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Abstract 

Sagan, B.E., Combinatorial proofs of hook generating functions for skew plane partitions, Theoret- 

ical Computer Science 117 (1993) 273-287. 

We provide combinatorial proofs of two hook generating functions for skew plane partitions. One 

proof involves the Hillman-Grass1 (1976) algorithm and the other uses a modification of 

Schiitzenberger’s (1963, 1977) “jeu de taquin” due to Kadell (to appear). We also provide a bijection 

showing directly that these two generating functions are equal. Analogous results for skew shifted 

plane partitions are proved. Finally, some open questions are discussed. 

1. Preliminaries 

Stanley [9] was the first to derive the hook generating function for reverse plane 
partitions and a combinatorial proof of this result was given by Hillman and Grass1 
[2]. In an earlier paper [S] we showed how their algorithm could be generalized to 
give bijective proofs of other generating functions for partially ordered sets with 
hooklengths. It turns out that there are two hook-generating functions for skew plane 
partitions, also first derived algebraically by Stanley [lo]. We will show that one can 
be proved using Hillman-Grass1 and the other by a modified version of the 
Schiitzenberger “jeu de taquin” [7, S] created by Kadell [3]. We also give a bijection 
which shows directly that these two product generating functions are equal. These 
proofs will be found in Section 2. 

Similarly, shifted reverse plane partitions are enumerated by a hook generating 
function, as was first proved by Gansner [l]. We show that shifted plane partitions 
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also have a pair of generating functions and use analogous techniques to derive the 
associated bijections; see Section 3. The shifted results as well as their proofs are new. 
The last section contains some open questions. 

Many of these proofs have been discovered independently by Kevin Kadell (private 
communication). We appreciate his permission to include them here. First, however, 
we must give some definitions and notation. 

Consider the plane 

viewed as an infinite array of boxes or cells arranged matrix-style in left-justified rows. 
Let Ib =( AI, . . . ,A,) be a fixed partition considered as a Ferrers diagram sitting in the 
upper-left corner of /i. This gives rise to the skew shape 

A skew plane partition of shape A/A is a filling, P, of A/n with nonnegative integers 
called parts such that rows and columns decrease weakly. For example, if 2=(3,1) 
then one such skew plane partition (0 parts omitted) is 

n DD44 

P=D 3 3 2 

4 3 31 

If Pi,j denotes the part of P in cell (i, j), then we say that P is a skew plane partition 

Of VI if C(i,j)EA/% Pi,i= n. Our example is a skew plane partition of 4 + 4 + 3 + 
3+2+4+3+3+1=27. Let 

ppnjA(n)=number of plane partitions of n having shape A//I. 

We will be interested in product forms for the generating function of ppn,A(n). For this, 
we need to define two types of hooks. 

If (i, j)EA then this cell has the usual hook of all cells directly to the right or directly 
below: 

If, instead, (i, j)EA/A then we take the reflection of a normal hook in an anti-diagonal 
i+j=constant, i.e., using those cells to the left or above (i, j): 

Hi,j=((i,j’)EA/AJj’<j}u{(i’,j)EA/AIi’<i}. 
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In either case, the kooklength of cell (i,j) is ki,j=IHi,jl, where 1.1 denotes the cardi- 
nality. For example, if 1” = (4,4, 3, 1) then the cells in the hooks of (2,2)~;~ are shown as 
circles in 

while those of (4, 6)$i, are the circles in 

n n H n u 0 El ... 

n n a n n 0 0 .‘. 

n n n 0 u 0 0 ... 

n 0 0 0 0 0 c! ... 

cl q 0 cl cl 0 q ‘.. 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

Thus, kZ, 2 = 4 and kq, 6 = 8. 

2. Plane partitions 

We will give combinatorial proofs of the two product formulae for the generating 
function for skew plane partitions. We will also show by a direct bijection that the two 
products are equal. 

Theorem 2.1. If A. is a fixed shape, then 

1 
1 PPn/,(nb”= n ___ 

n>O (i,j)eA/i. l -xh”j 

=kQl &@J$ 

Proof. (1): We merely use a reflection of the normal Hillman-Grass1 algorithm in an 
anti-diagonal. (This corresponds to the fact that the associated algebraic proof derives 
(1) as a limiting case of the ordinary hook generating function for reverse plane 
partitions.) Details of this approach have already appeared in [IS] for the case A=!$, 
and the general case is virtually the same, so here we will only sketch the proof for 
completeness. 

