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2.3 PARTITIONS

INTRODUCTION
[This should be placed after Andrews’ part of the introduction] Young tableaux
were introduced by the Reverend Alfred Young [1873–1940]. They are of inter-
est in combinatorics, and the theories of symmetric functions, group represen-
tations, and invariants. Here we concentrate on the first two areas. The reader
can find information about the others in the references.

GLOSSARY
[These definitions should be alphabetically merged with Andrews’]
hook: the set of cells in a Ferrers’ diagram directly to the right or directly
below a given cell.
hooklength: the number of cells in a Ferrers’ diagram directly to the right or
directly below a given cell.
symmetrtic function: a polynomial in variables x1, . . . , xn which is invariant
under the action of the symmetric group Sn. (See 5.2.2.)
Schur function: the symmetric fucntion which is the generating function for
all semistandard tableaux of a given shape.
Semistandard Young tableau: a Young tableau with the rows weakly in-
creasing and the columns increasing.
Standard Young tableau: a semistandard Young tableau with the cells in
bijection with the integers 1, . . . , n (= number of cells).
Young tableau: an arrary obtained by replacing each cell of a Ferrers diagram
by a positive integer.
[Andrews’ sections skipped here]

2.3.1 Stirling coefficients

2.3.2 Stirling coefficient identities

2.3.3 Partitions of integers, Ferrers diagrams
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2.3.4 YOUNG TABLEAUX

Definitions:
A Young tableau (YT) of shape λ is an arrary, T , obtained by replacing
each cell of the Ferrers diagram of λ by a positive integer (see 2.3.3.).
A Young tableau is semistandard (an SSYT) if the rows weakly increase and
the columns strictly increase.
A semistandard Young tableau of shape λ ` n is standard (an SYT) if its
entries are exactly 1, . . . , n. The number of SYT of shape λ is denoted fλ.
Let R[x] be the real polynomial ring in the variables x = {x1, . . . , xn} (see
5.4.6). Then f ∈ R[x] is symmetric if πf = f for all π ∈ Sn, the symmetric
group (see 5.2.2) where πf(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)).
The elementary symmetric function of degree k in n variables is

ek(x) = ek(x1, . . . , xn) =
∑

1≤i1<...<ik≤n

xi1 · · ·xin .

And for a partition λ = (λ1, . . . , λl) we let eλ(x) = eλ1(x) · · · eλl(x).
The complete homogeneous symmetric function of degree k in n variables
is

hk(x) = ek(x1, . . . , xn) =
∑

1≤i1≤...≤ik≤n

xi1 · · ·xin .

And for a partition λ = (λ1, . . . , λl) we let hλ(x) = hλ1(x) · · ·hλl(x).
A Young tableau T has corresponding monomial xT =

∏
(i,j)∈λ xTi,j .

Given partition λ = (λ1, . . . , λl) and n ≥ l, the associated Schur function is

sλ(x1, . . . , xn) =
∑
T

xT

where the sum is over all SSYT T of shape λ with entries at most n.

Facts:
1. The coefficient of x1x2 · · ·xn in sλ(x1, . . . , xn) is fλ.
2. If λ = (k) (one row) then sλ(x) = hk(x). If λ = (1k) (one column) then
sλ(x) = ek(x).
3. The generating functions (see 3.1) for the ek(x) and hk(x) are∑

k≥0

ek(x)tk =
∏
i≥1

(1 + xit)

∑
k≥0

hk(x)tk =
∏
i≥1

1
1− xit

.
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4. The recurrence relations (see 3.2) for the ek(x) and hk(x) are

ek(x1, . . . , xn) = ek(x1, . . . , xn−1) + xnek−1(x1, . . . , xn−1)
hk(x1, . . . , xn) = hk(x1, . . . , xn−1) + xnhk−1(x1, . . . , xn).

5. Specializations of the the ek(x) and hk(x) give binomial coefficients (see
2.2.2) and Stirling numbers (see 2.3.1)(

n

k

)
= ek(

n︷ ︸︸ ︷
1, . . . , 1)

= hk(

n−k+1︷ ︸︸ ︷
1, . . . , 1)

|s(n, k)| = en−k(1, 2, . . . , n− 1)
S(n, k) = hn−k(1, 2, . . . , k).

6. If λ ` n then the Schur function sλ(x) is the cycle index (see 2.4.1) for the
characters of the irreducible representation of the symmetric group Sn corre-
sponding to λ. Also fλ is the degree of this representation.
7. The symmetric functions in x = {x1, . . . , xn} form a graded algebra Λn (see
5.4.5) whose homogeneous piece of degree k is denoted Λkn.
8. The polynomials eλ(x), hλ(x), sλ(x) are all symmetric. As λ runs over all
partitions of k each of the three families runs over a basis for Λkn which thus has
dimension p(k) = number of partitions of k (see 2.3.3).

