2.3

2.3.1

PARTITIONS

INTRODUCTION

[This should be placed after Andrews’ part of the introduction] Young tableaux
were introduced by the Reverend Alfred Young [1873-1940]. They are of inter-
est in combinatorics, and the theories of symmetric functions, group represen-
tations, and invariants. Here we concentrate on the first two areas. The reader
can find information about the others in the references.

GLOSSARY
[These definitions should be alphabetically merged with Andrews’]

hook: the set of cells in a Ferrers’ diagram directly to the right or directly
below a given cell.

hooklength: the number of cells in a Ferrers’ diagram directly to the right or
directly below a given cell.

symmetrtic function: a polynomial in variables x1, ..., x, which is invariant
under the action of the symmetric group S,,. (See 5.2.2.)

Schur function: the symmetric fucntion which is the generating function for
all semistandard tableaux of a given shape.

Semistandard Young tableau: a Young tableau with the rows weakly in-
creasing and the columns increasing.

Standard Young tableau: a semistandard Young tableau with the cells in
bijection with the integers 1,...,n (= number of cells).

Young tableau: an arrary obtained by replacing each cell of a Ferrers diagram
by a positive integer.

[Andrews’ sections skipped here]

Stirling coefficients

2.3.2 Stirling coefficient identities

2.3.3 Partitions of integers, Ferrers diagrams



Chapter 2 Enumerative Methods

2.3.4 YOUNG TABLEAUX

Definitions:

A Young tableau (YT) of shape ) is an arrary, T, obtained by replacing
each cell of the Ferrers diagram of A\ by a positive integer (see 2.3.3.).

A Young tableau is semistandard (an SSYT) if the rows weakly increase and
the columns strictly increase.

A semistandard Young tableau of shape A F n is standard (an SYT) if its
entries are exactly 1,...,n. The number of SYT of shape A is denoted f).

Let R[x] be the real polynomial ring in the variables x = {x1,...,2,} (see
5.4.6). Then f € R[x] is symmetric if 7f = f for all 7 € S,,, the symmetric
group (see 5.2.2) where 7f(z1,...,2n) = f(Tr)s - Tr(n))-

The elementary symmetric function of degree k in n variables is

er(x) = ep(z1,...,2,) = Z Ty o Ty, -
1<ii<..<ix<n
And for a partition A = (Aq,...,\;) we let ex(x) = ey, (X) - ey, (X).
The complete homogeneous symmetric function of degree k in n variables
is

hi(x) = ex(x1,...,2,) = Z Xy Xy,

1<i .. <ip<n
And for a partition A = (Ag,..., ;) we let hy(x) = hy, (X) - - hy, (%).
A Young tableau T has corresponding monomial x’ = ITiijen Lo, -

Given partition A = (Ay,..., ;) and n > [, the associated Schur function is
) =
T

where the sum is over all SSYT T of shape \ with entries at most n.

Facts:

1. The coefficient of z1x5 -z, in sx(21,...,2Tn) is fi.

2. If A = (k) (one row) then sy(x) = hg(x). If A = (1¥) (one column) then
sx(x) = er(x).

3. The generating functions (see 3.1) for the ex(x) and hy(x) are

Zek(x)tk = H<1+l’it)

k>0 i>1
1

th(x)tk = Hl—xit'

k>0 i>1

2
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4. The recurrence relations (see 3.2) for the ex(x) and hy(x) are

er(T1,. .. xn) = ex(®1,. ., Tn1)+Tner—1(T1,...,Tn_1)

hi(z1,.. . xn) = hg(z1, ..., Zn_1) + Tphe—1(21, ..., 2p).

5. Specializations of the the ex(x) and hi(x) give binomial coefficients (see
2.2.2) and Stirling numbers (see 2.3.1)

—
(") = a0
k
n—k+1
—
= hi(l,...,1)
ls(n, k)] = en—ik(1,2,...,n—1)
S(n, k) = hn_i(1,2,...,k).

6. If A F n then the Schur function sy(x) is the cycle index (see 2.4.1) for the
characters of the irreducible representation of the symmetric group S,, corre-
sponding to A. Also f) is the degree of this representation.

7. The symmetric functions in x = {x1,...,x,} form a graded algebra A,, (see
5.4.5) whose homogeneous piece of degree k is denoted AX.

8. The polynomials ey(x), hy(x), sx(x) are all symmetric. As A runs over all
partitions of k each of the three families runs over a basis for A¥ which thus has
dimension p(k) = number of partitions of k (see 2.3.3).