It suffices to find a bijection 
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where P is a plane partition of shape A/,? and IC is a partition all of whose parts are 
hooklengths of A/n such that 

1 Pi,j=F kk,jk. 
(i.jkP 

We will define a path p in P and then subtract one from every part on the path. The 
definition of p is as follows: 

HGl. Start p at (a, b), the rightmost highest cell of P containing a nonzero entry. 
HG2. Continue by iterating 

(i,j)Ep * 
(i+l,j)Ep pi+l,j=pi,j, 

(gj- 1)~p otherwise. 

HG3. 

In other words, move left unless forced to move down in order not to 
violate the weakly decreasing condition along the rows (once the ones are 
subtracted). 
Terminate p when the preceding induction rule fails. At this point we must be 
at the left end of some row, say row r. 

It is easy to see that after subtracting one from the elements in p, the array remains 
a plane partition and the amount subtracted is h,,r,. 

For example, the following diagram shows an array P with the cells of the path 
p enclosed in boxes, as well as the resulting plane partition P’ after subtraction: 

n mmm3131 n mmm32 

n n H n [7jB] HBHW22 

P=W n W fq13/ 2 --f P’=DMB322 

n F] r;?l q 2 n 4 3 32 

5 4 3 3 2 5 4 3 32 

In this case (a, b) = (1,6) and r = 4; so, the number of ones subtracted is h,, 6 = 8. Make 
hr,b the first part of K and continue the process by finding a path in P’, subtracting 
ones to find the second part of K, etc. The algorithm terminates when every entry of 
P has been zeroed out. 

To reverse the process, given a partition of hooklengths, we must rebuild the plane 
partition. First, however, we must know in what order the hooklengths were removed. 
The following lemma, whose proof is omitted, answers that question. 

Lemma 2.2. In the decomposition of P into hooklengths, hi,j was removed before hi,,j,, if 
and only if 

j>j’, or j=j’ and idi’. 
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Proof of Theorem 2.1 (continued). Now arrange the hooklengths in K according to the 
total order given in the lemma and start adding them back, starting with the last 
hooklength and the plane partition of all zeros. In general, to add hr,b to P, we 
construct a reverse path q along which to add ones: 

GHl. Start q at the leftmost cell in row r 
GH2. Continue by 

(i,j)w - 
(i-l,j)Eq if Pi_l,j=Pi,j, 

(i, j + 1)Eq otherwise. 

GH3. Terminate q when it passes through the highest cell of .4/n in column b. 

This is a step-by-step inverse of the construction of the path p, as can be verified in 
the previous example. Thus, to finish the proof it suffices to show that q is well defined 
_ i.e., that it must pass through the highest cell in column b. We leave this verification 
to the reader. 

(2): First we must describe the modified version of “jeu de taquin” that we will need. 
Pick any cell c=(i,j)~A which is at the end of its row and column. If P is a plane 
partition of shape A/A, then we can perform a backward jeu de taquin slide into cell 
c using the following algorithm: 

(Bl) While Pi,j+l #O or Pi+r,j#O do 

(B2) if Pi,j+l3Pi+l,j then slide Pi,j+l into cell c 

else slide Pi + l,j- 1 into cell C. fi 
(B3) Let c:= the cell of the element that slid in step B2. od 

Of course, the coordinates (i, j) of c also get changed by the assignment statement in 
step B3. Note also that 1 is subtracted from every element that moves up during the 
slide. If the result of a slide on P into c is P’ and the total amount subtracted is d, then 
we will write P’=j’(P) and d=d’(P). It is easy to verify that P’ is still a plane 
partition. 

To illustrate, we have boxed the elements on the path of a slide into c = (2,2) on the 
following partition and displayed the result after the slide is complete: 

mm4 n m4 

qMJ3 n 3 3 

p= 4 •I ’ + p’=j(232)(p)= 4 3 l 
3 3rFl 3 3 

2 2a 2 2 

1 1 1 1 

In this case d’(P)= 3. 
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Now to the proof of (2). By Theorems of MacMahon [4] and Stanley [9], the two 
products on the right-hand side of the equality count normal plane partitions (those 
where A= 8) and reverse plane partitions of shape 1, (arrays obtained by replacing the 
boxes of A. by nonnegative integers such that rows and columns increase weakly), 
respectively. Thus, it suffices to find a bijection 

