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Abstract

Let G be a simple, connected graph on n vertices. Let dg(u, v) denote
the distance between vertices u and v in G. A subgraph H of G is isometric
if du (u,v) = dg(u,v) forevery u,v € V(H). We say that G is a distance-
preserving graph if G contains at least one isometric subgraph of order & for
every k, 1 < k < n. In this paper we construct regular distance-preserving
graphs of all possible orders and degrees of regularity. By modifying the
Havel-Hakimi algorithm, we are able to construct distance preserving graphs
for certain other degree sequences as well. We include a discussion of some
related conjectures which we have computationally verified for small values
of n.

1 Introduction

In this paper we will only consider connected graphs unless noted otherwise.
A subgraph H of a graph G = (V, E) is isometric if, for every pair of vertices
uw and v of H, we have dy (u,v) = dg(u,v), where d denotes distance. If every
connected induced subgraph of a graph is isometric, then the graph is said to
be distance-hereditary. Originally mentioned by Sachs [11] while working with
perfect graphs, this class of graphs was first named and characterized by Howorka
[6]. Distance-hereditary graphs have been studied extensively in the literature
(see, for example, the articles [1, 5]). They may be recognized in linear time [2].

We call a connected graph distance-preserving (dp) if it contains an isometric
subgraph of every possible order. In previous papers we began to characterize dp
graphs [8] and explore potential applications [9, 10]. In the next section we will
construct r-regular dp graphs on n vertices for all possible values of n and r where
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# connected # connected
n | regular graphs | regular dp graphs | % dp graphs
5 2 1 50.000
6 5 4 80.000
7 4 3 75.000
8 17 14 82.353
9 22 20 90.909
10 167 153 91.617
11 539 484 89.796
12 18979 18405 96.976
13 389436 384319 98.686

Table 1: Percentage of regular graphs which are distance preserving

such graphs exist. It was conjectured by Nussbaum and Esfahanian [8] that almost
all graphs are dp. The results in Table 1 lead us to make a similar conjecture for
regular graphs.

Conjecture 1.1. Almost all connected regular graphs are dp.

Rather than looking only at regular graphs, one could try to construct a dp
graph for every possible graphical degree sequence. The Havel-Hakimi algorithm
[3., 4] can be used to generate a graph having a given degree sequence, although it
is easy to come up with examples where the resulting graph is not dp. However,
we show in Section 3 that a slight modification of the algorithm can be used to
produce dp graphs for certain degree sequences.

2 Constructing regular dp graphs

We will construct, for each possible n and r, an r-regular dp graph with n
nodes. In particular this means that, in order to have vertices of degree r, we must
have n > r+1. And if r is odd, then n must be even. Finally, we must have r > 3
since if = 2 then a connected graph of this regularity must be a cycle which is
not dp for n > 5. We will call the remaining pairs admissible.

One class of r-regular n-vertex (but not necessarily dp) graphs which we will
need are the circulant graphs C, .. These can be constructed by using a vertex set
V ={1,...,n} with all edges ij such that 1 < |i — j| < r/2, together with all
edges of the form (i + n/2) if r is odd. All arithmetic is being done modulo n.

We will also be using two operations to construct larger graphs from smaller
ones. The join of G and H, G+ H, is obtained from their disjoint union by adding
all edges of the form uv where v € V(G) and v € V(H). In this case we will
refer to the underlying bipartite graph of G + H which consists of all the added
edges.
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Figure 1: The graphs K5 @ K5 and K5°

The other operation will depend on an edge uz being selected from E(G)
and another edge vy being selected from E(H ). In that case we define the direct
sum of G and H, G & H, to be the graph obtained from their disjoint union by
removing ux and vy and adding new edges wv and xy. See the first graph in
Figure 1 for an example. Our notation does not specify which edges are to be
used. But in the graphs we will use, this choice can usually be made arbitrarily
because of symmetry. If this is not the case, an explicit choice will be made.

We want to extend the direct sum to more than two graphs. So, for example,
G @& H @& K will mean that we have chosen an edge ar is G, two edges bs and
uz in H, and an edge vy in K. These edges will be removed and replaced by ab,
rs, uv, and xy. Our only restriction is that the edges bs and ux are independent in
H, that is, do not share a vertex. The extension to more than three graphs is done
in the obvious way and we denote by G®¥ the k-fold direct sum of G with itself.
Figure 1 shows K5 @& K5 & K5 = K?g.

Finally, we will need the following lemma. The ideas behind the proof are due
to Zahedi [12]. We use N (v) to denote the neighborhood of v, that is, all vertices
adjacent to v.

Lemma 2.1. Let G = (V,E) be a graph and v € V. Suppose that any two
nonadjacent vertices x,y € N(v) have a common neighbor other than v. Then
G — v is an isometric subgraph of G.

