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Abstract

Consider Sn, the symmetric group on n letters, and let majπ denote the major index of π ∈ Sn. Given
positive integers k, l and nonnegative integers i, j , define

m
k,l
n (i, j) := #

{
π ∈ Sn: majπ ≡ i (mod k) and majπ−1 ≡ j (mod l)

}
.

We give a bijective proof of the following result which had been previously proven by algebraic methods:
If k, l are relatively prime and at most n then

m
k,l
n (i, j) = n!

kl

which, surprisingly, does not depend on i and j . Equivalently, if m
k,l
n (i, j) is interpreted as the (i, j)-entry

of a matrix m
k,l
n , then this is a constant matrix under the stated conditions. This bijection is extended to

show the more general result that, for d � 1 and k, l relatively prime, the matrix m
kd,ld
n admits a block

decomposition where each block is the matrix m
d,d
n /(kl). We also give an explicit formula for m

n,n
n , and

show that if p is prime then m
p,p
np has a simple block decomposition. To prove these results, we use the

representation theory of the symmetric group and certain restricted shuffles.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let Sn denote the symmetric group consisting of all permutations π of the set [n] :=
{1,2, . . . , n}. If we write π = a1a2 . . . an then the major index of π is

majπ :=
∑

ai>ai+1

i.

Let k, l be positive integers and let i, j be nonnegative integers. We wish to study the cardi-
nalities

mk,l
n (i, j) = #

{
π ∈ Sn: majπ ≡ i (mod k) and majπ−1 ≡ j (mod l)

}
.

We will often omit the superscript k, l both for readability and because the parameters will be
clear from context. Note that directly from the definition we have m

k,l
n (i, j) = m

l,k
n (j, i). One of

our main objectives is to give a bijective proof of the following theorem.

Theorem 1.1. Let k, l be relatively prime and less than or equal to n. Then

mk,l
n (i, j) = n!

kl
.

This theorem is striking because the right-hand side of the equality does not depend on i, j .
It is easy to prove algebraically based on results of Gordon [4] and Roselle [6]. This was done
in a paper of Barcelo, Maule, and Sundaram [1], where they also provided combinatorial proofs
of special cases of this result. Here we will give a bijective proof with no restrictions other than
those in the statement of the theorem. These restrictions are necessary since the result is no longer
true without them. However, we will generalize our bijection to cover the case where the moduli
are allowed to have a common factor and prove the following.

Theorem 1.2. Let k, l be relatively prime and let d � 1. Then

mkd,ld
n (i, j) = m

d,d
n (i, j)

kl
.

The second half of the paper will be devoted to investigating m
k,l
n (i, j) when k = l. We will

give an explicit formula for m
n,n
n (i, j). It will also be shown that when k = l is a prime power, the

matrix whose (i, j)th entry is m
k,k
n (i, j) has a nice block form. Our tools will include restricted

shuffles and results from the representation theory of the symmetric group.

Dedication. Bob Maule was an accomplished actuary who took an early retirement due to
health problems. After a few years, he enrolled in the graduate program in mathematics at Ari-
zona State University, for the sheer pleasure of doing mathematics.
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During a combinatorics course taught by Hélène Barcelo, Bob became quite interested in
a question which she was investigating with Sheila Sundaram, namely, the distribution of the
values of the major index among the permutations of Sn. He worked relentlessly for several
months, analyzing the patterns that were slowly emerging from his computations. This is how he
came to develop a matrix approach that we further develop and use here. His contributions to the
solution of the original problem were crucial, and led to a joint paper with Hélène and Sheila [1].
Despite serious health problems he continued his computations which foreshadowed several of
the results in Section 5. Unfortunately, Bob passed away before he could properly formalize his
ideas.

It is undoubtedly his enthusiasm and hard work that brought Hélène back to this subject. She
always felt that it was an honor to be his advisor. He was an exceptional person, a constant source
of inspiration and a very enjoyable person to work with. He deserves our respect both as a person
and as a nascent mathematician.

In tribute to Bob’s inspirational work, we are happy to dedicate this article to his memory,
hoping that in doing so he will be remembered in our community as a graduate student whose
sole motivation was the pleasure of doing mathematics.

