= 0 then [n]ω 6= 0 and [m]ω/[n]ω = 1, proving the “otherwise” case.
If r = 0 then we can write n = ℓd and m = kd for certain nonnegative integers

k, ℓ. It follows that

[m]q
[n]q

=
(1 + q + q2 + · · ·+ qd−1)(1 + qd + q2d + · · ·+ q(k−1)d)

(1 + q + q2 + · · ·+ qd−1)(1 + qd + q2d + · · ·+ q(ℓ−1)d)
.

Canceling the 1 + q + q2 + · · · qd−1 factors and plugging in ω gives

lim
q→ω

[m]q
[n]q

=
k

ℓ
=

m

n

as desired. �

To motivate the hypothesis of the next result, note that if o(g) = d and g ∈ Cn

then d|n by Lagrange’s Theorem.

Corollary 2.5 If ω = ωd and d|n, then

[
n+ k − 1

k

]

ω

=







(
n/d+ k/d− 1

k/d

)

if d|k,

0 otherwise.
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Proof In the equality above, consider the numerator and denominator of the left-
hand side after canceling factorials. Since d|n, the product [n]ω[n+1]ω · · · [n+k−1]ω
starts with a zero factor and has every dth factor after that also equal to zero, with
all the other factors being nonzero. The product [1]ω[2]ω · · · [k]ω is also of period d,
but starting with d−1 nonzero factors. It follows that the number of zero factors in
the numerator is always greater than or equal to the number of zero factors in the
denominator with equality if and only if d|k. This implies the “otherwise” case.

If d|k, then using the previous lemma

[
n+ k − 1

k

]

ω

= lim
q→ω

(
[n]q
[k]q
·
[n+ 1]q
[1]q

·
[n+ 2]q
[2]q

· · ·
[n+ k − 1]q
[k − 1]q

)

=
n

k
· 1 · · · 1 ·

n+ d

d
· 1 · · · 1 ·

n+ 2d

2d
· 1 · · ·

=
n/d

k/d
·
n/d+ 1

1
·
n/d+ 2

2
· · ·

=

(
n/d+ k/d− 1

k/d

)

as desired. �

Comparing Corollary 2.3 and Corollary 2.5, we immediately have a proof of
Theorem 2.1.

3 Representation theory background and another proof

Although the proof just given of Theorem 2.1 has the advantage of being ele-
mentary, it does not give much intuition about why the equality (1.2) holds. Proofs
of such results using representation theory are more sophisticated but also provide
more insight. We begin this section by reviewing just enough about representations
to provide another demonstration of Theorem 2.1. Readers interested in more in-
formation about representation theory, especially as it relates to symmetric groups,
can consult the texts of James [35], James and Kerber [34], or Sagan [65].

Given a set, X, we can create a complex vector space, V = CX, by considering
the elements of X as a basis and taking formal linear combinations. So if X =
{s1, s2, . . . , sk} then

CX = {c1s1 + c2s2 + · · ·+ cksk : ci ∈ C for all i}.

Note that when an element of X is being considered as a vector, it is set in boldface
type. If G is a group acting on X, then G also acts on CX by linear extension. Each
element g ∈ G corresponds to an invertible linear map [g]. (Although this is the
same notation as for [n] with n ∈ N, context should make it clear which is meant.)
If B is an ordered basis for V then we let [g]B denote the matrix of [g] in the basis
B. In particular, [g]X is the permutation matrix for g acting on X.

To illustrate these concepts, if X = {1, 2, 3} then

CX = {c11+ c22+ c33 : c1, c2, c3 ∈ C}.
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The group G = 〈(1, 2, 3)〉 acts on X and so on CX. For g = (1, 2, 3) and the basis
X the action is

(1, 2, 3)1 = 2, (1, 2, 3)2 = 3, (1, 2, 3)3 = 1.

Putting this in matrix form gives

[(1, 2, 3)]X =





0 0 1
1 0 0
0 1 0



 . (3.1)

In general, a module for G or G-module is a vector space V over C where G acts
by invertible linear transformations. Most of our modules will be left modules with
G acting on the left. Consider the general linear group GL(V ) of invertible linear
transformations of V . If V is a G-module then the map ρ : G → GL(V ) given by
g 7→ [g] is called a representation of G. Equivalently, if V is a vector space, then a
representation is a group homomorphism ρ : G→ GL(V ). If G acts on a set X then
the space CX is called the permutation module corresponding to X.

Given a G-module, V , the character of G on V is the function χ : G→ C given
by

χ(g) = tr[g]

where tr is the trace function. Note that χ is well defined since the trace of a linear
transform is independent of the basis in which it is computed. We can now make a
connection with the left-hand side of (1.2). If a group G acts on a set X, then the
character of G on CX is given by

χ(g) = tr[g]X = #Xg (3.2)

since [g]X is just the permutation matrix for g’s action.
To see how the right side of (1.2) enters in this context, write f(q) =

∑l
i=0miq

i

where mi ∈ N for all i. Now suppose there is another basis, B, for CX with the
property that every g ∈ C is represented by a diagonal matrix of the form

[g]B = diag(1, . . . , 1
︸ ︷︷ ︸

m0

, ω, . . . , ω
︸ ︷︷ ︸

m1

, . . . , ωl, . . . , ωl

︸ ︷︷ ︸

ml

) (3.3)

where ω = ωo(g). (This may seem like a very strong assumption, but in the next
section we will see that it must hold.) Computing the character in this basis gives

χ(g) = tr[g]B =
l∑

i=0

miω
i = f(ω). (3.4)

Comparing (3.2) and (3.4) we immediately get the CSP. So cyclic sieving can merely
amount to basis change in a C-module.

Sometimes it is better to use a C-module other than CX to obtain the right-
hand side of (1.2). Two G-modules V,W are G-isomorphic or G-equivalent , written
V ∼= W , if there is a linear bijection φ : V → W which preserves the action of G,
i.e., for every g ∈ G and v ∈ V we have φ(gv) = gφ(v). The prefix “G-” can be
omitted if the group is understood from context. To obtain f(ω) as a character,
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any module isomorphic to CX will do. So we may pick a new module with extra
structure which will be useful in the proof.

We are now ready to set up the tools we will need to reprove Theorem 2.1. Let
V ⊗k denote the k-fold tensor product of the vector space V . If we take V = C[n]
which has basis B = {i : 1 ≤ i ≤ n}, then V ⊗k has a basis of the form

{i1 ⊗ i2 ⊗ · · · ⊗ ik : ij ∈ B for 1 ≤ j ≤ k}.

In general, for any V , every basis B of V gives rise to a basis of V ⊗k consisting of
k-fold tensors of elements of B.

When V = C[n], we consider the space of k-fold symmetric tensors, Symk(n),
which is the quotient of V ⊗k by the subspace generated by

i1 ⊗ i2 ⊗ · · · ⊗ ik − ig(1) ⊗ ig(2) ⊗ · · · ⊗ ig(k) (3.5)

for all g ∈ Sk and all tensors i1 ⊗ i2 ⊗ · · · ⊗ ik. Note that, while we are quotienting
by such differences for all tensors, it would suffice (by linearity) to just consider the
differences obtained using k-fold tensors from some basis. Let i1i2 · · · ik denote the
equivalence class of i1 ⊗ i2 ⊗ · · · ⊗ ik. These classes are indexed by the k-element
multisets on [n] and form a basis for Symk(n). So, for example,

Sym2(3) = {c111+ c222+ c333+ c412+ c513+ c623 : ci ∈ C for all i}.

The cyclic group Cn = 〈(1, 2, . . . , n)〉 acts on C[n] and so there is an induced
action on Symk(n) given by

g(i1i2 · · · ik) = g(i1)g(i2) · · · g(ik). (3.6)

Note that when defining Symk(n) by (3.5), one has Sk acting on the subscripts to
permute the places of the vectors. In contrast, the action in (3.6) has Sn acting on
the basis elements themselves. Comparing (3.6) with (2.2), we see that Symk(n)

∼=

C(
([n]
k

)
) as Cn-modules. We will work in the former module for our proof.

If g ∈ Cn then let [g] and [g]′ denote the associated linear transformations on
C[n] and Symk(n), respectively. By way of illustration, when n = 3 and k = 2 we
calculated the matrix [(1, 2, 3)]{1,2,3} in (3.1). On the other hand, the table (2.3)
becomes

[(1, 2, 3)]′{11,22,33,12,13,23} =











0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0











.

Similarly, let χ and χ′ be the respective characters of Cn acting on C[n] and Symk(n).
Now suppose we can find a basis B = {b1,b2, . . . ,bn} for C[n] which diagonalizes

[g], say
[g]B = diag(x1, x2, . . . , xn).

Since B is a basis for C[n],

B′ = {bi1bi2 · · ·bik : 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n}
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is a basis for Symk(n). This is the crucial property of the space of symmetric tensors
which makes us choose to work with them rather than in the original permutation
module. Since each element of B is an eigenvector for [g] acting on C[n], the same
is true for B′ and [g]′ acting on Symk(n). More precisely,

g(bi1bi2 · · ·bik) = g(bi1)g(bi2) · · · g(bik ) = xi1xi2 · · · xikbi1bi2 · · ·bik .

It follows that

[g]′B′ = diag(xi1xi2 · · · xik : 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n)

and
χ′(g) =

∑

1≤i1≤i2≤...≤ik≤n

xi1xi2 · · · xik . (3.7)

To illustrate, if n = 3 and [g]a,b,c = diag(x1, x2, x3), then in Sym2(3) we have

g(aa) = x21aa, g(bb) = x22bb, g(cc) = x23cc,
g(ab) = x1x2ab, g(ac) = x1x3ac, g(bc) = x2x3bc,

so that
χ′(g) = x21 + x22 + x23 + x1x2 + x1x3 + x2x3. (3.8)

The expression on the right-hand side of (3.7) is called a complete homogeneous
symmetric polynomial and denoted hk(x1, x2, . . . , xn). It is called “complete ho-
mogeneous” because it is the sum of all monomials of degree k in the xi. It is a
symmetric polynomial because it is invariant under permutation of the subscripts
of the variables. The theory of symmetric polynomials is intimately bound up with
the representations of the symmetric and general linear groups. Equation (3.8) dis-
plays h2(x1, x2, x3). To make use of (3.7), we need to related complete homogeneous
symmetric functions to q-binomial coefficients. This is done by taking the principal
specialization which sets xi = qi−1 for all i.

Lemma 3.1 For n ≥ 1 and k ≥ 0 we have

hk(1, q, q
2, . . . , qn−1) =

[
n+ k − 1

k

]

q

. (3.9)

Proof We do a double induction on n and k. For n = 1 we have hk(1) = xk1 |x1=1 =

1 and
[
k
k

]

q
= 1. For k = 0 it is also easy to see that both sides are 1.

Assume that n ≥ 2 and k ≥ 1. By splitting the sum for hk(x1, x2, . . . , xn) into
those terms which do not contain xn and those which do, we obtain the recursion

hk(x1, x2, . . . , xn) = hk(x1, x2, . . . , xn−1) + xnhk−1(x1, x2, . . . , xn).

Specializing yields

hk(1, q, q
2, . . . , qn−1) = hk(1, q, q

2, . . . , qn−2) + qn−1hk−1(1, q, q
2, . . . , qn−1).
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Using the definition of the Gaussian polynomials in terms of q-factorials (2.5), it
is easy to check that

[
n
k

]

q

=

[
n− 1
k

]

q

+ qn−k

[
n− 1
k − 1

]

q

.

Substituting n + k − 1 for n, we see that the right-hand side of (3.9) satisfies the
same recursion as the left-hand side, which completes the proof. �

Proof (of Theorem 2.1) Recall that [(1, 2, . . . , n)] is a linear transformation
from C[n] to itself. The map has characteristic polynomial xn − 1 with roots
1, ωn, ω

2
n, . . . , ω

n−1
n . Since these roots are distinct, there exists a diagonalizing basis

B of C[n] with
[(1, 2, . . . , n)]B = diag(1, ωn, ω

2
n, . . . , ω

n−1
n ).

Now any g ∈ Cn is of the form g = (1, 2, . . . , n)i for some i and so, since we have a
diagonal representation,

[g]B = diag(1i, ωi
n, ω

2i
n , . . . , ω(n−1)i

n ) = diag(1, ω, ω2, . . . , ωn−1)

where ω = ωi
n is a primitive o(g)-th root of unity. The discussion leading up to

equation (3.7) and the previous lemma yield

χ′(g) = hk(1, ω, ω
2, . . . , ωn−1) =

[
n+ k − 1

k

]

ω

.

As we have already noted, Symk(n)
∼= C(

([n]
k

)
), and so by (3.2)

χ′(g) = #

((
[n]

k

))g

.

Comparing the last two equations completes the proof that the CSP holds. �

4 A representation theory paradigm

We promised to show that the assumption of [g] having a diagonalization of the
form (3.3) is not a stretch. To do that, we need to develop some more representation
theory which will also lead to a paradigm for proving the CSP.

A submodule of a G-module V is a subspace W which is left invariant under the
action of G in that gw ∈ W for all g ∈ G and w ∈ W . The zero subspace and V
itself are the trivial submodules. We say that V is reducible if it has a nontrivial
submodule and irreducible otherwise. For example, the S3-module C[3] is reducible
because the 1-dimensional subspace generated by the vector 1+2+3 is a nontrivial
submodule. It turns out that the irreducible modules are the building blocks of
all other modules in our setting. The next result collects together three standard
results from representation theory. They can be found along with their proofs in
Proposition 1.10.1, Theorem 1.5.3, and Corollary 1.9.4 (respectively) of [65].