P-(Q,R)> 

where P is a plane partition of shape /l/A, Q is a normal plane partition and R is 
a reverse plane partition of shape A, such that 

1 Pi,j= C Qi,j+ 1 Ri,j. 
(i, j)eA/i (LjkA (1, j)d 

First we discuss the map P -+ (Q, R). The basic idea is that we will use slides on P to 
obtain the normal array Q while R keeps track of the amount subtracted at each stage. 
Specifically, let cr ~ . . , c, be the cells of 1. =(3-r ) . . , Al) listed in the order 

(I, A),(A A-l), ..., (A 1),(/-L A-,), . . ..(I. I), (3) 

i.e., list each row from right to left, starting with the lowest row and working up. 
Define 

Further, let pk be the path corresponding to the slide into cell ck. Finally, after 
performing j” on some intermediate partition P’, where c = (i, j), we let 

i.e., we fill R by rows from left to right starting with the lowest row and working up. 
Using the previous example for our initial P, we make the following computation: 

MM4 

mm3 

4 43 
Q: 

3 32 

2 2 1 

1 1 

R: n n 

n n ’ 

n M4 

H 3 3 

4 3 1 

3 3 

2 2 

1 1 

n n 

3 H’ 

MB4 n 42 422 

3 33 33 31 

3 21 32 3 

3 1 31 ‘3 

2 2 2 

1 1 1 

n n 2H 23 

3 4’ 34’ 34 
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Thus, 

MM4 

mm3 

4 43 

3 32+ 

2 21 

1 1 

422 23 

3 1 34 

3 

3 ’ 

2 

/ 1 

We must show that this map is well-defined. It is easy to see that Q is a normal plane 
partition and that R has the right shape. We need to verify that the rows and columns 
of R are increasing weakly. This will follow from Lemmas 2.3 and 2.4, respectively. 

Lemma 2.3. Let p =pk and p’ = pk+ 1 be the paths corresponding to backward slides into 
adjacent cells ck and cl+ 1 in the same row. If (i, j) is the rightmost cell of p in row i then 
the rightmost cell of p’ in row i lies in a column <j, i.e., p’ lies to the left of p. 

Proof of Lemma 2.3. f?hCe Ck + I lies directly to the left of ck, it suffices to verify that if 

p’ reaches (i, j - l), then its next step will be down. Let x and y be the elements in cells 
(i+ l,j- 1) and (i+ 1, j) before the slide into ck, . see Fig. l(a). So, x3y since this array 
is a skew plane partition. 

j-l j j-l j 

i 0 q i 0 y-l 

is-1 x y i+l x 0 

(a) Before pk (b) After px 

Fig. 1. Slide situations. 

Now, by the hypothesis on p, after the ck slide we have x and y- 1 in cells 
(i + 1, j - 1) and (i, j), respectively; see Fig. 1 (b). Thus, when p’ reaches (i, j - l), it must 
continue to (i+ 1, j- 1) since xly- 1. 0 

Lemma 2.4. Let p = pk and p’= pI be the paths corresponding to forward slides into cells 
ct and cl, respectively, where ck=(&, 12,--s) and c)=(&_r, &_l-s) for some r,s. lj” 
(i, j) is the lowest cell of p in column j then the lowest cell of p’ in column j lies in a row 

<i, i.e., p’ lies above p. 

Proof of Lemma 2.4. We will induct on k. Since c, lies above and to the right of ck, it 
suffices to verify that if p’ reaches (i - 1, j), then its next step will be right. Let m be the 

largest integer such that cell (i, j+ t) is the lowest cell on path pk-r in column j+ t 

for O<t<m. Let x and y be the elements in cells (i-l,j+m+l) and (i,j+m+l), 
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respectively, just before sliding along the path pk_,,,. So, we have the situation in 
Fig. 2(a). Thus, x>y. 

j j+m+ 1 j j+m+l j j+l 

i-1 j-J . . . X i-1 0 . . . X i-l cl x’ 

i q . . . y i Y ..* q i y’ 0 

(a) Before pk-, (b) After pr (c) Before p, 

Fig. 2. More slide situations. 

By our assumption about the Pk_C’s, the situation after completion of pk must look 
like the one in Fig. 2(b). Further slides from the same row as pk can change the entry in 
cell (i, j) to some y’ but, since the elements passing through a given cell decrease 
weakly, we must have y’< y. Also, because of the previous lemma, x does not change 
with such slides. 