Examples:
1. If λ = (3, 2) then a complete list of SYT is

1 2 3
4 5 ,

1 2 4
3 5 ,

1 2 5
3 4 ,

1 3 4
2 5 ,

1 3 5
2 4

2. If λ = (2, 2) then a complete list of SSYT with entries at most 3 is

1 1
2 2 ,

1 1
3 3 ,

2 2
3 3 ,

1 1
2 3 ,

1 2
2 3 ,

1 2
3 3

The last tableau has monomial xT = x1x2x3x3 = x1x2x
2
3. The Schur function

for this list is

s(2,2)(x1, x2, x3) = x2
1x

2
2 + x2

1x
2
3 + x2

2x
3
3 + +x2

1x2x3 + x1x
2
2x3 + x1x2x

2
3.

3. As examples of elementary and complete homogeneous symmetric functions:

e2(x1, x2, x3) = x1x2 + x1x3 + x2x3

e(2,1)(x1, x2, x3) = (x1x2 + x1x3 + x2x3)(x1 + x2 + x3)

h2(x1, x2, x3) = x1x2 + x1x3 + x2x3 + x2
1 + x2

2 + x2
3

h(2,1)(x1, x2, x3) = (x1x2 + x1x3 + x2x3 + x2
1 + x2

2 + x2
3)(x1 + x2 + x3).
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2.3.5 TABLEAUX IDENTITIES

Definitions:
The hook of cell (i, j) in the Ferrers diagram for a partition λ is

Hi,j = {(k, j) ∈ λ : k ≥ i} ∪ {(i, k) ∈ λ : k ≥ j}.

The hooklength of cell (i, j) is the number of cells in its hook, i.e.,

hi,j = |Hi,j |.

The content of cell (i, j) is
ci,j = j − i.

The minimum weight of a partition λ is

m(λ) =
∑
i≥1

iλi.

This is the smallest possible sum of the entries of an SSYT of shape λ.
The if q is a variable then the principal specialization of a symmetric function
is obtained by letting xi = qi for all i.
If G is a group (see 5.2) then an involution is g ∈ G such that g2 is the identity.
Let inv(n) be the number of involutions in the symmetric group Sn.

Facts:
1. Frame-Robinson-Thrall Hook Formula [1954] The number of SYT of fixed
shape λ is

fλ =
n!∏

(i,j)∈λ hi,j
.

2. Frobenius Determinantal Formula [1900] The number of SYT of fixed shape
λ = (λ1, . . . , λl) is the determinant

fλ = n!
∣∣∣∣ 1
(λi + j − i)!

∣∣∣∣
1≤i,j≤l

.

3. The principal specialization of sλ(x) is

sλ(q, q2, . . . , qn) = qm(λ)
∏

(i,j)∈λ

1− qci,j+n

1− qhi,j
.

This can be use to derive the hook formula.
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4. Jacobi-Trudi Determinants [1841,1864] The Schur function of λ = (λ1, . . . , λl)
is the determinant

sλ(x) = |hλi+j−i|1≤i,j≤l .

This can be used to prove the determinantal formula for fλ. There is also a
dual form, letting the conjugate of λ (see 2.3.3) be λ′ = (λ′1, . . . , λ

′
m)

sλ(x) =
∣∣eλ′i+j−i∣∣1≤i,j≤m .

5. Jacobi Alternant Quotient [1841] The Schur function in x = {x1, . . . , xn} is
the determinant quotient

sλ(x) =

∣∣∣xλj+n−ji

∣∣∣
1≤i,j≤n∣∣∣xn−ji

∣∣∣
1≤i,j≤n

.

6. We have the following summations involving the number of SYT:∑
λ`n

fλ = inv(n)∑
λ`n

f2
λ = n!

7. If x = {x1, . . . , xn} and y = {y1, . . . , yn} then∑
λ

sλ(x) =
∏

1≤i≤n

1
1− xi

∏
1≤i<j≤n

1
1− xixj∑

λ

sλ(x)sλ(y) =
∏

1≤i,j≤n

1
1− xiyj

[Littlewood, 1939]

∑
λ

sλ(x)sλ′(y) =
∏

1≤i,j≤n

(1 + xiyj) [Littlewood, 1939]

These identities can be used to prove those in the previous example.

Examples:
1. For the partition (3, 2) we have H1,1 = {(1, 1), (2, 1), (1, 2), (1, 3)}. In the
following digram each cell of (3, 2) is replaced with its hooklength.

4 3 1
2 1

The hook formula gives the number of SYT of shape (3, 2) (cf. 2.3.4, Example
1) to be

f(3,2) =
5!

4 · 3 · 2 · 12
= 5.
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The determinantal formula gives the same result

f(3,2) = 5!
∣∣∣∣ 1/3! 1/4!

1/1! 1/2!

∣∣∣∣ = 5.

2. In the following diagram each cell of (2, 2) is replaced by its content

0 1
−1 0

The product formula for the principle specialization with shape (2, 2) (cf. 2.3.4,
Example 2) gives

s(2,2)(q, q2, q3) = q6 (1− q3)(1− q4)(1− q2)(1− q3)
(1− q3)(1− q2)(1− q2)(1− q1)

= q6 + q7 + 2q8 + q9 + q10.