Theorem 4.1 Let G be a finite group and consider G-modules which are vector
spaces over C.
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(a) The number of pairwise inequivalent irreducible G-modules is finite and equals
the number of conjugacy classes of G.

(b) (Maschke’s Theorem) Every G-module can be written as a direct sum of irre-
ducible G-modules.

(c) Two G-modules are equivalent if and only if they have the same character. �

We note that if G is not finite or if the ground field for our G-modules is not C

then the analogue of this theorem may not hold. Also, the forward direction of
(c) is trivial (we have already been using it in the last section), while the backward
direction is somewhat surprising in that one can completely characterize a G-module
through the trace alone.

Let us construct the irreducible representations of a cyclic group C with #C = n.
The dimension of a G-module V is its usual vector space dimension. If dimV = 1
then V must be irreducible. So what do the dimension one modules for C look like?
Let g be a generator of C and let V = C{v} for some vector v. Then gv = cv for
some scalar c. Furthermore

v = ev = gnv = cnv.

So cn = 1 and c is an nth root of unity. It is easy to verify that for each nth root
of unity ω, the map ρ(gj) = [ωj ] defines a representation of C as j varies over the
integers. So we have found n irreducible G-modules of C, one for each nth root of
unity: V (0), V (1), . . . , V (n−1). They clearly have different characters (the trace of a
1-dimensional matrix being itself) and so are pairwise inequivalent. Finally, C is
Abelian and so has #C = n conjugacy classes. Thus by (a) of Theorem 4.1, we have
found all the irreducible representations.

Now given any C-module, V , part (b) of Theorem 4.1 says we have a module
isomorphism

V ∼=

n−1⊕

i=0

aiV
(i)

where aiV
(i) denotes a direct sum of ai copies of V

(i). Since each of the summands
is 1-dimensional, there is a basis B simultaneously diagonalizing the linear transfor-
mations [g] for all g ∈ C as in (3.3). We can also explain the multiplicities as follows.
Extend the definition of V (i) to any i ∈ N by letting V (i) = V (j) if i ≡ j (modn).
Now given any polynomial f(q) =

∑

i≥0 miq
i with nonnegative integer coefficients,

define a corresponding C-module

Vf =
⊕

i≥0

miV
(i). (4.1)

Reiner, Stanton, and White identified the following representation theory paradigm
for proving that the CSP holds.

Theorem 4.2 The cyclic sieving property holds for the triple (X,C, f(q)) if and
only if one has CX ∼= Vf as C-modules.

Proof Note that #Xg and f(ωo(g)) are the character values of g ∈ C in the modules
CX and Vf , respectively. So the result now follows from Theorem 4.1 (c). �
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5 Coxeter groups and permutation statistics

We will now present some basic definitions and results about Coxeter groups
which will be needed for later use. The interested reader can find more information
in the books of Björner and Brenti [9] or Hiller [31]. A finite Coxeter group, W , is a
finite group having a presentation with a set of generators S, and relations for each
pair s, s′ ∈ S of the form

(ss′)m(s,s′) = e,

where the m(s, s′) are positive integers satisfying

m(s, s′) = m(s′, s);
m(s, s′) = 1 ⇐⇒ s = s′.

One can also define infinite Coxeter groups, but we will only need the finite case
and may drop “finite” as being understood in what follows. An abstract group W
may have many presentations of this form, so when we talk about a Coxeter group
we usually have a specific generating set S in mind which is tacitly understood. If
we wish to be explicit about the generating set, then we will refer to the Coxeter
system (W,S). Note that since m(s, s) = 1 we have s2 = 1 and so the elements of S
are involutions. It follows that one can rewrite (ss′)m(s,s′) = e by bringing half the
factors to the right-hand side

s s′ s s′ s · · ·
︸ ︷︷ ︸

m(s,s′)

= s′ s s′ s s′ · · ·
︸ ︷︷ ︸

m(s,s′)

.

Probably the most famous Coxeter group is the symmetric group, Sn. Here
we take the generating set of adjacent transpositions S = {s1, s2, . . . , sn−1} where
si = (i, i + 1). The Coxeter relations take the form

s2i = 1,
sisj = sjsi for |i− j| ≥ 2,
sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 1.

The third equation is called the braid relation. (Other authors also include the
second equation and distinguish the two by using the terms long and short braid
relations). We will often refer back to this example to illustrate Coxeter group
concepts.

A Coxeter group, W , is irreducible if it can not be written as a nontrivial product
of two other Coxeter groups. Irreducible finite Coxeter groups were classified by
Coxeter [13]. A list of these groups is given in Table 1. The rank of a Coxeter
group, rkW , is the minimum cardinality of a generating set S and the subscript in
each group name gives the rank. If S has this minimum cardinality then its elements
are called simple. The middle column displays the Coxeter graph or Dynkin diagram
of the group which has the set S as its vertices with an edge labeled m(s, s′) between
vertices s 6= s′. By convention, if m(s, s′) = 2 (i.e., s and s′ commute) then one
omits the edge, and if m(s, s′) = 3 then the edge is displayed without a label. A
Coxeter group can be realized as the symmetry group of a regular polytope if and
only if its graph contains only vertices of degree one and two. So all these groups
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Group Diagram Polytope

An
t t t t t symmetric group Sn+1,

group of the simplex

Bn
t t t t t

4
hyperoctahedral group,

group of the cube/octahedron

Dn
t t t t

t

t

��

@@
-

E6
t t t t t

t

-

E7
t t t t t t

t

-

E8
t t t t t t t

t

-

F4
t t t t

4
group of the 24-cell

H3
t t t

5
group of the dodecahedron/icosahedron

H4
t t t t

5
group of the 120-cell/600-cell

I2(m) t t
m

group of the m-gon

Table 1: The irreducible finite Coxeter groups

except Dn, E6, E7, and E8 have corresponding polytopes which are listed in the last
column.

There is an important function on Coxeter groups which we will need to define
generating functions for instances of the CSP. Given w ∈ W we can write w =
s1s2 · · · sk where the si ∈ S. Note that here si is just an element of S and not
necessarily the ith generator. Such an expression is reduced if k is minimal among
all such expressions for w and this value of k is called the length of w, written
ℓ(w) = k. When W is of type An−1, i.e., the symmetric group Sn, then there
is a nice combinatorial interpretation of the length function. Write w in one-line
notation as w = w1w2 . . . wn where wi = w(i) for i ∈ [n]. The set of inversions of w
is

Invw = {(i, j) : i < j and wi > wj}.

So Invw records the places in w where there is a pair of out-of-order elements. The
inversion number of w is invw = #Invw. For example, if

w = w1w2w3w4w5 = 31524 (5.1)

then Invw = {(1, 2), (1, 4), (3, 4), (3, 5)} and invw = 4. It turns out that for type A,

ℓ(w) = invw. (5.2)

We can now make a connection with the q-binomial coefficients as follows. Given
a Coxeter system (W,S) and J ⊂ S, there is a corresponding parabolic subgroup WJ
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which is the subgroup of W generated by J . It can be shown that each coset wWJ

has a unique representative of minimal length. Let W J be the set of these coset
representatives and set

W J(q) =
∑

w∈W J

qℓ(w). (5.3)

If W = Sn with S = {s1, s2, . . . , sn−1} as before, then remove sk from S to
obtain J = S \ {sk} (which generates a maximal parabolic subgroup). So

(Sn)J ∼= Sk ×Sn−k

consists of all permutations permuting the sets {1, 2, . . . , k} and {k+1, k+2, . . . , n}
among themselves. Thus multiplying w ∈ Sn on the right by an element of (Sn)J
merely permutes {w1, w2, . . . , wk} and {wk+1, wk+2, . . . , wn} among themselves. (We
compose permutations from right to left.) Using (5.2), we see that the set of minimal
length coset representatives is

(Sn)
J = {w ∈ Sn : w1 < w2 < . . . < wk and wk+1 < wk+2 < . . . < wn}. (5.4)

A straightforward double induction on n and k, much like the one used to prove
Lemma 3.1, now yields the following result.

Proposition 5.1 For W = Sn and J = S \ {sk} we have

W J(q) =

[
n
k

]

q

for any 0 ≤ k ≤ n (where for k = 0 or n, J = S). �

As has already been mentioned, the symmetry groups of regular polytopes only
yield some of the Coxeter groups. However, there is a geometric way to get them all.
A reflection in Rn is a linear transformation rH which fixes a hyperplaneH pointwise
and sends a vector perpendicularH to its negative. A real reflection group is a group
generated by reflections. It turns out that the finite real reflection groups exactly
coincide with the finite Coxeter groups; see the papers of Coxeter [12, 13]. (A
similar result holds in the infinite case if one relaxes the definition of a reflection.)
Definitions for Coxeter groups are also applied to the corresponding reflection group,
e.g., a simple reflection is one corresponding to an element of S. The text of Benson
and Grove [27] gives a nice introduction to finite reflection groups. For example, to
get Sn one can use the reflecting hyperplanes Hi,j with equation xi = xj. If ri,j
is the corresponding reflection then ri,j(x1, x2, . . . , xn) is just the point obtained by
interchanging the ith and jth coordinates and so corresponds to the transposition
(i, j) ∈ Sn.

We end this section by discussing permutation statistics which are intimately
connected with Coxeter groups as we have seen with the statistic inv. A statistic
on a finite set X is a function st : X → N. The statistic has a corresponding weight
generating function

f st(X) = f st(X; q) =
∑

y∈X

qst y.
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w 123 132 213 231 312 321
invw 0 1 1 2 2 3
majw 0 2 1 2 1 3
desw 0 1 1 1 1 2
excw 0 1 1 2 1 1

Table 2: Four statistics on S3

From Table 2 we see that on X = S3

f inv(S3) =
∑

w∈S3

invw = 1 + 2q + 2q2 + q3 = (1 + q)(1 + q + q2) = [3]q!

In fact, this holds for any n (not just 3); see Proposition 5.2 below. And the reader
should compare this result with Proposition 5.1 which gives the generating function
for inv over another set of permutations.

There are three other statistics which will be important in what follows. The
descent set of a permutation w = w1w2 . . . wn is

Desw = {i : wi > wi+1}.

We let desw = #Desw. Using the descents, one forms the major index

majw =
∑

i∈Desw

i.

Continuing the example in (5.1), Desw = {1, 3} since w1 > w2 and w3 > w4, and so
majw = 1 + 3 = 4. The major index was named for Major Percy MacMahon who
introduced the concept [49] (or see [50, pp. 508-549]).

We say that two statistics st and st′ on X are equidistributed if f st(X) = f st′(X).
In other words, the number of elements in X with any given st value k equals the
number having st′ value k. Comparing the first two rows of Table 2, the reader
should suspect the following result which is not hard to prove by induction on n.

Proposition 5.2 We have
∑

w∈Sn

qinvw = [n]q! =
∑

w∈Sn

qmajw.

So f inv(Sn) = fmaj(Sn). �

Any statistic on Sn equidistributed with inv (or maj) is said to be Mahonian, also
in tribute to MacMahon.

The last permutation statistic we need comes from the set of excedances which
is

Excw = {i : w(i) > i}.

One can view excedances as “descents” in the cycle decomposition of w. As usual,
we let excw = #Excw. In our running example Excw = {1, 3} since w1 = 3 > 1
and w3 = 5 > 3. Comparing the distributions of des and exc in Table 2, the reader
will see a special case of the following proposition whose proof can be found in the
text of Stanley [80, Proposition 1.3.12].
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Proposition 5.3 We have fdes(Sn) = f exc(Sn). �

Any permutation statistic equidistributed with des (or exc) is said to be Eule-
rian. The polynomial in Proposition 5.3 is called the Eulerian polynomial , An(q),
although some authors use this term for the polynomial qAn(q). The first few Eu-
lerian polynomials are

A0(q) = 1,

A1(q) = 1,

A2(q) = 1 + q,

A3(q) = 1 + 4q + q2,

A4(q) = 1 + 11q + 11q2 + q3,

A5(q) = 1 + 26q + 66q2 + 26q3 + q4.

The exponential generating function for these polynomials

∑

n≥0

An(q)
tn

n!
=

1− q

et(q−1) − q
(5.5)

is attributed to Euler [39, p. 39].

6 Complex reflection groups and Springer’s regular elements

Before stating Theorem 2.1, we noted that it is a special case of one part of
the first theorem in the Reiner-Stanton-White paper. To state the full result, we
need another pair of definitions. Let g ∈ SN have o(g) = n. Say that g acts
freely on [N ] if all of g’s cycles are of length n. So in this case n|N . For example,
g = (1, 2)(3, 4)(5, 6) acts freely on [6]. Say that g acts nearly freely on [N ] if either
it acts freely, or all of its cycles are of length n except one which is a singleton. In
the latter case, n|N − 1. So g = (1, 2)(3, 4)(5, 6)(7) acts nearly freely on [7]. Finally,
say that the cyclic group C acts freely or nearly freely on [N ] if it has a generator g
with the corresponding property. The next result is Theorem 1.1 in [58]. In it,

(
[N ]

k

)

= {S : S is a k-element subset of [N ]}. (6.1)

Theorem 6.1 Suppose C is cyclic and acts nearly freely on [N ]. The following two
triples ( ((

[N ]

k

))

, C,

[
N + k − 1

k

]

q

)

(6.2)

and ( (
[N ]

k

)

, C,

[
N
k

]

q

)

(6.3)

exhibit the cyclic sieving phenomenon. �
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Note that Theorem 2.1 is a special case of (6.2) since C = 〈(1, 2, . . . , N)〉 acts
freely, and so also nearly freely, on [N ]. At this point, the reader may have (at least)
two questions in her mind. One might be why the multiset example was chosen to
explain in detail rather than the combinatorially simpler set example. The reason
for this is that the representation theory proof for the latter involves alternating
tensors and so one has to worry about signs which do not occur in the symmetric
tensor case. Another puzzling aspect might be why having a nearly free action is
the right hypothesis on C. To clarify this, one needs to discuss complex reflection
groups and Springer’s regular elements.