As for the slides from row &_i, those before pl_m cannot change x or y’, by 
induction and Lemma 2.3 applied to pk_,,,+l. For similar reasons, no slide before pl 

can change y ‘. To see how the slides pl _ ,,, , . . . , pl _ 1 affect the elements in row i- 1, note 
that, by the previous lemma, no element that moves up a row during a given slide can 
be moved again by subsequent slides starting in the same row as the given one. Thus, 
the element x’ that occupies the (i - l,j+ 1) cell before pi (see Fig. 3(c)) must either 
have come from cell (i, j + 1) or from row i. The first case cannot happen since pl _ 1 and 
previous slides from that row are above pk _ 1. In the second case, since an element can 
be moved a maximum oft times in t slides, x’ must have occupied a cell weakly to the 
left of x in Fig. 2(b). Thus, x’ax. Putting everything together, we have 

x'8x3yBy'. 

Hence x’ will move left into cell (i, j) during the slide pl and we are done with the proof 
of the lemma. q 

Proof of Theorem 2.1 (continued). We now need to create the inverse map 

(Q,R)+P. 

First we formulate the inverse of a backward slide, called (oddly enough) a forward 
slide. For such a slide, we are given a skew plane partition Q of shape A/A and a cell 
c = (i, j), which is the leftmost zero cell of Q in row i. Now perform the following steps: 

(FL) While (i, j- l)~n/R or (i- 1, j)En/n do 

(F2) if Pi,j_ 1 <Pi_ I,j then slide Pi,j- 1 into cell c 
else slide Pi_ 1 ,j + 1 into cell C. fi 

(F3) Let c:=the cell of the element that slid in step F2. od 
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If only one of the two elements of the if clause above is defined, then that one slides 
automatically into c (with 1 added if necessary). The reader can check that a forward 
slide into cell ($3) of P’ in the example after the definition of a backward slide restores 
P. It is easy to see that, in general, forward slides can be used to reverse backward 
slides and vice versa. 

Now suppose that the pair (Q, R) is given. Order the cells of A as in (3) and perform 
forward slides on Q associated with c,, c,_ 1, . . . , cl in turn: if ck =( i,j) then the 
associated slide will be into the leftmost zero cell which lies in row i + Ri, li _ j + 1 in the 
current version of Q. The final version of Q will be the image of the pair, P. 

It is clear that the composition of our previous map with this one is the identity. To 
make sure that the other composition is too, we need to verify that the forward slides 
made on Q vacate the cells c,,c,_ 1, . . ..cl in that order. This is accomplished by 
analogs of Lemmas 2.3 and 2.4. Since their proofs are similar to what we have already 
seen, we will merely state the results. 

Lemma 2.5. Let p=pk and p’=pk_t be the paths of forward slides corresponding to 
adjacent cells ck and ck _ 1 in the same row. If (i, j) is the leftmost cell of p in row i then the 
leftmost cell of p’ in row i lies in a column >j, i.e., p’ lies to the right of p. 

Lemma 2.6. Let p = pk and p’ = pt be the paths of backward slides corresponding to cells 

ck and cl, respectively, where c~=(&,&-S) and c,=(&+~,&+~-s) for some r,s. If 

(i,j) is the highest cell of p in column j then the highest cell of p’ in column j lies in a row 
>i, i.e., p’ lies below p. 

Proof of Theorem 2.1 (continued). (1) = (2): To show directly that the two products are 
equal, we merely need to demonstrate that the same exponents appear in both 
denominators. Clearly, it suffices to find an injection 

such that 
(fl) for all cells (i, j)EA, we have hi, j = hr (i, j), and 
(f2) the multiset (“set” with repetitions) of hooklengths for the cells in A and 

A/A-f (A) are the same. 
To define this injection, it will be convenient to introduce the notion of a row strip. 

The rth row strip of I. is the set of all cells of the shape A that are r cells from the 
bottom of their respective columns. For example, we have marked the cells of the rth 
row strip in the following diagram with the integer r for 1 <r 64: 

4 3 3 2 

3 2 2 1 

2 1 1 

1 
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Similarly, the rth row strip of A/i is the set of all cells of A/J. that are r cells from the 
top of their respective columns. Marking a skew shape with r’s gives the following 
figure: 

n w n n 1 1 1 ... 

n n n n 2 2 2 *‘. 

n n n 1 3 3 3 .‘. 

n 1 1 2 4 4 4 ... 