Proof. Tt suffices to show that removing v from G does not destroy all geodesics
between any two vertices r, s € V' — v. So let P be any r—s geodesic in G. If P
does not contain v then we are done. Otherwise, the vertices on P just before and
after v are some z,y € N(v). We can not have xy € F since then there would be



Figure 2: The graphs G'7 on the left and Gg on the right for r = 4

a shorter r—s path. Thus, by assumption, there is some common neighbor w # v
of z,y. It follows that P — v + w is an r—s geodesic in G — v which completes
the proof. O

Theorem 2.2. For each admissible pair (n,r), there exists a dp graph with n
vertices which is regular of degree r.

Proof. Fix r. We will denote the graph on n vertices which we construct by G,,.
We will have a special construction for » = 3, so assume for the moment that
r > 4.

Forr +1 <n <2r,weletG, = Cror_n + K,,_, where K is the com-
plement of the complete graph on s vertices. The graph G'7 for r = 4 is depicted
on the left in Figure 2. It is easy to check that G, has n vertices and is regular of
degree r. Also, Lemma 2.1 and the completeness of the underlying bipartite graph
show that removing any vertex from either of the parts C;. 2, _,, or K, _, gives an
isometric subgraph as long as the part from which it is removed has at least two
vertices. Continuing to delete vertices in this fashion shows that G, is dp.

To construct G, first note that, since n = 2r + 1 is odd, we only need such
a construction for r even. Take the complete bipartite graph K. ,. and remove r/2
independent edges. Now add a new vertex adjacent to precisely those vertices
where an edge was removed. This vertex will be called the external vertex, x.
See Figure 2 for an example when r = 4. To construct the isometric subgraphs,
first remove one by one all but two of the vertices adjacent to =, where those
two vertices are in different parts of the underlying bipartite graph K, .. These
subgraphs will be isometric by Lemma 2.1 and the existence of the two remaining
vertices adjacent to z. Now continue to remove two more vertices not adjacent to
x, one from each part of K, ,.. Since r > 4, there will still be a vertex of K. ,. not
adjacent to x remaining in both parts and so Lemma 2.1 can be applied. For the
set of r + 1 vertices to remove, we take 2 U N (). This leaves the graph K, /2,12
which is isometric. From here, one continues as in the n < 27 case.

To form G,, for n > 2r 4+ 2, we take advantage of the fact that K, ; is regular
of degree r. So divide n by r + 1 to obtain n = ¢(r + 1) + ¢ where ¢ > 2 and
0<t<r.So

n=-Dr+)+E+r+1)=pr+1)+s
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Figure 3: The graph G2 whenr = 3

wherep =¢q—1>1lands =t+r+1sothatr +1 < s < 2r 4+ 1. Now
let G, = G4 @ KﬁBfl where the edge removed from G is one of the edges of
the underlying bipartite graph. If s = 2r 4 1, then we choose this edge to be
one whose endpoints have degree r in the underlying bipartite graph. To set up
notation, let Hy be the subgraph of G,, obtained from G and Hy, ... H, be the
subgraphs obtained from the copies of K, listed so that H; is adjacent to H;_
and H;4; for 1 <3 < r. We also let ux, vy, and wz be edges removed to form
Hy, Hq, and H,, respectively, where the edges added between H, and H; are uv
and xy. (There may be a second edge removed to form H;, but we will not need
a notation for it.)

To construct the isometric subgraphs we remove vertices from Hy in the same
way as we did for G, taking care never to remove v or z, until only 4 vertices re-
main: u, x, and another vertex from each part of the underlying complete subgraph
of G5. The resulting subgraphs will be isometric in GG, because all geodesics from
a vertex of Hy to another H; go through u or = which are never removed. Next we
continue to remove two more vertices from H,,, neither of them being w, z. Since
r > 4, these subgraphs will again be isometric since there will always exist a third
vertex of I, present in the subgraph. So we have isometric subgraphs of order up
to s — 2. To remove s — 1 vertices, we delete every vertex of Hy except u. This
is again isometric since no geodesic from u to G,, — H goes through any other
vertex of Hy. Next we remove u, which clearly leaves an isometric subgraph. We
can now continue to remove vertices in Hy, H», ..., H, in that order using the
same ideas as for removing the vertices of Hy and always removing the vertices
of H; which were adjacent to H;_1 first. This will produce an isometric subgraph
of every order.

There remains to do the case » = 3. Since r is odd, n must be even so let k =
n/2. Let G have vertices u1, . .., uj and vy, . . . , v Where the two sets of vertices
form paths in their given orders. Also add all edges of the form u;v; except for
U, Vo and ug_1v;—1. Finally add the edges wiva, uov1, Ug—1Vk, UgVg—1. The
graph GG12 will be found in Figure 3. We now just list the sets of vertices to be
removed. Verifying that the resulting subgraphs are isometric is routine. We start
with

{ul}a {ulvuk}a {ulvvlau2}7 {ula V1, U2, uk}7 {ula V1, U2, UQvuk}v



and

{U]_, Ul) u27 Uk—17 uk}) Uk}}'
We continue by deleting the 6 vertices in the last set and adding to them the fol-
lowing vertices taken sequentially in the given order

U, Ugy oo oy U—1,V2,V3, ..., V—2.