A complex (pseudo)-reflection is an element of GLN (C) (= GL(CN )) which fixes a
unique hyperplane in CN and has finite order. Every real reflection can be considered
as a complex reflection by extending the field. But the complex notion is more
general since a real reflection must have order two. A complex reflection group is
a group generated by complex reflections. As usual, we will only be interested in
the finite case. Irreducible complex reflection groups are defined as in the real case,
i.e., they are the ones which cannot be written as a nontrivial product of two other
complex reflection groups. The irreducible complex reflection groups were classified
by Shephard and Todd [75]. The book of Lehrer and Taylor [47] gives a very lucid
treatment of these groups, even redoing the Shephard-Todd classification.

Call an element g in a finite complex reflection group W regular if it has an
eigenvector which does not lie on any of the reflecting hyperplanes of W . An eigen-
value corresponding to this eigenvector is also called regular . In type A (i.e., in
the case of the symmetric group) we have the following connection between regular
elements and nearly free actions.

Proposition 6.2 Let W = AN−1. Then g ∈ W is regular if and only if it acts
nearly freely on [N ].

Proof Assume that o(g) = n and that g acts nearly freely. Suppose first that n|N
and

g = (1, 2, . . . , n)(n+ 1, n + 2, . . . , 2n) · · · .

Other elements of order n can be treated similarly. Now (1, 2, . . . , n) acting on Cn

has eigenvalue ω−1 = ω−1
n with eigenvector [ω, ω2, . . . , ωn]t (t denoting transpose)

all of whose entries are distinct. So

v = [ω, ω2, . . . , ωn, 2ω, 2ω2, . . . , 2ωn, 3ω, 3ω2, . . . , 3ωn, . . .]t

is an eigenvector for g lying on none of the hyperplanes xi = xj . In the case that
n|N − 1, one can insert a 0 in v at the coordinate of the fixed point and preserve
regularity.

Now suppose g does not act nearly freely. Consider the case when g has cycles
of lengths k and l where k, l ≥ 2 and k 6= l. Without loss of generality, say k < l
and

g = (1, 2, . . . , k)(k + 1, k + 2, . . . , k + l) · · · .

Suppose v = [a1, a2, . . . , aN ]t is a regular eigenvector for g. Then [a1, a2, . . . , ak]
t

must either be an eigenvector for g′ = (1, 2, . . . , k) or be the zero vector. But if v
lies on none of the hyperplanes then the second possibility is out because k ≥ 2.
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The eigenvectors for g′ are [ωi
k, ω

2i
k , . . . , ωki

k ]t with corresponding eigenvalues ω−i
k for

1 ≤ i ≤ k. Since everything we have said also applies to g′′ = (k+1, k+2, . . . , k+ l),
the eigenvalue ω of g must be a root of unity with order dividing gcd(k, l). But
gcd(k, l) ≤ k < l, so the eigenvectors of g′′ with such eigenvalues will all have
repeated entries, a contradiction. One can deal with the only remaining case (when
g has at least two fixed points) similarly. �

In addition to the previous proposition, we will need the following general result,
It is easy to prove from the definitions and so is left to the reader.

Lemma 6.3 Let V be a G-module.

(a) If W ⊆ V is a G-submodule then the quotient space V/W is also G-module.

(b) If H ≤ G is a subgroup, then V is also an H-module. �

Also, we generalize the notation (1.1): if V is a G-module then the invariants of G
in V are

V G = {v ∈ V : gv = v for all g ∈ G}.

Springer’s Theorem relates two algebras. To define the first, note that a group
G acts on itself by left multiplication. The corresponding permutation module C[G]
is called the group algebra and it is an algebra, not just a vector space, because one
can formally multiply linear combinations of group elements. The group algebra
is important in part because it contains every irreducible representation of G. In
particular, the following is true. See Proposition 1.10.1 in [65] for more details.

Theorem 6.4 Let G be a finite group with irreducible modules V (1), V (2), . . . , V (k)

and write C[G] = ⊕imiV
(i). Then, for all i,

mi = dimV (i).

so every irreducible appears with multiplicity equal to its degree. Taking dimensions,
we have

k∑

i=1

(

dimV (i)
)2

= #G �

The second algebra is defined for any subgroup W ≤ GLN (C). Thinking of
x1, x2, . . . , xN as the coordinates of CN , W acts on the algebra of polynomials S =
C[x1, x2, . . . , xN ] by linear transformations of the xi. For example, if W = SN then
W acts on S by permuting the variables. The algebra of coinvariants of W is the
quotient

A = S/SW+ (6.4)

where SW+ is the ideal generated by the invariants of W in S which are homogeneous
of positive degree. Note that by Lemma 6.3(a), W also acts on A.

Now let g be a regular element of W of order n and let C = 〈g〉 be the cyclic
group it generates. We also let ω = ωn. Define an action of the product group W×C
on the group algebra C[W ] by having W act by multiplication on the left and C act
by multiplication on the right. These actions commute because of the associative
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law in W , justifying the use of the direct product. We also have an action of W ×C
on A: We already noted in the previous paragraph how W acts on A, and we let C
act by

g(xi) = ωxi (6.5)

for i ∈ [N ]. The following is a beautiful theorem of Springer [78] as reformulated by
Kraśkiewicz and Weyman [40].

Theorem 6.5 Let W be a finite complex reflection group with coinvariant algebra
A, and let C ≤ W be cyclically generated by a regular element. Then A and the
group algebra C[W ] are isomorphic as W × C modules. �

Although A and C[W ] are isomorphic, the former has the advantage that it is
graded, i.e., we can write A = ⊕d≥0Ad where Ad are the elements in A homogeneous
of degree d. (This is well defined because the invariant ideal we modded out by
is generated by homogeneous polynomials.) And any graded algebra over C has a
Hilbert series

Hilb(A; q) =
∑

d≥0

dimCAdq
d.

It is this series and the previous theorem which permitted Reiner, Stanton, and
White to formulate a powerful cyclic sieving result. In it and in the following corol-
lary, the action of the cyclic group on left cosets is by left multiplication.

Theorem 6.6 Let W be a finite complex reflection group with coinvariant algebra
A, and let C ≤W be cyclically generated by a regular element g. Take any W ′ ≤W
and consider the invariant algebra AW ′

. Then cyclic sieving is exhibited by the triple
(

W/W ′, C, Hilb(AW ′

; q)
)

.

Proof By Theorem 6.5 we have an isomorphism φ : A→ C[W ] of W ×C modules.
So by Lemma 6.3(b) they are also isomorphic as C-modules. Since the actions of C
and W ′ commute, the invariant algebras AW ′

and C[W ]W
′

are also C-modules and
φ restricts to an isomorphism between them.

By (6.5), the action of g on the dth graded piece of AW ′

is just multiplication
by ωd. But this is exactly the same as the action on the dth summand in the C-
module VHilb(AW ′ ) as defined for any generating function f by equation (4.1). So

AW ′ ∼= VHilb(AW ′ ) as C-modules.

As far as C[W ]W
′

, consider the set of right cosets W ′ \W . Note that
∑

i cigi ∈
C[W ] will be W ′-invariant if and only if the coefficients ci are constant on each
right coset. So C[W ]W

′

is C-isomorphic to the permutation module C(W ′ \W ) with
C acting on the right. But since C is Abelian, this is isomorphic to the module
C(W/W ′) for the left cosets with C acting (as usual) on the left.

Putting the isomorphisms in last three paragraphs together and using Theo-
rem 4.2 completes the proof. �

We can specialize this theorem to the case of Coxeter groups and their parabolic
subgroups. One only needs the fact [31, §IV.4] that, for the length generating
function defined by (5.3),

W J(q) = Hilb(AWJ ; q).
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Corollary 6.7 Let (W,S) be a finite Coxeter system and let J ⊆ S. Let C ≤W be
cyclically generated by a regular element g. Then the triple

(
W/WJ , C, W J(q)

)

satisfies the cyclic sieving phenomenon. �

If we specialize even further to type A, then we obtain the CSP in (6.3). To
see this, note first that g being regular is equivalent to its acting nearly freely by
Proposition 6.2. For J = S \{sk}, the action on left cosets SN/(SN )J is isomorphic

to the action on
([n]
k

)
as can be seen using the description of the minimal length

representatives (5.4). Finally, Proposition 5.1 shows that the generating function is
correct.

7 Promotion on rectangular standard Young tableaux

Rhoades [60] proved an amazing cyclic sieving result about rectangular Young
tableaux under the action of promotion. While the theorem is combinatorially easy
to state, his proof involves deep results about Kazhdan-Lusztig representations [36]
and a characterization of the dual canonical basis by Skandera [77]. We will start
by giving some background about Young tableaux.

A partition of n ∈ N is a weakly decreasing sequence of positive integers λ =
(λ1, λ2, . . . , λl) such that

∑

i λi = n. We use the notation λ ⊢ n for this concept
and call the λi parts. For example, the partitions of 4 are (4), (3, 1), (2, 2), (2, 1, 1),
and (1, 1, 1, 1). We will use exponents to denote multiplicities just as with multisets.
So (1, 1, 1, 1) = (14), (2, 1, 1) = (2, 12), and so forth. We will sometimes drop the
parentheses and commas to simplify notation. Partitions play an important role in
number theory, combinatorics, and representation theory. See the text of Andrews [1]
for more information.

Associated with any partition λ = (λ1, λ2, . . . , λl) is its Ferrers diagram, also
denoted λ, which consists of l left-justified rows of dots with λi dots in row i. We
let (i, j) stand for the position of the dot in row i and column j. For example, the
partition λ = (5, 4, 4, 2) has diagram

λ =

• • • • •
• • •
• • • •
• •

(7.1)

where the (2, 3) dot has been replaced by a square. Note that sometimes empty
boxes are used instead of dots. Also we are using English notation, as opposed to
the French version where the parts are listed bottom to top.

If λ ⊢ n is a Ferrers diagram, then a standard Young tableau, T , of shape λ is a
bijection T : λ → [n] such that rows and columns increase. We let SYT(λ) denote
the set of such tableaux and also

SYTn =
⋃

λ⊢n

SYT(λ).
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Also define
fλ = #SYT(λ).

To illustrate,

SYT(3, 2) =

{
1 2 3
4 5

,
1 2 4
3 5

,
1 2 5
3 4

,
1 3 4
2 5

,
1 3 5
2 4

}

so f (3,2) = 5. We let Ti,j denote the element in position (i, j) and write shT to
denote the partition which is T ’s shape. In Rhoades’ theorem, the cyclic sieving set
will be X = SYT(nm), a set of standard Young tableaux of rectangular shape.

Partitions and Young tableaux are intimately connected with representations of
the symmetric and general linear groups. Given g ∈ Sn, its cycle type is the partition
gotten by arranging g’s cycle lengths in weakly decreasing order. For example,
g = (1, 5, 2)(3, 7)(4, 8, 9)(6) has cycle type λ = (3, 3, 2, 1). Since the conjugacy
classes of Sn consist of all elements of the same cycle type, they are naturally
indexed by partitions λ ⊢ n. So by Theorem 4.1 (a), the partitions λ also index the
irreducible Sn-modules, V λ. In fact (see Theorem 2.6.5 in [65])

dimV λ = fλ. (7.2)

and there are various constructions which use Young tableaux of a given shape to
build the corresponding representation. Note that from Theorem 6.4 we obtain

∑

λ⊢n

(

fλ
)2

= n! (7.3)

If one ignores its representation theory provenance, equation (7.3) can be viewed
as a purely combinatorial statement about tableaux. So one could prove it com-
binatorially by finding a bijection between Sn and pairs (P,Q) of standard Young
tableaux of the same shape λ, with λ varying over all partitions of n. The algorithm
we will describe to do this is due to Schensted [68]. It was also discovered by Robin-
son [62] in a different form. A partial Young tableau will be a filling of a shape with
increasing rows and columns (but not necessarily using the numbers 1, . . . , n). We
first describe insertion of an element x into a partial tableau P with x 6∈ P .

1. Initialize with i = 1 and p = x.

2. If there is an element of row i of P larger than p, then remove the left-most
such element and put p in that position. Now repeat this step with i replaced
by i+ 1 and p replaced with the removed element.

3. When one reaches a row where no element of that row is greater then p, then
p is placed at the end of the row and insertion terminates with a new tableau,
Ix(P ).

The removals are called bumps and are defined so that at each step of the algorithm
the rows and columns remain increasing. For example, if

T =

1 3 5 6
2 8 9
7
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then inserting 4 gives

1 3 5 6 ← 4
2 8 9
7

,
1 3 4 6
2 8 9 ← 5
7

,
1 3 4 6
2 5 9
7 ← 8

,
1 3 4 6
2 5 9
7 8

= I4(T ).