1 2 2 3 5 5 5 .‘. 
. . . . . . . . . . . . . . . . . . , . . . . . 

Let CT, and z, denote the rth row strips of/z and A/A, respectively. We will define the 
injection f by defining it on each row strip, 

f: Or -+ T5,. 

Specifically, let the cells of cr be ( il, l), ( iz ,2), ( i3, 3), . . . and define inductively 

f(ij,j)= the rightmost box of z, weakly to the left of 
(ij + r, Ai,) which is not already in the image of S (4) 

as j successively takes on the values 1,2,3, etc. Thus, f(ir , 1) = (iI + r, ni,). If i, = ir then 
f(iz, 2) is the element of r, in column Ai, - 1. But if i2 <i, then S(iz, 2)=(iz +r, Ai*), etc. 
For example, if /z =(9, 8,6, 2) and r =2 then we have marked (i, j)Ea, and f(i, j)ErZ 
with the same letter in the following diagram: 

Note that f( i1 , 1) = ( il + r, Ai,) is indeed in r, and, by construction, has the same 
hooklength as (i, j). We must show that the rest off is well-defined, in that the cell 
f(i, j) exists (in which case S is clearly injective), and that conditions (f 1) and (f2) are 
satisfied. This will be taken care of by the following lemma and the fact that the rth 
row strip of/1 has hooklengths {r,r+l,r+2,...). 

Lemma 2.7. The function dejined by equation (4) is well-defined and satisJies 
(1) for all cells (i, j)Eo,, we have hi,j= hf(i,j), and 
(2) the hooklengths of the cells of z, -f (o”), read from left to right, are precisely 

(r, r+ 1, r+2, . ..I. 
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Proof of Lemma 2.7. We induct on the number of rows of ;i. If /z = (J. 1, . . , A,,), then let 
X=(2 2, . . , I_,). Now the row strips and their images in columns j < A2 of 2 and ,? (for 
i > 2) are exactly the same. So, by induction, S is well-defined and preserves hook- 
lengths there. Also, \ f( or n L) I= A, + i. So, there are A2 - E”, + i elements of r, in columns 
j < A2 which are not in f( U, n l). Thus, by induction again, the hooklengths of these 
cells must be r,r+l,..., r+l,-A,+,-1. 

As far as the columns j, with A2 < j < I1 are concerned, induction and the previous 
sentence combine to show that there z, has hooklengths from r + a2 - E,,, 1 to 

Thus, the hooklengths available in columns j< A1 make S(o,n/Z,) well-defined and 
hooklength-preserving if we use rule (4). Furthermore, there are /2, - 1;,+ 1 elements of 
cr, in row 1. So, the hooklengths unused by S in columns jdil form an interval from 
r to 

r+il-Ar+l- 1-(I.,-&+,)=rf;li-5-l. 

Finally, the cells of z, in columns j > a, clearly have hooklengths 

r+1i-&, r+i_,-&+l,..., 

so we are done. 
This completes the proof of Theorem 2.1. q 

3. Shifted plane partitions 

Consider the shifted plane 

fi*=((i,j)En(i<j}, 

so that now each row is shifted over one box from the row above. Let E,* =(nT, . . . , A:) 

be a strict partition, i.e., one where AT > . . . > A f . Then I* can be viewed as a shifted 
shape in the upper-left corner of A* via 

;l*=((i,j)En*\i<j<i+&-11 

This gives rise to the skew shifted shape 

n*/n*=((i,j)I(i,j)E/1*, (i,j)$n*). 

A skew plane partition of n with shape A*/,l*, P*, is defined in the obvious way. For 
example, if 1=(3, 1) then one such skew shifted plane partition is 

mm=44 

p*= n 3 2 

3 1 
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Let 

pp,,,,.(n)=number of shifted plane partitions of n having shape A*/,?*. 

Shifted hooks are defined as follows. If (i, j&A* then 

where all sets are contained in A*. This is just the normal hook ifj3 1, the number of 
parts of A* (i.e., (i, j) is not over the left staircase). If j < I then the vertical portion of 
H~j does a right turn and picks up all elements in rowj+ 1. In the case (i, j)EA/A, we 
again take reflections to get 

where all sets are now in A*/,%*. Of course, the shifted hooklength of cell (i, j) is 
h&=IHzjJ. For example, if A*=(6, 5, 3, 1) then the cells in the hook of (1, 2)~l* are 
shown as circles in 

n .e.0. 

l mmmm 
0.0 
n 

while those of (7,8)$A* are the circles in 

n mmmmmr3on . . 
n mmmmuo~ . . 
n mmonon _ 

muonon . . 
clonon .. 

on00 .. 
0017 .. 