Examples:
1. If A = (3,2) then a complete list of SYT is

3 1 2 4 1 2 5

1 2 1 4
45 35 7 3 4 7 2

3 1 3 5
5 T2 4
2. If A =(2,2) then a complete list of SSYT with entries at most 3 is

11 1 1 2 2 11 1 2 1 2
22> 33 33 23 23 33

The last tableau has monomial x7 = zyz92515 = xlxgxg. The Schur function
for this list is

2,2 2,2 2,3 2 2 2
52,2)(T1, T2, 23) = 2125 + 723 + 1375 + +7T273 + T10573 + T1T273.
3. As examples of elementary and complete homogeneous symmetric functions:

ea(x1,22,23) = T1T9 + 21273 + 223
e@2,1)(r1, T2, 23) = (122 + 2123 + T223) (21 + 22 + 23)
ho(x1,T2,23) = X122+ T103 + T2x3 + »77% + z% + zg
)

(x120 + T123 + ToT3 + 27 + 72 + x%)(ml + x9 + x3).

hig,1y (21, 2, 3
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2.3.5 TABLEAUX IDENTITIES

Definitions:

The hook of cell (i, ) in the Ferrers diagram for a partition A is
H;j={(k,j)eX: k>i}U{(i,k) e X: k> j}.
The hooklength of cell (i, j) is the number of cells in its hook, i.e.,

hij = |H;;

The content of cell (4, 75) is
Ci,j :j — 1.

The minimum weight of a partition A is

m(A) = i\

i>1

This is the smallest possible sum of the entries of an SSYT of shape .

The if q is a variable then the principal specialization of a symmetric function

is obtained by letting x; = ¢* for all 1.

If G is a group (see 5.2) then an involution is g € G such that g? is the identity.

Let inv(n) be the number of involutions in the symmetric group Sy,.

Facts:
1. Frame-Robinson-Thrall Hook Formula [1954] The number of SYT of fixed
shape A is
n!
fr=
H(i,j)e)\ hi,j

2. Frobenius Determinantal Formula [1900] The number of SYT of fixed shape

A= (A1,..., ) is the determinant

fr=n!

Ni+i =)<« '

3. The principal specialization of sy (x) is

2 ) 1 —gouatn
(@@ ") =" [ ———

1 — ghis
@per

This can be use to derive the hook formula.
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4. Jacobi-Trudi Determinants [1841,1864] The Schur function of A = (Aq,..., A;)
is the determinant

sa(x) = |hki+j—i|1§i,j§z'
This can be used to prove the determinantal formula for fy. There is also a
dual form, letting the conjugate of A (see 2.3.3) be X' = (A],...,Al,)

SA(X) = |e)\;+j—i|1gi,j§m'

5. Jacobi Alternant Quotient [1841] The Schur function in x = {z1,...,2,} is
the determinant quotient

Aj+n—j
AR

1<ij<n

sa(x) =

n—j’

1<ij<n

6. We have the following summations involving the number of SYT:

Zf)\ = inv(n)

AFn

DR =0

AFn

7. Ux={xy,...,zn}t and y = {y1,...,yn} then

1 1
doax) = I 1= 1T T—aw,

by 1<i<n Tigili<n
1 .
D sa®)saly) = H F— [Littlewood, 1939
A 1<i,5<n
Z sax(x)sn(y) = H (14 zy;) [Littlewood, 1939]

) 1<ij<n
These identities can be used to prove those in the previous example.

Examples:

1. For the partition (3,2) we have Hy 1 = {(1,1), (2,1), (1,2), (1,3)}. In the
following digram each cell of (3,2) is replaced with its hooklength.

4 3 1
2 1

The hook formula gives the number of SYT of shape (3,2) (cf. 2.3.4, Example
1) to be
5!

f<3’2):4-3-é~12:5'
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The determinantal formula gives the same result

1/3! 1/4!

f<3»2>:5!' 11 12| T

2. In the following diagram each cell of (2,2) is replaced by its content

0 1
-1 0

The product formula for the principle specialization with shape (2,2) (cf. 2.3.4,
Example 2) gives

2 5 6(1-¢)A-q")(1-¢*)(1 -
@) = @)1= )1 =)

The Jacobi-Trudi determinant yields

ha(x)  hs(x)
h1 (X) hQ (X)

Since (2,2)" = (2,2) (self-dual) we also have

— 4" +28 + ¢ + ¢

$(2,2)(X) = ’ = h3(x) — ha(x)h(x)

e2(x) es(x)

ea(x) ealx) | ) T ealxa).