We can now describe the map w 7→ (P,W ). Given w = w1w2 . . . wn in 1-line
notation, we build a sequence of partial tableaux P0 = ∅, P1, . . . , Pn = P where ∅ is
the empty tableau and Pk = Iwk

Pk−1 for all k ≥ 1. At the same time, we construct
a sequence Q0 = ∅, Q1, . . . , Qn = Q where Qk is obtained from Qk−1 by placing k
in the unique new position in Pk+1. To illustrate, if w = 31452 then we obtain

Pk :
∅
,

3
,

1
3
,

1 4
3

,
1 4 5
3

,
1 2 5
3 4

= P,

Qk :
∅
,

1
,

1
2
,

1 3
2

,
1 3 4
2

,
1 3 4
2 5

= Q.

This procedure is invertible. Given (Pk, Qk) then we find the position (i, j) of k in
Qk. We reverse the bumping process in Pk starting with the element in (i, j). The
element removed from the top row of Pk then becomes the kth entry of w. This

map is called the Robinson-Schensted correspondence and denoted w
R−S
7→ (P,Q).

We have proved the following result.

Theorem 7.1 For all n ≥ 0, the map w
R−S
7→ (P,Q) is a bijection

Sn
R−S
←→ {(P,Q) : P,Q ∈ SYTn, sh(P ) = sh(Q)}. �

In order to motivate the polynomial for Rhoades’ CSP, we describe a wonderful
formula due to Frame, Robinson, and Thrall [23] for fλ. The hook of (i, j) is the set
of cells to its right in the same row or below in the same column:

Hi,j = {(i, j
′) ∈ λ : j′ ≥ j} ∪ {(i′, j) ∈ λ : i′ ≥ i}.

The corresponding hooklength is hi,j = #Hi,j. The hook of (2, 2) in λ = (5, 4, 4, 2)
is indicated by crosses is the following diagram

• • • • •
• × × ×
• × • •
• ×

and so h2,2 = 5. The next result is called the Frame-Robinson-Thrall Hooklength
Formula.

Theorem 7.2 If λ ⊢ n then

fλ =
n!

∏

(i,j)∈λ

hi,j
. �
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To illustrate this theorem, the hooklengths for λ = (3, 2) are as follows

hi,j :
4 3 1
2 1

so f (3,2) = 5!/(4 · 3 · 2 · 12) = 5 as before. The polynomial which will appear in
Rhoades’ cyclic sieving result is a q-analogue of the Hooklength Formula

fλ(q) =
[n]q!

∏

(i,j)∈λ

[hi,j]q
(7.4)

where λ ⊢ n.
The only thing left to define is the group action and this will be done using

Schützenberger’s promotion operator [70]. Define (i, j) to be a corner of λ if neither
(i + 1, j) nor (i, j + 1) is in λ. The corners of λ displayed in (7.1) are (1, 5), (3, 4),
and (4, 2). Given T ∈ SYT(λ) we define its promotion, ∂T , by an algorithm.

1. Replace T1,1 = 1 by a dot.

2. If the dot is in position (i, j) then exchange it with with Ti+1,j or Ti,j+1,
whichever is smaller. (If only one of the two elements exist, use it for the
exchange.) Iterate this step until (i, j) becomes a corner.

3. Subtract 1 from all the elements in the array, and replace the dot in corner
(i, j) by n to obtain ∂T .

The exchanges in the second step are called slides. Note that the slides are con-
structed so that at every step of the process the array has increasing rows and
columns and so ∂T ∈ SYT(λ). By way of illustration, if

T =
1 3 5
2 4 6
7

(7.5)

then we get the sliding sequence

• 3 5
2 4 6
7

,
2 3 5
• 4 6
7

,
2 3 5
4 • 6
7

,
2 3 5
4 6 •
7

,
1 2 4
3 5 7
6

= ∂T.

It is easy to see that the algorithm can be reversed step-by-step, and so promotion
is a bijection on SYT(λ). Thus the operator generates a group 〈∂〉 acting on standard
Young tableaux of given shape. In general, the action seems hard to describe, but
things are much nicer for certain shapes. In particular, we have the following result
of Haiman [30].

Theorem 7.3 If λ = (nm) then ∂mn(T ) = T for all T ∈ SYT(λ). �
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For example, if λ = (32) then ∂ has cycle decomposition

∂ =

(
1 2 3
4 5 6

,
1 2 5
3 4 6

,
1 3 4
2 5 6

)(
1 2 4
3 5 6

,
1 3 5
2 4 6

)

(7.6)

from which one sees that ∂6 is the identity map in agreement with the previous
theorem.

We can now state one of the main results in Rhoades’ paper [60].

Theorem 7.4 If λ = (nm) then the triple

(

SYT(λ), 〈∂〉, fλ(q)
)

exhibits the cyclic sieving phenomenon. �

Rhoades also has a corresponding theorem for promotion of semistandard Young
tableaux of shape λ, a generalization of standard Young tableaux where repeated
entries are allowed which will be discussed in Section 9. The polynomial used is the
principal specialization of the Schur function sλ, a symmetric function which can
be viewed either as encoding the character of the irreducible module V λ or as the
generating function for semistandard tableaux. Both the standard and semistandard
results were originally conjectured by Dennis White.

8 Variations on a theme

We will now mention several papers which have been inspired by Rhoades’ work.
Stanley [81] asked if there were a more elementary proof of Theorem 7.4. A step
in this direction for rectangles with 2 or 3 rows was given by Petersen, Pylyavskyy,
and Rhoades [53] who reformulated the theorem in a more geometric way. We will
describe how this is done in the 2-row case in detail.

A (complete) matching is a graph, M , with vertex set [2n] and n edges no two
of which share a common vertex. The matching is noncrossing if it does not contain
a pair of edges ab and cd with

a < c < b < d (8.1)

Equivalently, if the vertices are arranged in order around a circle, say counter-
clockwise, then no pair of edges intersect. The 5 noncrossing matchings on [6] are
displayed in Figure 1 below. There is a bijection between SYT(n2) and noncrossing
matchings on [2n] as follows.

A ballot sequence of length n is a sequence B = b1b2 . . . bn of positive integers
such that for all prefixes b1b2 . . . bm and all i ≥ 1, the number of i’s in the prefix
is at least as great as the number of (i + 1)’s. (One thinks of counting the votes
in an election where at every stage in the count, candidate i is doing at least as
well as candidate i + 1.) If λ ⊢ n then there is a map from tableaux T ∈ SYTn to
ballot sequences of length n: let bm = i if m is in the ith row of T . The T in (7.5)
has corresponding ballot sequence B = 1212123. It is easy to see that the row and
column conditions on T force B to be a ballot sequence. And it is also a simple
matter to construct the inverse of this map, so it is a bijection.
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∂ =




 1

23

4

5 6

, 1

23

4

5 6

, 1

23

4

5 6









 1

23

4

5 6

, 1

23

4

5 6






Figure 1: The action of ∂ on matchings

To make the connection with noncrossing matchings, suppose T ∈ SYT(n2)
and form a corresponding sequence of parentheses by replacing each 1 in its ballot
sequence by a left parenthesis and each 2 with a right. Now match the parentheses,
and thus their corresponding elements of T , in the usual way: if a left parenthesis
is immediately followed by a right parenthesis they are considered matched, remove
any matched pairs and recursively match what is left. The fact that the parentheses
form a ballot sequence ensures that one gets a noncrossing matching. And the fact
that one starts with a tableau of shape (n, n) ensures that the matching will be
complete. For example,

T =
1 2 4 5
3 6 7 8

7→
1 2 3 4 5 6 7 8
( ( ) ( ( ) ) )

7→M : 18, 23, 47, 56

where numbers are shown above the corresponding parentheses and the matching is
specified by its edges. Again, an inverse is simple to construct so we have a bijection.

Applying this map to the tableaux displayed in (7.6) gives the matching descrip-
tion of ∂ in Figure 1. Clearly these cycles are obtained by rotating the matchings
clockwise, and it is not hard to prove that this is always the case. As mentioned
in [53], this interpretation of promotion was discovered, although never published,
by Dennis White. Note that this viewpoint makes it clear that ∂2n(T ) = T , a spe-
cial case of Theorem 7.3. Petersen, Pylyavskyy, and Rhoades use this setting and
Springer’s theory of regular elements to give a short proof of the following result
which is equivalent to Theorem 7.4 when m = 2.

Theorem 8.1 Let NCM(2n) be the set of noncrossing matchings on 2n vertices and
let R be rotation clockwise through an angle of π/n. Then the triple

(

NCM(2n), 〈R〉, f (n,n)(q)
)

exhibits the cyclic sieving phenomenon. �

This trio of authors applies similar ideas to the 3-row case by replacing noncrossing
matchings with A2 webs. Webs were introduced by Kuperberg [45] to index a basis
for a vector space used to describe the invariants of a tensor product of irreducible
representations of a rank 2 Lie algebra.

Westbury [87] was able to generalize the Petersen-Pylyavskyy-Rhoades proof
to a much wider setting. To understand his contribution, consider the coinvariant
algebra, A, for a Coxeter group W as defined by (6.4). If V λ is an irreducible module
of W , then the corresponding fake degree polynomial is

F λ(q) =
∑

d≥0

mdq
d (8.2)
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where md is the multiplicity of V λ in the dth graded piece of A. We can extend this
to any representation V of W by linearity. That is, write V =

∑

λ nλV
λ in terms of

irreducibles and then let
F V (q) =

∑

λ

nλF
λ(q).

Since the coinvariant algebra is W -isomorphic to the regular representation, Theo-
rem 6.4 for W = An and (7.2) imply that

F λ(1) = fλ (8.3)

so that the fake degree polynomial is a q-analogue of the number of standard Young
tableaux. It can be obtained from the q-Hooklength Formula (7.4) by multiplying
by an appropriate power of q.

The next result, which can be found in Westbury’s article [87], follows easily
from Proposition 4.5 in Springer’s original paper [78].

Theorem 8.2 Let W be a finite complex reflection group and let C ≤ W be cycli-
cally generated by a regular element g. Let V be a W -module with a basis B such
that gB = B. Then the triple

(
B, C, F V (q)

)

exhibits the cyclic sieving phenomenon. �

Petersen-Pylyavskyy-Rhoades used webs of types A1 and A2 for the bases B, and
the irreducible symmetric group modules V (n,n) and V (n,n,n) to determine the fake
degree polynomials. Westbury is able to produce many interesting results by using
other bases and any highest weight representation of a simple Lie algebra. Crystal
bases and Lusztig’s theory of based modules [48, Ch. 27–28] come into play.

A CSP related to Rhoades’ was studied by Petersen and Serrano [54]. Consider
the Coxeter group Bn with generating set {s1, s2, . . . , sn} where s1 is the special
element corresponding to the endpoint of the Dynkin diagram adjacent to the edge
labeled 4. Every finite Coxeter group has a longest element which is w0 with l(w0) >
l(w) for all w ∈ W \ {w0}. Let R(w0) denote the set of reduced expressions for w0

in Bn where ℓ(w0) = n2. We will represent each such expression by the sequence
of its subscripts. For example, in B3 the expression w0 = s1s3s2s3s1s2s3s1s2 would
become the word 132312312. Act on R(w0) by rotation, i.e., remove the first element
of the sequence and move it to the end. In our example, 132312312 7→ 323123121.
(One has an analogous action in any Coxeter system (W,S) with S simple where, if
si rotates from the front of w0, then at the back it is replaced by sj = w0siw0 which
is also simple. In type Bn, one has the nice property that si = sj.) For the final
ingredient, it is easy to see that the definitions of the permutation statistics from
Section 5 all make sense when applied to sequences of integers.

The main theorem of Petersen and Serrano [54] can now be stated as follows.
We will henceforth use CN to denote a cyclic group of cardinality N .

Theorem 8.3 In Bn, let Cn2 be the cyclic group of rotations of elements of R(w0).
Then the triple (

R(w0), Cn2 , q−n(n2)fmaj(R(w0; q))
)
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exhibits the cyclic sieving property. �

They prove this result by using bijections due to Haiman [29, 30] to relate promotion
on tableaux of shape (nn) to rotation of words in R(w0). In fact, they also show

q−n(n2)fmaj(R(w0; q)) = f (nn)(q)

where the latter is the q-analogue of the Hooklength Formula (7.4). The tableaux
version of the previous theorem also appeared in [60], but the proof had gaps which
Petersen and Serrano succeeded in filling.

Pon and Wang [55] have made steps towards finding an analogue of Rhoades’
result for staircase tableaux. The staircase shape is the one corresponding to the
partition scn = (n, n − 1, . . . , 1). Note that scn ⊢

(n+1
2

)
. The following result of

Edelman and Greene [15] shows that staircase tableaux are also well behaved with
respect to promotion.

Theorem 8.4 We have ∂(
n+1

2 )(T ) = T t for all T ∈ SYT(scn) where t denotes
transpose. �

Haiman [30] has a theory of “generalized staircases” which considers for which par-
titions λ ⊢ N , ∂N (T ) has a nice description for all T ∈ SYT(λ). It includes Theo-
rems 7.3 and 8.4.