The Jacobi-Trudi determinant yields

s(2,2)(x) =
∣∣∣∣ h2(x) h3(x)
h1(x) h2(x)

∣∣∣∣ = h2
2(x)− h3(x)h1(x)

Since (2, 2)′ = (2, 2) (self-dual) we also have

s(2,2)(x) =
∣∣∣∣ e2(x) e3(x)
e1(x) e2(x)

∣∣∣∣ = e2
2(x)− e3(x)e1(x).

If x = {x1, x2, x3} then as a quotient of alternants we have

s(2,2)(x) =

∣∣∣∣∣∣
x4

1 x3
1 1

x4
2 x3

2 1
x4

3 x3
3 1

∣∣∣∣∣∣∣∣∣∣∣∣
x2

1 x1 1
x2

2 x2 1
x2

3 x3 1

∣∣∣∣∣∣
.

3. For the partitions of n = 3 we have

f(3) = 1, f(2,1) = 2, f(1,1,1) = 1

so our summation formulas become∑
λ`3 fλ = 4 = inv(3)∑
λ`3 f

2
λ = 6 = 3!

If x = {x1, x2} and y = {y1, y2} then∑
λ

sλ(x) =
1

(1− x1)(1− x2)(1− x1x2)∑
λ

sλ(x)sλ(y) =
1

(1− x1y1)(1− x1y2)(1− x2y1)(1− x2y2)∑
λ

sλ(x)sλ′(y) = (1 + x1y1)(1 + x1y2)(1 + x2y1)(1 + x2y2)
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2.3.6 TABLEAUX ALGORITHMS

Definitions:
An inner corner of the partition λ is (i, j) ∈ λ such that (i+1, j), (i, j+1) 6∈ λ.
An outer corner of the partition λ is (i, j) 6∈ λ such that (i−1, j), (i, j−1) ∈ λ.

The Greene-Nijenhuis-Wilf [1979] Algorithm: This algorithm produces a SYT
of given shape λ ` n uniformly at random. It can also be used to prove the hook
formula (see 2.3.5, Fact 1). One takes a random walk along hooks of λ until
one gets to an inner corner (i, j). This cell is labeled n and then the process is
repeated on λ \ (i, j) to find a cell to label n− 1, etc., until all cells are labeled.

ALGORITHM: The Greene-Nijenhuis-Wilf Algorithm

{Initialize} Pick cell (i, j) ∈ λ with probability 1/n.
{Find a corner}While (i, j) is not an inner corner: pick (i′, j′) ∈ Hi,j \ (i, j)

with probability 1/(hi,j − 1) and let (i, j) := (i′, j′).
{Now (i, j) is an inner corner} Label (i, j) with n.
{Update and iterate} Let λ = λ \ (i, j), n := n− 1 and return to Initialize if

n > 0 or end if n = 0.

The Robinson-Schensted [1938,1961] Algorithm: This algorithm proves the
second summation formula in 2.3.5, Fact 6, by giving a map from permutations
π = p1 . . . pn ∈ Sn to pairs (P,Q) of SYT of the same shape which is a bijec-
tion. The pk are inserted sequentially into P using a bumping process where pk
displaces an entry of the first row, which then displaces an entry of the second,
etc. until some entry comes to rest by adding a cell at the end of a row. The
entry k is then put in Q in the same place as the new cell in P .

ALGORITHM: The Robinson-Schensted Algorithm

{Initialize} Let P = Q = ∅, k := 1, p := p1, i := 1.
{Bumping in P}While there is an entry of row i of P greater than p let Pi,j

be the smallest such entry and exchange p and Pi,j . Let i := i+ 1 and iterate.
{Now p > all of row i} Row i will have an outer corner (i, j) and let Pi,j := p.
{Modify Q} Let Qi,j := k.
{Update and iterate} If k < n then let k := k+ 1, p := pk, i := 1 and return

to Bumping in P , else end if k = n.

Facts:
1. The Robinson-Schensted algorithm can also be used to prove the first sum-
mation formula in 2.3.5, Fact 6, by showing that if π maps to (P,Q) then π−1

maps to (Q,P ) [Schützenberger 1963].
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2. Knuth [1970] has generalized this algorithm to prove the Littlewood’s iden-
tities (see 2.3.5, Fact 7).

Examples:
1. Here is an example of the Find a corner loop of the Greene-Nijenhuis-Wilf

algorithm with λ = (5, 5, 5, 2), n = 17. At each stage the current choice of cell
c = (i, j) is displayed along with dots in its hook where the next cell must be
chosen.

c = (i, j) ∈ λ :
c • • •
•
•

c
• c

probability of c : 1/17 1/5 1/1

2. Here is an example of the full Robinson-Schensted algorithm for the
permutation π = 6, 2, 3, 1, 7, 5, 4.

pk : 6, 2, 3, 1, 7, 5, 4,

P : ∅, 6, 2, 2 3, 1 3, 1 3 7, 1 3 5, 1 3 4.
6 6 2 2 2 7 2 5

6 6 6 6 7

k : 1, 2, 3, 4, 5, 6, 7,

Q : ∅, 1, 1, 1 3, 1 3, 1 3 5, 1 3 5, 1 3 5.
2 2 2 2 2 6 2 6

4 4 4 4 7
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