5(2,2) (X) =

If x = {21, 29, 23} then as a quotient of alternants we have

4 .3

:cé11 :cé 1

5 x5 1

rs 23 1

8(272) (X) = 2 1
I% X1

5 x2 1

3 w3 1

3. For the partitions of n = 3 we have

for=1 fen=2 fain=1
so our summation formulas become

Doasfr = 4 inv(3)
Z)\)—Sf?\ = 6 = 3

If x = {21,292} and y = {y1,y2} then

1
gsx(x) = (1—21)(1 —29)(1 — 2122)
Zs,\(X)S/\(Y) 1
A

(1 = 21y1)(1 — 21y2) (1 — 22y1) (1 — 22y2)
Z sa(x)sa (y)
X

(14 z1y1) (1 + w1y2) (1 + 22y1) (1 + 2232)
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2.3.6 TABLEAUX ALGORITHMS

Definitions:
An inner corner of the partition A is (¢, j) € A such that (i+1,5), (¢,5+1) € A
An outer corner of the partition A is (¢, j) € A such that (i —1,7),(i,7—1) € A.

The Greene-Nijenhuis-Wilf [1979] Algorithm:  This algorithm produces a SYT
of given shape A - n uniformly at random. It can also be used to prove the hook
formula (see 2.3.5, Fact 1). One takes a random walk along hooks of A until
one gets to an inner corner (4,7). This cell is labeled n and then the process is
repeated on A\ (i, 7) to find a cell to label n — 1, etc., until all cells are labeled.

ALGORITHM: The Greene-Nijenhuis-Wilf Algorithm

{Initialize} Pick cell (4, j) € A with probability 1/n.

{Find a corner} While (4, j) is not an inner corner: pick (¢, ;") € H; ; \ (4, )
with probability 1/(h; ; — 1) and let (3,5) := (¢, j').

{Now (i, ) is an inner corner} Label (i, j) with n.

{Update and iterate} Let A = X\ (¢,7),n :=n — 1 and return to Initialize if
n > 0 or end if n = 0.

The Robinson-Schensted [1938,1961] Algorithm:  This algorithm proves the
second summation formula in 2.3.5, Fact 6, by giving a map from permutations
T =p1...pn € Sy to pairs (P, Q) of SYT of the same shape which is a bijec-
tion. The p; are inserted sequentially into P using a bumping process where pg
displaces an entry of the first row, which then displaces an entry of the second,
etc. until some entry comes to rest by adding a cell at the end of a row. The
entry k is then put in @ in the same place as the new cell in P.

ALGORITHM: The Robinson-Schensted Algorithm

{Initialize} Let P=Q =0,k :=1,p:=pq, i:= 1.

{Bumping in P} While there is an entry of row ¢ of P greater than p let P, ;
be the smallest such entry and exchange p and F; ;. Let ¢ := ¢ + 1 and iterate.

{Now p > all of row i} Row ¢ will have an outer corner (4, j) and let P; ; := p.

{Modify Q} Let Q; ; := k.

{Update and iterate} If k < n then let k := k+1, p := pg, i := 1 and return
to Bumping in P, else end if k = n.

Facts:

1. The Robinson-Schensted algorithm can also be used to prove the first sum-
mation formula in 2.3.5, Fact 6, by showing that if 7 maps to (P, Q) then 7!
maps to (@, P) [Schiitzenberger 1963].
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2. Knuth [1970] has generalized this algorithm to prove the Littlewood’s iden-
tities (see 2.3.5, Fact 7).

Examples:

1. Here is an example of the Find a corner loop of the Greene-Nijenhuis-Wilf
algorithm with A = (5,5,5,2), n = 17. At each stage the current choice of cell
¢ = (i,7) is displayed along with dots in its hook where the next cell must be
chosen.

c=(i,j) € A:

[ ]
probability of ¢ : 1/17 1/5 1/1

2. Here is an example of the full Robinson-Schensted algorithm for the
permutation m = 6,2,3,1,7,5,4.

Pk - 67 23 3; 13 73 57 47
P: 0 6 2 2 3 13 137 1 335 1 3 4
6 6 2 2 2 7 2 5
6 6 6 6 7
k 1, 2, 3, 4, 5, 6, 7,
Q: 1, 1, 1 3 1 3, 1 3 5 1 3 5 1 35
2 2 2 2 6 2 6
4 4 4 4 7
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