Note that we have ∂n(n+1)(T ) = T for all T ∈ SYT(nn+1) as well as for all
T ∈ SYT(scn). So it is natural to try and relate these two sets of tableaux and
the action of promotion on them. In particular, Pon and Wang define an injection
ι : SYT(scn) → SYT(nn+1) commuting with ∂. To construct this map, we need
another operation of Schützenberger called evacuation [69]. Given T ∈ SYT(λ)
where λ ⊢ N , we create its evacuation, ǫ(T ), by doing N promotions. After the ith
promotion, one puts N−i+1 in the ending position of the dot and this element does
not move in any further promotions. The slide sequence for a promotion terminates
when the position (i, j) of the dot is such that (i+1, j) is either outside λ or contains
a fixed element, and the same is true of (i, j + 1). We will illustrate this on

T =
1 3 6
2 4
5

(8.4)

where fixed elements will be typeset in boldface:

T =
1 3 6
2 4
5

∂
7→

1 2 5
3 6
4

∂
7→

1 4 5
2 6
3

∂
7→

1 3 5
2 6
4

∂
7→

1 2 5
3 6
4

∂
7→

1 2 5
3 6
4

∂
7→

1 2 5
3 6
4

= ǫ(T ).

Now given T ∈ SYT(scn) we define ι(T ) as follows. Construct ǫ(T ) and comple-
ment each entry, x, by replacing it with n(n + 1) + 1 − x. Then reflect the result-
ing tableau in the anti-diagonal. Finally, paste T and the reflected-complemented
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tableau together along their staircase portions to obtain ι(T ) of shape (nn+1). Con-
tinuing the example (8.4), we see that the complement of ǫ(T ) is

12 11 8
10 7
9

so that

ι(T ) =

1 3 6
2 4 8
5 7 11
9 10 12

.

As mentioned, Pon and Wang [55] prove the following result about their map ι.

Theorem 8.5 We have
∂(ι(T )) = ι(∂(T )).

for all T ∈ SYT(scn). �

To get a CSP for staircase tableaux, one needs an appropriate polynomial. The
previous theorem permits one to obtain information about the cycle structure of
the action of ∂ on staircase tableaux from what is already know about rectangular
tableaux. It is hoped that this will aid in the search for the correct polynomial.

9 Multiple groups and multiple statistics

It is natural to ask whether the cyclic sieving phenomenon can be extended to
other groups. Indeed, it is possible to define an analogue of the CSP for Abelian
groups by considering them as products of cyclic groups. For this we will also need
to use multiple statistics, one for each cyclic group. In this section we examine this
idea, restricting to the case of two cyclic groups to illustrate the ideas involved.

Bicyclic sieving was first defined by Barcelo, Reiner, and Stanton [4]. Recall that
Ω is the (infinite) group of roots of unity.

Definition 9.1 Let X be a finite set. Let C,C ′ be finite cyclic groups with C ×C ′

acting on X, and fix embeddings ω : C → Ω, ω′ : C ′ → Ω. Let f(q, t) ∈ N[q, t]. The
triple (X,C × C ′, f(q, t)) exhibits the bicyclic sieving phenomenon or biCSP if, for
all (g, g′) ∈ C × C ′, we have

#X(g,g′) = f(ω(g), ω′(g′)). (9.1)

Note that in the original definition of the CSP we did not insist on an embedding
of C in Ω but just used any root of unity with the same order as g (although Reiner,
Stanton, andWhite did use an embedding in the definition from their original paper).
But this does not matter because if evaluating f(q) ∈ R[q] at a primitive dth root
of unity gives a real number, then any dth root will give the same value. But
in the definition of the biCSP the choice of embeddings can make the difference
whether (9.1) holds or not. To illustrate this, we use an example from a paper of
Berget, Eu, and Reiner [5].
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Take X = {1, ω, ω2} where ω = exp(2πi/3) and let C = C ′ = X. Define the
action of any (α, β) ∈ C × C ′ on γ ∈ X by

(α, β)γ = αβγ

where on the right multiplication is being done in C. Finally, consider the polynomial

f(q, t) = 1 + ut+ u2t2.

If for the embeddings one takes identity maps, then it is easy to verify case-by-case
that (X,C×C ′, f(q, t)) exhibits the biCSP. But if one modifies the embedding of C ′

to be the one which takes ω → ω−1 then this is false. For example, consider (ω, ω)
whose action on X is the cycle (1, ω2, ω). Using the first embedding pair we find
f(ω, ω) = 1+ω2+ω = 0 reflecting the fact that there are no fixed points. However,
if one uses the second pair then the computation is f(ω, ω−1) = 1+1+ 1 = 3 which
does not agree with the action.

Part of the motivation for studying the biCSP was to generalize the notion
of a bimahonian distribution to other Coxeter groups W . It was observed by
Foata and Schützenberger [19] that certain pairs of Mahonian statistics such as
(maj(w), inv(w)) and (maj(w),maj(w−1)) had the same joint distribution over Sn.
To define a corresponding bivariate distribution onW , consider a field automorphism
σ lying in the Galois group Gal(Q[exp(2πi/m)]/Q) where m is taken large enough
so that the extension Q[exp(2πi/m)] of Q contains all the matrix entries of all ele-
ments in the reflection representation of W . Use the fake degree polynomials (8.2)
to define the σ-bimahonian distribution on W by

F σ(q, t) =
∑

V λ

F σ(λ)(q)F λ(t)

where the sum is over all irreducible V λ, and V σ(λ) and V λ are the modules defined
(via Theorem 4.1 (c)) by the characters

χσ(λ)(w) = σ(χλ(w)) and χλ(w) = χλ(w)

for all w ∈W .
To apply Springer’s theory in this setting, suppose g and g′ are regular elements

of W with regular eigenvalues ω and ω′, respectively. Consider the embeddings of
C = 〈g〉 and C ′ = 〈g′〉 into Ω uniquely defined by mapping g 7→ ω−1 and g′ 7→ (ω′)−1.
(The reason for using inverses should be clear from the proof of Proposition 6.2.)
Given σ as above, pick s ∈ N so that σ(ω) = ωs. In this setting, Barcelo, Reiner,
and Stanton [4] prove the following result.

Theorem 9.2 Let W be a finite complex reflection group with regular elements g, g′.
With the above notation, consider the σ-twisted action of 〈g〉× 〈g′〉 on W defined by

(g, g′)w = gsw(g′)−1.

Then the triple
(
W, 〈g〉 × 〈g′〉, F σ(q, t)

)

exhibits the bicyclic sieving phenomenon. �
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Reiner, Stanton and White had various conjectures about biCSPS exhibited by
action on nonnegative integer matrices via row and column rotation. These were
communicated to Rhoades and proved by him in [61]. To talk about them, we will
need some definitions. A composition of n of length l is a (not necessarily weakly
decreasing) sequence µ = (µ1, µ2, . . . , µl) of nonnegative integers with

∑

i µi = n.
We write µ |= n and ℓ(µ) = l. A semistandard Young tableau of shape λ and content
µ is a function T : λ → P (where P is the positive integers) such that rows weakly
increase, columns strictly increase, and µk is the number of k’s in T . For example,

T =
1 1 1 2 3 5
2 3 3 3
5 5

is a semistandard tableau of shape (6, 4, 2) and content (3, 2, 4, 0, 3). We write ctT =
µ to denote the content and let

SSYT(λ, µ) = {T : shT = λ and ctT = µ}.

The Kostka numbers are

Kλ,µ = #SSYT(λ, µ).

Note that if λ ⊢ n then Kλ,(1n) = fλ, the number of standard Young tableaux.

Just like fλ, the Kλ,µ have a nice representation theoretic interpretation. Given
µ = (µ1, µ2, . . . , µl) |= n there is a corresponding Young subgroup of Sn which is

Sµ = S{1,2,...,µ1} ×S{µ1+1,µ1+2,...,µ1+µ2} × · · · ×S{n−µl+1,n−µl+2,...,n}

where for any setX we letSX be the group of permutations ofX. Consider the usual
action of Sn on left cosets Sn/Sµ and let Mµ be the corresponding permutation
module. Decomposing into Sn-irreducibles gives

Mµ =
∑

λ

Kλ,µV
λ,

so that the Kostka numbers give the multiplicities of this decomposition. The poly-
nomials which appear in these biCSPs are a q-analogue of theKλ,µ called the Kostka-
Foulkes polynomials, Kλ,µ(q). We will not give a precise definition of them, but just
say that they can be viewed in a couple of ways. One is as the elements of transition
matrices between the Schur functions and Hall-Littlewood polynomials (another ba-
sis for the algebra of symmetric functions over the field Q(q)). Another is as the
generating function for a statistic called charge on semistandard tableaux which was
introduced by Lascoux and Schützenberger [46].

Knuth [38] generalized the Robinson-Schensted correspondence in Theorem 7.1
to semistandard tableaux. Given compositions µ, ν |= n let Matµ,ν denote the set
of all matrices with nonnegative integer entries whose row sums are given by µ and
whose column sums are given by ν. For example,

Mat(2,1),(1,0,2) =

{[
1 0 1
0 0 1

]

,

[
0 0 2
1 0 0

]}

.
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Note that Mat(1n),(1n) is the set of n× n permutation matrices.
Given M ∈ Matµ,ν we first convert the matrix into a two-rowed array with the

columns lexicographically ordered (the first row taking precedence) and column i
j

occurring Mi,j times. To illustrate,

M =

[
1 2 0
1 0 1

]

7→
1 1 1 2 2
1 2 2 1 3

.

Now use the same insertion algorithm as for the Robinson-Schensted correspondence
to build a semistandard tableau P from the elements of the bottom line of the array,
while the elements of the top line are placed in a tableau Q to maintain equalities
of shapes,

Pk :
∅
,

1
,

1 2
,

1 2 2
,

1 1 2
2

,
1 1 2 3
2

= P,

Qk :
∅
,

1
,

1 1
,

1 1 1
,

1 1 1
2

,
1 1 1 2
2

= Q.

We denote this map by M
R−S−K
7→ (P,Q). Reversing the steps of the algorithm is

much like the standard tableau case once one realizes that during insertion equal
elements enter into Q from left to right. Also, it should be clear that applying this
map to permutation matrices corresponds with the original algorithm. So the full
Robinson-Schensted-Knuth Theorem [38] is as follows.

Theorem 9.3 For all µ, ν |= n, the map M
R−S−K
7→ (P,Q) is a bijection

Matµ,ν
R−S−K
←→ {(P,Q) : ctP = ν, ctQ = µ, shP = shQ}. �

To motivate Rhoades’ result, note that by specializing Theorem 9.2 to type A,
one can obtain the following theorem.

Theorem 9.4 Let Cn × Cn act on n× n permutation matrices by rotation of rows
in the first component and of columns in the second. Then

(

Mat(1n),(1n), Cn × Cn, ǫn(q, t)
∑

λ⊢n

Kλ,(1n)(q)Kλ,(1n)(t)

)

exhibits the bicyclic sieving phenomenon, where

ǫn(q, t) =

{
(qt)n/2 if n is even,
1 if n is odd.

�

It is natural to ask for a generalization of this theorem to tableaux of arbitrary con-
tent, and that is one of the conjectures demonstrated by Rhoades in [61]. The proof
uses a generalization of the R-S-K correspondence due to Stanton and White [82].

Theorem 9.5 Let µ, ν |= n have cyclic symmetries of orders a|ℓ(µ) and b|ℓ(ν),
respectively. Let Cℓ(µ)/a×Cℓ(ν)/b act on Matµ,ν by a-fold rotation of rows in the first
component and b-fold rotation of columns in the second. Then

(

Matµ,ν , Cℓ(µ)/a × Cℓ(ν)/b, ǫn(q, t)
∑

λ⊢n

Kλ,µ(q)Kλ,ν(t)

)
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exhibits the bicyclic sieving phenomenon. �

Rather than considering two Mahonian statistics, one could take one Mahonian
and one Eulerian. Given two statistics, st and st′ on a set X we let

f st,st′(X; q, t) =
∑

y∈X

qst ytst
′ y.

Through their study of Rees products of posets, Shareshian and Wachs [72, 73, 74]
were lead to consider the pair (maj, exc). They proved, among other things, the
following generalization of (5.5)

∑

n≥0

fmaj,exc(Sn; q, t)
xn

[n]q!
=

(1− tq) expq(x)

expq(qtx)− qt expq(x)
,

where

expq(x) =
∑

n≥0

xn

[n]q!
.

(Actually, they proved a stronger result which also keeps track of the number of
fixed points of w, but that will not concern us here.)

Sagan, Shareshian, and Wachs [67] used the Eulerian quasisymmetric functions
as developed in the earlier papers by the last two authors, as well as a result of
Désarménien [14] about evaluating principal specializations at roots of unity, to
demonstrate the following cyclic sieving result. Note the interesting feature that
one must take the difference maj− exc.

Theorem 9.6 Consider the action of the symmetric group on itself by conjugation
and let S(λ) denote the conjugacy class of permutations of cycle type λ ⊢ n. Then
the triple

(
S(λ), 〈(1, 2, . . . , n)〉, fmaj,exc

(
S(λ); q, q−1

) )

exhibits the cyclic sieving phenomenon. �

10 Catalan CSPs

We will now consider cyclic sieving phenomena where analogues of the Catalan
numbers play a role. These will include noncrossing partitions and facets of cluster
complexes. Noncrossing matchings have already come into play in Theorem 8.1.

A set partition of a finite set X is a collection π = {B1, B2, . . . , Bk} of nonempty
subsets such that ⊎iBi = X where ⊎ denotes disjoint union. We write π ⊢ X and the
Bi are called blocks. A set partition π ⊢ [n] is called noncrossing if condition (8.1)
never holds when a, b are in one block of π and c, d are in another. Equivalently, with
the usual circular arrangement of 1, . . . , n, the convex hulls of different blocks do not
intersect. Let NC(n) denote the set of noncrossing partitions of [n]. Noncrossing
partitions were introduced by Kreweras [44] and much information about them can
be found in the survey article of Simion [76] and the memoir of Armstrong [2].