So, hf 2=9 and hq ,=12. 
The’way to motivate the definition of these hooks is as follows. Given the shifted 

shape A*, let /1^ denote the left-justified shape obtained by gluing together A* and its 
transpose A **, i.e., 

X=((i,j)Ii<jji++~-1 orj+l<i<j+J,r}. 
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To illustrate, if i* =(6, 5, 3, 1) as before, then 

n n n n n n 

l mmmmm 
l ommm 

X=0 0 0 n 
0.0. 
0.0 
00 

where the circles now indicate the cells of A*‘. It is easy to see that if (i,j)~n*/E.* then 
hEj=hi,j, where the normal hooklength is calculated in A/x Similarly, if (i,j)~J*’ 
then hFj=hj+l,i, where the normal hooklength is in fi This is because, in both cases, 
the shifted hook is just the normal hook with one of its appendages bent. In what 
follows, we will also need a third type of hooklength. If (i, j)E;I* then let h^i.j=hi,j, 
where the normal hooklength is computed in i. 

We can now state the analog of Theorem 2.1. 

Theorem 3.1. If A* is a jixed shifted shape, then 

Proof. (5): Again, we are just reflecting the shifted Hillman-Grass1 algorithm (see [S]) 
in an anti-diagonal. Because of the similarity with the proof of (l), we content 
ourselves with defining the path p* along which to subtract ones in a given shifted 
skew plane partition P*. The reader who has made it this far will find no difficulty in 
filling in the details of the rest of the algorithm: 

SHGl. Start p* at (a, b), the rightmost highest cell of P* containing a nonzero 
entry. 

SHG2. Continue by iterating 

(i,j)Eps j (i+ Ljkp* if pi”+ 1, jzpzj, 

(i,j-l)~p* otherwise. 

SHG3. The induction rule in SHG2 will fail at some cell (r, s) at the left end of 
a row; so, subtract ones along this portion of p*, 
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If r < s then stop 

else (now r = s) continue p* by (r - 1, I - l)~p* and iterate 

(i,j+l)Ep* if Ptj+l=Pzj, 

otherwise Ii. 

Now the induction rule in SHG4 will fail at some cell (t, u) at the top of 
a column. 

It is easy to see that after subtracting one from the elements in p*, the array remains 
a shifted plane partition and the amount subtracted is hXb or h,*+ l,b depending upon 
whether the path terminates in step SHG4 or SHGS, respectively. (The crucial 
observation is that the second half of p*, if it exists, cannot intersect the first half 
because of the subtraction in SHG3.) 

(5)=(6): We obtain the analog of the map f of the proof that (1) =(2) as follows. 
Using column strips (rather than row strips), define an injection 

A simple argument shows that if we restrict the domain off to n * then the range also 
becomes included in the shifted plane. Furthermore, those cells in /1* -f(n*) have 
hooklengths given by the first product in (6). 0 

4. Open questions 

First of all, the reader will have noticed that we gave no direct proof that the 
product (6) counts shifted skew plane partitions. There is a shifted version of the “jeu 
de taquin” [6, 111, but it is not clear how to apply it in this case. Krattenthaler (private 
communication) has pointed out that the second product in (6) counts shifted reverse 
plane partitions R* of shape A* such that Ri, i is even for all i. However, this does not 
seem to help. 

In [SJ we also consider a third family of partitions with hooklengths: rooted trees. 
A rooted tree r is a finite partially ordered set with a unique minimal element (called 
the root) whose Hasse diagram is a tree in the graph-theoretic sense of the term. 
A reverse z-partition is an assignment 
z such that if v < w in the partial order in 
analog of a reverse plane partition or a 
this case are just 

H,=(Mzrl w>v}. 

T of nonnegative integers to the vertices of 
r then T(v) < T(w) as integers. This is the tree 
reverse shifted plane partition. The hooks in 

In all three cases, the generating function for those reverse partitions summing to n is 
a finite product in terms of hooklengths. However, we have been unable to define 
a notion of skewness for trees that will yield a nice generating function for the 
corresponding (nonreverse) partitions. Perhaps one of our readers will have better luck. 
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