2. Preliminaries

Before embarking on a proof of Theorem 1.1, we would like to restate it in a form more
amenable to bijective arguments. To do so, we will also need another common combinatorial
statistic. The inversion number of π ∈ Sn is

invπ := #
{
(ai, aj ): i < j and ai > aj

}
.

Foata and Schützenberger [2] proved bijectively that the statistics maj and inv are equidistrib-
uted over Sn. In fact, their bijection can be used to show that the joint distribution of the pair
(majπ,majπ−1) is the same as that of (invπ,majπ−1). It follows that

mk,l
n (i, j) = #

{
π ∈ Sn: invπ ≡ i (mod k) and majπ−1 ≡ j (mod l)

}
and this is the combinatorial interpretation for these numbers that we will use for most of the rest
of the paper. We will also need the corresponding sets

Mk,l
n (i, j) = {

π ∈ Sn: invπ ≡ i (mod k) and majπ−1 ≡ j (mod l)
}
.

It will often be convenient to think of these as the (i, j) entries of matrices m
k,l
n and M

k,l
n ,

respectively.
To see how this change of viewpoint simplifies things, we will give a bijective proof of a

weaker form of Theorem 1.1 where we only consider one of the two statistics. We will also need
this result in the proof of the theorem itself. Another combinatorial proof of this result can be
found in [1], but ours has the advantage of being simpler and not using induction. Let

mk
n(i) := #

{
π ∈ Sn: majπ ≡ i (mod k)

}
= #

{
π ∈ Sn: majπ−1 ≡ i (mod k)

}
= #

{
π ∈ Sn: invπ ≡ i (mod k)

}
.
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Proposition 2.1. If k � n then

mk
n(i) = n!

k
.

Proof. It suffices to show that Sn can be partitioned into subsets of the form S = {π0, . . . , πk−1}
where

invπi ≡ invπ0 + i (mod k) (1)

for 0 � i < k. Given π = a1a2 . . . an ∈ Sn, we construct the subset S containing it as follows. Let
am be the minimal element of the prefix a1a2 . . . ak of π . Let σ be the sequence formed from
π by removing am. Finally, form πi by inserting am into the ith space of σ , where the space
completely to the left of σ is counted as space 0. It is easy to see that Eq. (1) holds, so we are
done. �
3. Proofs of Theorems 1.1 and 1.2

In order to prove Theorem 1.1 we will need a nice combinatorial interpretation of majπ−1

which we will henceforth write as imajπ . In fact, it follows immediately from the definitions
that

imajπ =
∑

i+1 left of i in π

i

and that is how the reader should think of calculating this number.
Given n and l with n > l we will also need a particular bijection f = fl from Sn to itself

defined as follows. The reader may wish to also read the example at the end of the paragraph
while they read the definition. If τ = a1a2 . . . an then let I = {i1 < i2 < · · · < il} be the indices
such that π = ai1ai2 . . . ail is a permutation of [l]. Let σ be the subsequence of π indexed by
[n] − I , thus τ is a shuffle of π and σ . Consider J = {i1 + 1, i2 + 1, . . . , il + 1} where the sums
are taken modulo n. Then define τ ′ = fl(τ ) to be the shuffle of π and σ such that τ ′ restricted to
J and [n] − J are π and σ , respectively. Note that fl is clearly bijective since one can construct
its inverse in exactly the same manner by just subtracting one from each element of I . By way
of illustration, suppose that n = 7, l = 4, and τ = 6371452. So I = {2,4,5,7} corresponding to
π = 3142. Also σ = 675. Thus J = {1,3,5,6} and τ ′ = 3617425.

If τ is a shuffle of π and σ then it will be useful to let invτ (π,σ ) denote the number of
inversion pairs in τ with one element of the pair in π and the other in σ . If τ ′ = fl(τ ), we claim
that

invτ ′(π,σ ) =
{

invτ (π,σ ) + l if n /∈ I,

invτ (π,σ ) − (n − l) if n ∈ I.
(2)

To see this, note that since every element of π is less than every element of σ , then an inversion
is created every time an element of σ precedes an element of π . If n /∈ I then there is no wrap-
around when passing from τ to τ ′ and so there is one new inversion created for each of the l

elements of π . If n ∈ I then a position for an element of π is moved from the back of τ to the
front, so n − l elements of σ inversions are lost.
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We also define imajτ (π,σ ) as the subsum of imaj τ over those pairs (i, i + 1) with i ∈ π and
i + 1 ∈ σ or vice-versa. Note that for the shuffles considered two paragraphs ago,

imajτ (π,σ ) = 0 or l. (3)

As a step toward proving Theorem 1.1, we prove the following special case.