The noncrossing partitions are enumerated by the Catalan numbers

#NC(n) = Catn
def
=

1

n+ 1

(
2n

n

)

.
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(Often in the literature Cn is used to denote the nth Catalan number, but this
would conflict with our notation for cyclic groups.) These numbers have already
been behind the scenes as we also have #SYT(n, n) = #NCM(2n) = Catn. There
are a plethora of combinatorial objects enumerated by Catn, and Stanley maintains
a list [79] which the reader can consult for more examples.

A q-analogue of Catn,

Catn(q) =
1

[n+ 1]q

[
2n
n

]

q

,

was introduced by Fürlinger and Hofbauer [25]. The following result follows from
Theorem 7.2 in Reiner, Stanton, and White’s original paper [58] where they proved
a more refined version which also keeps track of the number of blocks.

Theorem 10.1 Let Cn act on NC(n) by rotation. Equivalently, let g ∈
〈(1, 2, . . . , n)〉 act on π = {B1, B2, . . . , Bk} ∈ NC(n) by gπ = {gB1, gB2, . . . , gBn}
where gBi is defined by (2.2). Then the triple

( NC(n), Cn, Catn(q) )

exhibits the cyclic sieving phenomenon. �

In [8], Bessis and Reiner generalize this theorem to certain complex reflection
groups. First consider a finite Coxeter group W of rank n. It can be shown that we
always have a factorization

f ℓ(W ; q) =
∑

w∈W

qℓ(w) =

n∏

i=1

[di]q

where the positive integers d1 ≤ d2 ≤ . . . ≤ dn are called the degrees of W . For
example, if W = An

∼= Sn+1, then by equation (5.2) and Proposition 5.2 we have

f ℓ(An; q) = [2]q[3]q · · · [n+ 1]q

so that di = i + 1 for 1 ≤ i ≤ n. Table 3 lists the degrees of the irreducible finite
Coxeter groups.

There is another description of the degrees which will clarify their name and
is valid for complex reflection groups, not just Coxeter groups. Let W be a finite
group acting irreducibly (i.e., having no invariant subspace) on Cn by reflections.
We call n the rank of W and write rkW = n. Let Xn = {x1, x2, . . . , xn} be a set
of variables. Then the invariant space C[Xn]

W is a free algebra. Each algebraically
independent set of homogeneous generators has the same set of degrees which we will
call d1, d2, . . . , dn. These di are exactly the same as in the Coxeter setting. Returning
to An again, we have the natural action on C[Xn+1]. But each of the reflecting
hyperplanes xi = xj is perpendicular to the hyperplane x1 + x2 + · · · + xn+1 = 0,
and so to get a space whose dimension is the rank, we need to consider the quotient
C[Xn+1]

An/(x1 + x2 + · · · + xn+1). It is well known that the algebra C[Xn+1]
An

is generated freely by the complete homogeneous symmetric polynomials hk(Xn+1)
where 1 ≤ k ≤ n+ 1. But in the quotient h1(Xn+1) = x1 + x2 + · · · + xn+1 = 0, so
we only need to consider the generators of degrees 2, 3, . . . , n+ 1.
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Group Degrees

An 2, 3, 4, . . . , n+ 1
Bn 2, 4, 6, . . . , 2n
Dn 2, 4, 6 . . . , 2n − 2, n
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30
F4 2, 6, 8, 12
H3 2, 6, 10
H4 2, 12, 20, 30

I2(m) 2,m

Table 3: The degrees of the irreducible finite Coxeter groups

It will also be instructive to see how one can modify the length definition in
the complex case. Let R denote the set of reflections in W . So if W is a finite
Coxeter group with generating set S then R = {wsw−1 : w ∈ W, s ∈ S}. In any
finite complex reflection group, define the absolute length of w ∈ W , ℓR(w), to be
the shortest length of an expression w = r1r2 · · · rk with ri ∈ R for all i. We have
another factorization

f ℓR(W ; q) =
∑

w∈W

qℓR(w) =

n∏

i=1

(1 + (di − 1)q)

where the di are again the degrees of W .
There is one last quantity which we will need to define the analogue of NC(n).

It is called the Coxeter number , h, of a complex reflection group W . Unfortunately,
there are two competing definitions of h. One is to let h = dn, the largest of the
degrees. The other is to set h = (#R+#H)/n where H is the set of reflecting hy-
perplanes of W . But happily these two conditions coincide when W is well generated
which means that it has a generating set of reflections of cardinality rkW = n. Note
that this includes the finite Coxeter groups. Under the well-generated hypothesis,
W will also contain a regular element g of order h. As defined by Brady and Watt
in the real case [10] and Bessis in the complex [6, 7], the noncrossing elements in W
are

NC(W ) = {w ∈W : ℓR(w) + ℓR(w
−1g) = ℓR(g)}.

We note that ℓR(g) = rkW = n. We will let 〈g〉 act on NC(W ) by conjugation.
(One needs to check that this is well defined.)

To see how this relates to NC(n), map each element of NC(An−1) to the partition
whose blocks are the cycles of π considered as unordered sets. (A similar idea is
behind Lemma 2.2.) Then this is a bijection with NC(n). To illustrate,let n = 3
and g = (1, 2, 3). A case-by-case check using the definition yields

NC(A2) = {(1)(2)(3), (1, 2)(3), (1, 3)(2), (1)(2, 3), (1, 2, 3)}.

So the image of this set is all partitions of [3] which is NC(3) since (8.1) can not be
true with only three elements.
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The polynomial in the cyclic sieving result will be

Cat(W ; q) =
n∏

i=1

[h+ di]q
[di]q

.

For example

Cat(An−1; q) =
n−1∏

i=1

[n+ i+ 1]q
[i+ 1]q

= Catn(q).

It can be shown [6, 10] that

Cat(W ; 1) = #NC(W ).

We can now state the Bessis-Reiner result [8].

Theorem 10.2 Let the finite irreducible complex reflection group W be well gener-
ated. Let g be a regular element of order h and let 〈g〉 act on NC(W ) by conjugation.
Then

( NC(W ), 〈g〉, Cat(W ; q) )

exhibits the cyclic sieving phenomenon. �

The Catalan numbers can be generalized to the Fuss-Catalan numbers which are
defined by

Catn,m =
1

mn+ 1

(
(m+ 1)n

n

)

.

Note that Catn,1 = Catn. The Fuss-Catalan numbers count, among other things,
the m-divisible noncrossing partitions in NC(mn), i.e., those which have all their
block sizes divisible by m. So, for example, Cat2,2 =

(6
2

)
/5 = 3 corresponding to the

partitions {12, 34}, {14, 23}, and {1234}. (As usual, we are suppressing some set
braces and commas.)

A natural q-analogue of the Fuss-Catalan numbers for any well-generated finite
complex reflection group of rank n is

Cat(m)(W ; q) =
n∏

i=1

[mh+ di]q
[di]q

.

Armstrong [2] has constructed a set counted by Cat(m)(W ; 1). As before, consider
a regular element g of W having order h. Define

NC(m)(W ) =






(w0, w1, . . . , wm) ∈Wm+1 : w0w1 · · ·wm = g,

m∑

i≥0

ℓR(wi) = ℓR(g)






.

Armstrong also defined two actions of g on NC(m)(W ) and made corresponding
cyclic sieving conjectures about them. These have been proved by Krattenthaler [41]
for the two infinite 2-parameter families of finite irreducible well-generated complex
reflection groups, and by Krattenthaler and Müller [42, 43] for the exceptional ones.
One of the actions is

g(w0, w1, w2, . . . , wm) = (gwmg−1, w0, w1, . . . , wm−1). (10.1)

This generates a group C(m+1)h acting on NC(m)(W ).
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Φ Π

An e1 − e2, e2 − e3, . . . , en−1 − en, en − en+1

Bn e1 − e2, e2 − e3, . . . , en−1 − en, en
Cn e1 − e2, e2 − e3, . . . , en−1 − en, 2en
Dn e1 − e2, e2 − e3, . . . , en−1 − en, en−1 + en

Table 4: The simple roots in types A-D

Theorem 10.3 Let the finite irreducible complex reflection group W be well gen-
erated. Let g be a regular element of order h and let C(m+1)h act on NC(m)(W )
by (10.1). Then

(

NC(m)(W ), C(m+1)h, Cat(m)(W ; q)
)

exhibits the cyclic sieving phenomenon. �

We should mention that Gordon and Griffeth [26] have defined a version of the
q-Fuss-Catalan polynomials for all complex reflection groups which specializes to
Cat(m)(W ; q) when W is well generated. The primary ingredients of their construc-
tion are Rouquier’s formulation of shift functors for the rational Cherednik algebras
of W [64], and Opdam’s analysis of permutations of the irreducible representations
of W arising from the Knizhnik-Zamolodchikov connection [51]. Furthermore, plug-
ging roots of unity into the Gordon-Griffeth polynomials yields nonnegative integers.
But finding a corresponding CSP remains elusive.

There is another object enumerated by Cat(W ; 1) when W is a Coxeter group,
namely facets of cluster complexes. Cluster complexes were introduced by Fomin
and Zelevinsky [22] motivated by their theory of cluster algebras. To define them, we
need some background on root systems. Rather than take an axiomatic approach,
we will rely on examples and outline the necessary facts we will need. The reader
wishing details can consult the texts of Fulton and Harris [24] or Humphreys [33].

To every real reflection group W is associated a root system, Φ = ΦW , which
consists of a set of vectors called roots perpendicular to the reflecting hyperplanes.
Each hyperplane has exactly two roots perpendicular to it and they are negatives of
each other. We require that Φ span the space on which W acts. So, as above, when
W = An we have to restrict to the hyperplane x1 + x2 + · · · + xn+1 = 0. Finally,
W must act on Φ. To illustrate, if W = An then the roots perpendicular to the
hyperplane xi = xj are taken to be ±(ei − ej) where ei is the ith unit coordinate
vector. Let Π = {α1, α2, . . . , αn} be a set of simple roots which correspond to the
simple reflections s1, s2, . . . , sn. For groups of type A-D the standard choices for
simple roots are listed in Table 4. Note that there are two root systems Bn and Cn

associated with the type B group depending on whether one considers it as the set
of symmetries of a hypercube or a hyperoctahedron, respectively. In fact, this group
is sometimes referred to as BCn.

One can find a hyperplane H which is not a reflecting hyperplane such that all
αi ∈ Π lie on the same side of H. Since the roots come in opposite pairs, half of them
will lie on the same side of H as the simple roots and these are called the positive
roots, Φ>0. The rest of the roots are called negative. The simple roots form a basis
for the span 〈Φ〉 and every positive root can be written as a linear combination of
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α1

α1 + α2α2

−α1

−α2

Figure 2: The roots in Φ≥−1 for type A2

the simple roots with positive coefficients. In type A one can take H to be any plane
of the form c1x1 + c2x2 + · · · + cn+1xn+1 = 0 where c1 > c2 > . . . > cn+1 > 0. In
this case Φ>0 = {ei − ej : i < j} and we can write

ei − ej = αi + αi+1 + · · ·+ αj−1

where αk = ek − ek+1 ∈ Π for 1 ≤ k ≤ n.
Take the union of the positive roots with the negatives of the simple roots to get

Φ≥−1 = Φ>0 ∪ (−Π).

For example, if Φ is of type A2, then Φ≥−1 = {α1, α2, α1+α2,−α1,−α2} as displayed
in Figure 2.

Take any partition [n] = I+⊎I− such that the nodes indexed by I+ in the Dynkin
diagram of W are totally disconnected, and the same is true for I−. Note that this
means that the reflections in Iǫ commute for ǫ ∈ {+,−}. Next, define a pair of
involutions τ± : Φ≥−1 → Φ≥−1 by

τǫ(α) =







α if α = −αi for i ∈ I−ǫ,
(
∏

i∈Iǫ

si

)

(α) otherwise.

Since the roots in Iǫ commute, the product is well defined. Returning to our example,
let I+ = {1} and I− = {2}, Table 5 displays the images of each root in Φ≥−1 under
τ+ and τ−.

Consider the product Γ = τ−τ+ (where maps are composed right-to-left) and the
cyclic group 〈Γ〉 it generates acting on Φ≥−1. In the running example, Γ consists of
a single cycle

Γ = ( α1, −α1, α1 + α2, −α2, α2 ).

This map induces a relation of compatibility , α ∼ β, on Φ≥−1 defined by the following
two conditions.
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α τ+(α) τ−(α)

α1 −α1 α1 + α2

α2 α1 + α2 −α2

α1 + α2 α2 α1

−α1 α1 −α1

−α2 −α2 α2

Table 5: The images of τ+ and τ−

1. For −αi ∈ −Π and β ∈ Φ>0 we have −αi ∼ β if and only if αi does not occur
in the simple root expansion of β.

2. For all α, β ∈ Φ≥−1 we have α ∼ β if and only if Γ(α) ∼ Γ(β).

In our example, −α1 ∼ α2 by the first condition. Then repeated application of the
second yields α ∼ β for all α, β ∈ Φ≥−1 when W = A2.