This completes the proof. O

3 Arbitrary graphical degree sequences

We would like to construct a dp graph for any graphical integer sequence for
which such a graph exists. In Theorem 3.1 we prove that a modified version of the
Havel-Hakimi algorithm generates a dp graph when no reordering of the vertex
degrees is done, even when such a reordering would be called for by the original

algorithm.
Let us recall the usual Havel-Hakimi algorithm. The input is a weakly de-
creasing integral sequence (dy, .. ., d,), and the output is a graph with this degree

sequence, if one exists, in which case the sequence is called graphical. The main
loop of the algorithm is as follows, where the vertices of the graph we are trying
to construct are vy, . .., Uy,

(a) Add edges from vy to va,..., V4, +1-
(b) Remove d; from the sequence and subtract one from da, . .., dg4, 1.

(c) Remove any resulting zeros in the new sequence and rearrange the rest to
be weakly decreasing, updating indices as necessary.

One iterates this loop until one of two possible outcomes result. If the algorithm
reaches the empty sequence then it has constructed a graph G with degv; = d;
for all ¢ and this is called a successful termination. Otherwise, the algorithm halts
because it becomes impossible to perform step (a) in which case the sequence is
not graphical, called an unsuccessful termination.

In the modified version of this algorithm which we will consider, one does not
rearrange the degree sequence in step (c). This will mean that the new algorithm
may have an unsuccessful termination on a sequence which is graphical. For
example, the sequence (3,3,3,3,3,3) is clearly graphical, as seen in Figure 4.
However, three iterations of our modified version of the Havel-Hakimi algorithm
leave us with (3, 3), and the algorithm terminates unsuccessfully. On the positive
side, we will show that when the procedure does terminate successfully with a
connected graph G, then G must be dp. In fact, it will turn out that the graphs

G; = subgraph of G induced by vy, ..., v; ()



Figure 4: A graphical realization of (3, 3,3, 3, 3, 3)

will be the desired isometric subgraphs.

Theorem 3.1. Let S = (dy,...,d,) be a weakly decreasing sequence of inte-
gers on which the modified Havel-Hakimi algorithm terminates successfully with
a connected graph G. Then G is dp with isometric subgraphs G; as in (1).

Proof. We will induct on n, where the result is obvious for n = 1. So assume
the result for sequences with n — 1 elements and let S = (dy,...,d,) be such
that the modified algorithm terminates successfully with a connected graph G. To
apply induction, we must first show that the algorithm terminates successfully on
the degree sequence for the graph G’ = G,,_1. Applying the procedure to G and
G’ will be exactly the same until one comes to some vertex v; which is adjacent
to v, in G. But in the sequence S’ for G’ we will have degq v; = dege v; — 1.
So when processing S’, v; will be attached to exactly the same vertices as for
S, with the exception of v,,. It follows that since S was brought to a successful
conclusion, so must S”.

We must also show that G’ is connected. Since G is connected and G’ =
G — vy, it suffices to show that v,, is not a cut vertex. We will actually prove the
stronger statement that any two neighbors of v,, are adjacent. So take v;,v; €
N (v,,) where we can assume, without loss of generality, that ¢ < j. Since we do
not reorder vertices and v; is adjacent to v,,, it must also be adjacent to all vertices
which have subscript greater than ¢ and whose modified degree is still positive
when v; is processed by the main loop. Since v; is such a vertex, we have proved
our claim.

Now we can apply induction so that G4, ...,G,_1 = G’ are isometric sub-
graphs of G'. Thus we will be done if we can show that G’ is isometric in G. For
this, it suffices to show that no geodesic of G goes through v,,. But, as proved in
the previous paragraph, any two neighbors of v,, are adjacent. It follows that any
path P through v,, can be made shorter by replacing the edges into and out of v,,
by the single edge between its neighbors on P. Hence P is not a geodesic and the
proof is complete. O

In Table 2 the results of the modified Havel-Hakimi algorithm are provided
for 5 < n < 12. Note that any time the algorithm terminates properly is counted
as a success, whether the resulting graph is connected or not. So, unfortunately, it
seems as if our previous result only applies to a vanishingly small percentage of



# graphical
n | degree sequences | # successes | % successes
5 20 12 60.000
6 71 32 45.070
7 240 86 35.833
8 871 243 27.899
9 3148 703 22.332
10 11655 2094 17.967
11 43332 6369 14.698
12 162769 19770 12.146

Table 2: Success rate of the modified Havel-Hakimi algorithm

graphs. It would be very interesting to find a method which would produce a dp
graph for a larger class of degree sequences, especially since this might result in
some progress on the conjectures mentioned in the introduction.
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