The cluster complex , ∆(Φ), is the abstract simplicial complex (i.e., a family
of sets called faces closed under taking subsets) consisting of all sets of pairwise
compatible elements of Φ≥0. So in the A2 case, ∆(Φ) consists of a single facet
(maximal face) which is all of Φ≥−1. The faces of ∆(Φ) can be described in terms of
dissections of polygons using noncrossing diagonals. Using this interpretation, Eu
and Fu [16] prove the following result.

Theorem 10.4 Let W be a finite Coxeter group and let Φ be the corresponding root
system. Let ∆max(Φ) be the set of facets of the cluster complex ∆(Φ). Then the
triple

( ∆max(Φ), 〈Γ〉, Cat(W ; q) )

exhibits the cyclic sieving phenomenon. �

In fact, Eu and Fu strengthened this theorem in two ways: by looking at the faces of
dimension k and by considering an m-divisible generalization of the cluster complex
due to Fomin and Reading [20].

11 A cyclic sieving miscellany

Here we collect some topics not previously covered. These include methods for
generating new CSPs from old ones, sieving for cyclic polytopes, and extending
various results to arbitrary fields.

Berget, Eu, and Reiner [5] gave various ways to construct CSPs and we will
discuss one of them now. Let f(q) =

∑l
i=0miq

i ∈ N[q] satisfy f(1) = n. Let
Xn = {x1, x2, . . . , xn} be a set of variables and let p(Xn) be a polynomial symmetric
in the xi. The plethystic substitution of f into p is

p[f ] = p(1, . . . , 1
︸ ︷︷ ︸

m0

, q, . . . , q
︸ ︷︷ ︸

m1

, . . . , ql, . . . , ql
︸ ︷︷ ︸

ml

).

Note that since p is symmetric, it does not matter in what order one substitutes
these values. For a concrete example, let f(q) = 1 + 2q and p(X3) = h2(x1, x2, x3)
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as in (3.8). Then h2[f ] = h2(1, q, q) = 1 + 2q + 3q2. If f(q) = [n]q then p[f ] =
p(1, q, . . . , qn−1) is the principal specialization of p. Plethysm is useful in describing
the representations of wreath products of groups.

We will also need the elementary symmetric polynomials

ek(x1, x2, . . . , xn) =
∑

1≤i1<i2<...<ik≤n

xi1xi2 · · · xik ,

i.e., the sum of all square-free monomials of degree k in the xi. For example,
e2(x1, x2, x3) = x1x2 + x1x3 + x2x3. It is well known that the algebra symmetric
polynomials in the variables Xn is freely generated by e1(Xn), e2(Xn), . . . , en(Xn)
and this is sometimes called the Fundamental Theorem of Symmetric Polynomials.
The ei(Xn) are dual to the hj(Xn) in a way that can be made precise.

Finally, it will be convenient to extend some of our concepts slightly. We will use
notations (2.1) and (6.1) replacing [n] with any set. We can also consider symmetric
functions which are formal power series in the variables X = {x1, x2, x3, . . .} which
are invariant under all permutations of variables and are of bounded degree. For
example, the complete homogeneous symmetric function is

hk(X) =
∑

1≤i1≤i2≤...≤ik

xi1xi2 · · · xik .

In this case, we can still make a plethystic substitution of a polynomial f(q) by
letting xi = 0 for i > n = f(1). One of the results of Berget, Eu, and Reiner [5] is
as follows.

Theorem 11.1 If a triple (X,C, f(q)) exhibits the cyclic sieving phenomenon, then
the triple ( ((

X

k

))

, C, hk[f(q)]

)

does so as well.
If, in addition, #C is odd then the triple

( (
X

k

)

, C, ek[f(q)]

)

also exhibits the cyclic sieving phenomenon. �

Some remarks about this theorem are in order. First of all, the authors actually
prove it for C a product of cyclic groups and multi-cyclic sieving, but this does not
materially alter the demonstration. The proof uses symmetric tensors for the first
part (much in the way they were used in Section 3) and alternating tensors in the
second. So the restriction on #C is there to control the sign. Finally, it is instructive
to note how the first part implies our old friend, Theorem 2.1. Indeed, it is clear
that the triple ([n], 〈(1, 2, . . . , n)〉, [n]q) exhibits the CSP: Only the identity element
of the group has fixed points and there are n of them, while for d|n we have

[n]ωd
=

{
n if d = 1,
0 otherwise.
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Now applying Lemma 3.1 and the previous theorem completes the proof.
Eu, Fu, and Pan [17] investigated the CSP for faces of cyclic polytopes. The

moment curve in dimension d is γ : R→ Rd defined parametrically by

γ(t) = (t, t2, . . . , td).

Given real numbers t1 < t2 < . . . < tn, the corresponding cyclic polytope is the
convex hull

CP(n, d) = conv{γ(t1), γ(t2), . . . , γ(tn)}.

A good reference for the theory of convex polytopes is Ziegler’s book [88].
It is known that the γ(ti) are the vertices of CP(n, d). Also, its combinatorial

type (i.e., the structure of its faces) does not depend on the parameters ti. Let
fk(n, d) denote the number of faces of CP(n, d) of dimension k which is well defined
by the previous sentence. We also let CPk(n, d) denote the set of such faces. Cyclic
polytopes are famous, in part, because they have the maximum number of faces in
all dimensions k among all polytopes with n vertices in Rd.

In what follows, we will assume d is even. There is a formula for the face numbers
(for all d). In particular, for 0 ≤ k < d and d even

fk(n, d) =

d/2
∑

j=1

n

n− j

(
n− j

j

)(
j

k + 1− j

)

.

The reader will not be surprised that we will use the q-analogue

fk(n, d; q) =

d/2
∑

j=1

[n]q
[n− j]q

[
n− j
j

]

q

[
j

k + 1− j

]

q

.

Let g ∈ 〈(1, 2, . . . , n)〉 act on the vertices of CP(n, d) by sending vertex γ(ti) to
γ(tg(i)). For even d this induces an automorphism of CP(n, d) in that it sends faces
to faces. We can now state the main result of Eu, Fu, and Pan [17].

Theorem 11.2 Suppose d is even and 0 ≤ k < d. Then the triple

( CPk(n, d), 〈(1, 2, . . . , n)〉, fk(n, d; q) )

exhibits the cyclic sieving phenomenon. �

For odd d the n-cycle does not necessarily induce an automorphism of CP(n, d) and
so there can be no CSP. However, in this case there are actions of certain groups of
order 2 and it would be interesting to find CSPs for them.

Reiner, Stanton, and Webb [57] considered extending Springer’s theory to ar-
bitrary fields. Broer, Reiner, Smith, and Webb [11] continued this work and also
extended various invariant theory results of Chevalley, Shephard-Todd, and Mitchell
such as describing the relationship between the coinvariant and group algebras. Let
V be an n-dimensional vector space over a field k, and let G be a finite subgroup
of GL(V ) generated by (pseudo)-reflections which are defined as in the complex
case. Then G acts on the polynomial algebra S = k[x1, x2, . . . , xn]. Assume that
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SG is a (free) polynomial algebra so that SG = k[f1, f2, . . . , fn] for polynomials
f1, f2, . . . , fn.

To define regular elements, one must work in the algebraic closure k of k. Let
V = V ⊗k k. Call an element g ∈ G regular if it has an eigenvector v ∈ V lying
on none of the reflecting hyperplanes H = H ⊗k k for reflections in G. It can be
shown that in this case o(g) is invertible in k. This implies that the 〈g〉-submodules
of any G-module are completely reducible, meaning that they can be written as a
direct sum of irreducibles. (Recall that complete reducibility is not guaranteed over
arbitrary fields as it is over C by Maschke’s Theorem, Theorem 4.1 (b).)

Now consider any subgroup H ≤ G. The cyclic sieving set will be the cosets
G/H acted upon by left multiplication of the regular element g. For the function
we will take the quotient Hilb(SH ; q)/Hilb(SG; q). But one has to make sure that
this is in N[q] and not just a rational function. Reiner, Stanton, and Webb [57]
explained why this must be a polynomial with integer coefficients. But in stating
their CSP they had to assume extra conditions on H so that they could prove the
coefficients were nonnegative. They also asked whether it was possible to prove the
CSP without these hypotheses, and this was done in by Broer, Reiner, Smith, and
Webb [11] thus generalizing Theorem 6.6.

Theorem 11.3 Let V be a finite-dimensional vector space over a field k. Let G be
a finite subgroup of GL(V ) for which SG is a polynomial algebra. Let g be a regular
element of G acting on G/H by left multiplication. Then for any H ≤ G, the triple

(

G/H, 〈g〉,
Hilb(SH ; q)

Hilb(SG; q)

)

exhibits the cyclic sieving phenomenon. �

12 Remarks

12.1 Alternate definitions

In their initial paper [58], Reiner, Stanton, and White gave a second, equivalent,
definition of the CSP. While this one has not come to be used as much as (1.2), we
mention it here for completeness.

Given a group G acting on a set X, denote the stabilizer subgroup of y ∈ X by

Gy = {g ∈ G : gy = y}.

If x, y are in the same orbit O then their stabilizers are conjugate (and if G is Abelian
they are actually equal). So if y ∈ O then call s(O) = #Gy the stabilizer-order of
O which is well defined by the previous sentence.

Suppose f(q) =
∑

i≥0 miq
i ∈ N[q] and define coefficients ai for 0 ≤ i < n by

f(q) ≡ a0 + a1q + · · ·+ an−1q
n−1 (mod 1− qn).

Equivalently,

ai =
∑

j≡i (modn)

mj.
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Definition 12.1 Suppose #X = n, C is a cyclic group acting on X, and the ai
are as above. The triple (X,C, f(q)) exhibits the cyclic sieving phenomenon if, for
0 ≤ i < n,

ai = #{O : s(O)|i}. (12.1)

Note that if (12.1) is true then a0 counts the total number of C-orbits, while
a1 counts the number of free orbits (those of size #C). In fact, one can use these
equations to determine how many orbits there are of any size using Möbius inversion.
Returning to our original example with C = 〈(1, 2, 3)〉 and 2-element multisets on
[3], the orbits were

O1 = (11, 22, 33), O2 = (12, 23, 13).

On the other hand

f(q) = 1 + q + 2q2 + q3 + q4 ≡ 2 + 2q + 2q2 (mod 1− q3)

indicating that there are 2 orbits total with both of them being free. The coefficient
a2 = 2 as well since a free orbit’s stabilizer-order of 1 will divide any other.

The proof that these two definitions are equivalent is via the representation
theory paradigm, Theorem 4.2. The main tool is Frobenius reciprocity.

In a personal communication, Reiner has pointed out that it might also be inter-
esting to define cyclic sieving with more general polynomials. One possibility would
be to allow negative integral coefficients which could be useful, for example, when
considering quotients of Hilbert series. Note that this issue arose in the genesis of
Theorem 11.3. Another extension could be to Laurent polynomials, that is, ele-
ments of Z[q, q−1]. Such polynomials might come up when considering a bivariate
generating function f(q, t) where one lets t = q−1. We have already seen such a
substitution in Theorem 9.6, although in that case it turns out that the generating
function remains an ordinary polynomial.

12.2 More on Catalan CSPs

We have just begun to scratch the surface of the connection between Catalan
combinatorics and cyclic sieving. We have already mentioned how polygonal dissec-
tions is behind the work of Eu and Fu on cluster complexes [16] as in Theorem 10.4.
We will now describe an open problem and some ongoing work about triangulations,
i.e., dissections where every face is a triangle.

Let P be a regular n-gon. Let Tn denote the set of triangulations T of P using
nonintersecting diagonals. It is well known that

#Tn+2 = Catn .

We will act on triangulations by clockwise rotation. So, for example, for the pentagon
these is only one cycle







, , , ,






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Figure 3: Two triangulations, one proper (left) and one not (right)

Reiner, Stanton, and White [58] proved the following theorem in this setting.
(In fact, they proved a stronger result about dissections using noncrossing diagonals
where one fixes the number of diagonals.)

Theorem 12.2 Let Cn+2 act on Tn+2 by rotation. Then the triple

( Tn+2, Cn+2, Catn(q) )

exhibits the cyclic sieving phenomenon. �

Their proof was of the sort where one evaluates both sides of (1.2) directly.
But as mentioned before, these proofs often lack the beautiful insights one obtains
from using representation theory. It would be very interesting to find such a proof,
perhaps by finding an appropriate complex reflection group along with a basis and
fake degree polynomial which would permit the use of Westbury’s Theorem 8.2.

One can also consider colored triangulations. Label (“color”) the vertices of
the polygon P clockwise 1, 2, 1, 2, . . .. (When n is odd, there will be an edge of
P with both endpoints labeled 1.) Call a triangulation proper if it contains no
monochromatic triangle. (This terminology is both by analogy with proper coloring
of graphs and in honor of Jim Propp who first conjectured (12.2).) In Figure 3, the
left-hand triangulation is proper while the one on the right is not. Let Pn be the set
of proper triangulations of an n-gon. Sagan [66] proved that

#PN+2 =







2n

2n+ 1

(
3n

n

)

if N = 2n where n ∈ N,

2n+1

2n+ 2

(
3n + 1

n

)

if N = 2n + 1 where n ∈ N.

(12.2)

Note that for N = 2n we have #PN+2 = 2nCat2,n.
Roichman and Sagan [63] are studying CSPs for colored dissections. In the

triangulation case, notice that when n is odd then there is no action of Cn on Pn
because it is possible for the rotation of a proper triangulation to be improper as
in Figure 3. So it only makes sense to consider a rotational CSP for n even. They
have proved that one does indeed have such a phenomenon, although the necessary
q-analogue for the factor of 2n is somewhat surprising.
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Theorem 12.3 Let N = 2n and let CN+2 act on PN+2 by rotation. Then the triple



 PN+2, CN+2,
[2]q2

(

[2]n−1
q − [2]

⌈n/2⌉−1
q + 2⌈n/2⌉−1

)

[2n+ 1]q

[
3n
n

]

q





exhibits the cyclic sieving phenomenon. �

12.3 A combinatorial proof

One could hope for purely combinatorial proofs of CSPs. Since it may not be
clear exactly what this would entail, consider the following paradigm. First of all,
we would need to have a combinatorial expression for f(q), namely some statistic
on the set X such that

f st(X; q) = f(q). (12.3)

Suppose further that, for each g ∈ C, one has a partition of X

π = πg = {B1, B2, . . . , Bk}

satisfying the following criterion where ω = ωo(g):

f st(Bi;ω) =

{
1 if i ≤ #Xg,
0 if i > #Xg.

(12.4)

In other words, the initial blocks correspond to the fixed points of g and their weights
evaluate to 1 when plugging in ω, while the weights of the rest of the blocks get zeroed
out under this substitution. (In practice, the Bi for i ≤ #Xg are singletons each
with weight qj where o(g)|j, while for i > #Xg the sum of the weights in the block
form a geometric progression which becomes zero since 1+ω+ · · ·+ωd−1 = 0 for any
proper divisor d of o(g).) In this case, one automatically has cyclic sieving because,
using equations (12.3) and (12.4) as well as the fact that we have a partition

f(ω) = f st(X;ω) =
∑

i≥0

f st(Bi;ω) = 1 + · · ·+ 1
︸ ︷︷ ︸

#Xg

+0 + · · ·+ 0 = #Xg.

Roichman and Sagan [63] have succeeded in using this method to prove Theo-
rem 6.1. They are currently working on trying to apply it to various other cyclic
sieving results.

Note added in proof

Since this article was written six new papers have appeared related to the cyclic
sieving phenomenon. For completeness’ sake, we briefly describe each of them here.

In [3], Armstrong, Stump, and Thomas constructed a bijection between non-
crossing partitions and nonnesting partitions which sends a complementation map
of Kreweras [44], Krew, to a function of Panyushev [52], Pan. Using this construc-
tion they are able to prove two CSP conjectures in the paper of Bessis and Reiner [8]
about Krew and Pan. The first refines Theorem 10.2 in the case that W is a finite
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Coxeter group since Krew2 coincides with the action of the regular element. The
second follows from the first using the bijection.

Kluge and Rubey [37] have obtained a cyclic sieving result for rotation of Ptolemy
diagrams. These diagrams were recently introduced in a paper of Holm, Jørgensen,
and Rubey [32] as a model for torsion pairs in the cluster category of type A. Their
result is related to the generalization of Theorem 12.2 mentioned just before its
statement, except that certain diagonals are allowed to cross and one keeps track of
the number of regions of various types rather than the number of diagonals. But
the polynomial in both cases is a product of q-binomial coefficients, so it would be
interesting to find a common generalization.

Noncrossing graphs on the vertex set [n] can be defined analogously to noncross-
ing polygonal dissections by arranging the vertices around a circle and insisting that
the resulting graph be planar. Flajolet and Noy [18] showed that the number of
connected noncrossing graphs with n vertices and k edges is given by

1

n− 1

(
3n− 3

n+ k

)(
k − 1

n− 2

)

Following a personal communication of S.-P. Eu, Guo [28] has shown that one has
a CSP using these graphs, rotation, and the expected q-analogue of the expression
above.

Another way to generalize noncrossing dissections into triangles is to define a
k-triangulation of a convex n-gon to be a maximal collection of diagonals such that
no k + 1 of them mutually cross. So ordinary triangulations are the case k = 1.
In a personal communication, Reiner has conjectured a CSP for such triangulations
under rotation generalizing Theorem 12.2. In [71], Serrano and Stump reformulated
this conjecture in terms of k-flagged tableaux (certain semistandard tableaux with
bounds on the entries). But the conjecture remains open.

As has already been mentioned, there is no representation theory proof of Theo-
rem 12.2. The same is true of the Eu and Fu’s result, Theorem 10.4. In an attempt
to partially remedy this situation, Rhoades [59] has used representation theory and
cluster multicomplexes to prove related CSPs. His tools include a notion of non-
crossing tableaux due to Pylyavskyy [56] and geometric realizations of finite type
cluster algebras due to Fomin and Zelevinsky [21].

Westbury [86] has succeeded in generalizing Rhoades’s original result [60] just
as he was able to do for the special case considered by Petersen, Pylyavskyy, and
Rhoades [53] for two and three rows. It turns out that the same tools (crystal bases,
based modules, and regular elements) can be used.

References

[1] Andrews, G. E. The theory of partitions. Cambridge Mathematical Library.
Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original.

[2] Armstrong, D. Generalized noncrossing partitions and combinatorics of Cox-
eter groups. Mem. Amer. Math. Soc. 202, 949 (2009), x+159.



Cyclic sieving phenomenon 228

[3] Armstrong, D., Stump, C., and Thomas, H. A uniform bijection between
nonnesting and noncrossing partitions. Preprint arXiv:1101.1277.

[4] Barcelo, H., Reiner, V., and Stanton, D. Bimahonian distributions. J.
Lond. Math. Soc. (2) 77, 3 (2008), 627–646.

[5] Berget, A., Eu, S.-P., and Reiner, V. Constructions for cyclic sieving
phenomena. SIAM J. Discrete Math.. to appear, preprint arXiv:1004.0747.

[6] Bessis, D. Finite complex reflection arrangements are k(π, 1). Preprint
arXiv:math/0610777.

[7] Bessis, D. The dual braid monoid. Ann. Sci. École Norm. Sup. (4) 36, 5
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[40] Kraśkiewicz, W., and Weyman, J. Algebra of coinvariants and the action
of a Coxeter element. Bayreuth. Math. Schr., 63 (2001), 265–284.

[41] Krattenthaler, C. Non-crossing partitions on an annulus. In preparation.

[42] Krattenthaler, C., and Müller, T. W. Cyclic sieving for generalized
non-crossing partitions associated to complex reflection groups of exceptional
type. Preprint arXiv:1001.0028.

[43] Krattenthaler, C., and Müller, T. W. Cyclic sieving for generalized
non-crossing partitions associated to complex reflection groups of exceptional
type - the details. Preprint arXiv:1001.0030.

[44] Kreweras, G. Sur les partitions non croisées d’un cycle. Discrete Math. 1, 4
(1972), 333–350.

[45] Kuperberg, G. Spiders for rank 2 Lie algebras. Comm. Math. Phys. 180, 1
(1996), 109–151.

[46] Lascoux, A., and Schützenberger, M.-P. Le monöıde plaxique. In Non-
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matics. Birkhäuser Boston Inc., Boston, MA, 1993.

[49] MacMahon, P. A. The Indices of Permutations and the Derivation Therefrom
of Functions of a Single Variable Associated with the Permutations of any
Assemblage of Objects. Amer. J. Math. 35, 3 (1913), 281–322.

[50] MacMahon, P. A. Collected papers. Vol. I. MIT Press, Cambridge, Mass.,
1978. Combinatorics, Mathematicians of Our Time, Edited and with a preface
by George E. Andrews, With an introduction by Gian-Carlo Rota.



Cyclic sieving phenomenon 231

[51] Opdam, E. M. Complex reflection groups and fake degrees. Preprint
arXiv:math/9808026.

[52] Panyushev, D. I. On orbits of antichains of positive roots. European J.
Combin. 30, 2 (2009), 586–594.

[53] Petersen, T. K., Pylyavskyy, P., and Rhoades, B. Promotion and cyclic
sieving via webs. J. Algebraic Combin. 30, 1 (2009), 19–41.

[54] Petersen, T. K., and Serrano, L. Cyclic sieving for longest reduced words
in the hyperoctahedral group. Electron. J. Combin. 17, 1 (2010), Research
Paper 67, 12 pp.

[55] Pon, S., and Wang, Q. Promotion and evacuations on standard young
tableaux of rectangle and staircase shape. Electron. J. Combin. 18, 1 (2011),
Research Paper 18, 18 pp.

[56] Pylyavskyy, P. Non-crossing tableaux. Ann. Comb. 13, 3 (2009), 323–339.

[57] Reiner, V., Stanton, D., and Webb, P. Springer’s regular elements over
arbitrary fields. Math. Proc. Cambridge Philos. Soc. 141, 2 (2006), 209–229.

[58] Reiner, V., Stanton, D., and White, D. The cyclic sieving phenomenon.
J. Combin. Theory Ser. A 108, 1 (2004), 17–50.

[59] Rhoades, B. Cyclic sieving and cluster multicomplexes. Adv. in Appl. Math..
to appear, preprint arXiv:1005.2561.

[60] Rhoades, B. Cyclic sieving, promotion, and representation theory. J. Combin.
Theory Ser. A 117, 1 (2010), 38–76.

[61] Rhoades, B. Hall-Littlewood polynomials and fixed point enumeration. Dis-
crete Math. 310, 4 (2010), 869–876.

[62] Robinson, G. d. B. On the Representations of the Symmetric Group. Amer.
J. Math. 60, 3 (1938), 745–760.

[63] Roichman, Y., and Sagan, B. Combinatorial and colorful proofs of cyclic
sieving phenomena. In preparation.

[64] Rouquier, R. q-Schur algebras and complex reflection groups. Mosc. Math.
J. 8, 1 (2008), 119–158, 184.

[65] Sagan, B. E. The symmetric group: Representations, combinatorial algo-
rithms, and symmetric functions, second ed., vol. 203 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 2001.

[66] Sagan, B. E. Proper partitions of a polygon and k-Catalan numbers. Ars
Combin. 88 (2008), 109–124.

[67] Sagan, B. E., Shareshian, J., and Wachs, M. Eulerian quasisymmet-
ric functions and cyclic sieving. Adv. in Appl. Math.. to appear, preprint
arXiv:0909.3143.



Cyclic sieving phenomenon 232

[68] Schensted, C. Longest increasing and decreasing subsequences. Canad. J.
Math. 13 (1961), 179–191.

[69] Schützenberger, M. P. Quelques remarques sur une construction de Schen-
sted. Math. Scand. 12 (1963), 117–128.

[70] Schützenberger, M. P. Promotion des morphismes d’ensembles ordonnés.
Discrete Math. 2 (1972), 73–94.

[71] Serrano, L., and Stump, C. Maximal fillings of moon polyominoes, simpli-
cial complexes, and Schubert polynomials. Preprint arXiv:1009.4690.

[72] Shareshian, J., and Wachs, M. L. Eulerian quasisymmetric functions.
Preprint arXiv:0812,0764.

[73] Shareshian, J., and Wachs, M. L. q-Eulerian polynomials: excedance
number and major index. Electron. Res. Announc. Amer. Math. Soc. 13 (2007),
33–45 (electronic).

[74] Shareshian, J., and Wachs, M. L. Poset homology of Rees products, and
q-Eulerian polynomials. Electron. J. Combin. 16, 2, Special volume in honor of
Anders Bjorner (2009), Research Paper 20, 29.

[75] Shephard, G. C., and Todd, J. A. Finite unitary reflection groups. Cana-
dian J. Math. 6 (1954), 274–304.

[76] Simion, R. Combinatorial statistics on noncrossing partitions. J. Combin.
Theory Ser. A 66, 2 (1994), 270–301.

[77] Skandera, M. On the dual canonical and Kazhdan-Lusztig bases and 3412-,
4231-avoiding permutations. J. Pure Appl. Algebra 212, 5 (2008), 1086–1104.

[78] Springer, T. A. Regular elements of finite reflection groups. Invent. Math.
25 (1974), 159–198.

[79] Stanley, R. Catalan addendum. New problems for Enumerative Combina-
torics. Vol. 2 , available at http://math.mit.edu/~rstan/ec/catadd.pdf.

[80] Stanley, R. P. Enumerative Combinatorics. Vol. 1, vol. 49 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
1997. With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986
original.

[81] Stanley, R. P. Promotion and evacuation. Electron. J. Combin. 16, 2, Special
volume in honor of Anders Bjorner (2009), Research Paper 9, 24.

[82] Stanton, D. W., and White, D. E. A Schensted algorithm for rim hook
tableaux. J. Combin. Theory Ser. A 40, 2 (1985), 211–247.

[83] Stembridge, J. R. On minuscule representations, plane partitions and invo-
lutions in complex Lie groups. Duke Math. J. 73, 2 (1994), 469–490.



Cyclic sieving phenomenon 233

[84] Stembridge, J. R. Some hidden relations involving the ten symmetry classes
of plane partitions. J. Combin. Theory Ser. A 68, 2 (1994), 372–409.

[85] Stembridge, J. R. Canonical bases and self-evacuating tableaux. Duke Math.
J. 82, 3 (1996), 585–606.

[86] Westbury, B. Invariant tensors and the cyclic sieving phenomenon. Preprint.

[87] Westbury, B. Invariant theory and the cyclic sieving phenomenon. Preprint
arXiv:0912.1512.

[88] Ziegler, G. M. Lectures on polytopes, vol. 152 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1995.

Department of Mathematics
Michigan State University

East Lansing, MI 48824-1027, USA

sagan@math.msu.edu