Lemma 3.1. Let l be less than and relatively prime to n. Then

mn,l
n (i, j) = n!

nl
.

Proof. We claim that the map f = fl restricts to a bijection from Mn(i, j) to Mn(i + l, j).
Keeping the notation from the definition of f and using Eq. (2), we see that

inv τ ′ = invπ + invσ + invτ ′(π,σ )

≡ invπ + invσ + invτ (π,σ ) + l (mod n)

≡ inv τ + l (mod n).

Thus the row indices in Mn change as desired. For the columns note that, by Eq. (3),

imaj τ ′ = imajπ + imajσ + imajτ ′(π,σ )

≡ imajπ + imajσ (mod l)

≡ imaj τ (mod l).

Hence f restricts as claimed.
Since l is relatively prime to n, the set of multiples of l intersects every congruence class mod-

ulo n. So iterating f will establish bijections between the sets Mn(1, j),Mn(2, j), . . . ,Mn(n, j)

for any j . But then by Proposition 2.1 we must have

mn,l
n (i, j) = ml

n(j)

n
= n!

nl

as desired. �
The previous lemma will form the base case for an inductive proof of Theorem 1.1. For the

induction step, we will need a restricted type of shuffle. We let π
⊔⊔

σ denote the set of shuffles
of the sequences π and σ , e.g.,

12
⊔⊔

43 = {1243, 1423, 1432, 4123, 4132, 4312}.
We extend this notation (and all future variants of it) to sets by letting M

⊔⊔
N = ⋃

(π
⊔⊔

σ)

where the union is over all π ∈ M and σ ∈ N .
In order to get a set of permutations from shuffling two permutations, define π

⊔⊔+
σ =

π
⊔⊔

τ where τ is the sequence formed by adding |π | to every element of σ . For example
12

⊔⊔+ 21 would give the same set as displayed above.
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We will also need to specify where the copy of π (and thus of σ ) occurs in a shuffle. So given
M ⊆ Sl , N ⊆ Sn−l , and I = {i1, i2, . . . , il} ⊆ [n], we define M

⊔⊔+
I N to be all permutations

τ = a1a1 . . . an ∈ M
⊔⊔+

N such that ai1ai2 . . . ail ∈ M . By way of illustration

{12, 21}⊔⊔+
{2,5}{231, 321} = {41532, 42531, 51432, 52431}.

Note that if π ∈ M and σ ∈ N then invτ (π,σ ) is constant for all τ ∈ M
⊔⊔+

I N . So define the
weight of I , wt I , to be this constant value

wt I =
∑
i∈I

i −
(

l + 1

2

)
.

The next result will permit us to complete the proof of Theorem 1.1. In it, � denotes disjoint
union.

Lemma 3.2. Given n, k, l with n � l, we have

Mn(i, j) =
⊎[

Ml(i
′, j ′)

⊔⊔+
I Mn−l (i

′′, j ′′)
]

where the disjoint union is over all i′, j ′, i′′, j ′′, I such that

i ≡ i′ + i′′ + wt I (mod k) and j ≡ j ′ + j ′′ (mod l).

Proof. To show that the right-hand side is contained in the left, let τ = π
⊔⊔+

I σ where π ∈
Ml(i

′, j ′) and σ ∈ Mn−l (i
′′, j ′′). Then

inv τ = invπ + invσ + invτ (π,σ ) = i′ + i′′ + wt I ≡ i (mod k).

Also, since π ∈ Sl , we have

imaj τ = imajπ + imajσ + imajτ (π,σ ) ≡ j ′ + j ′′ ≡ j (mod l).

Thus τ ∈ Mn(i, j).
To show the reverse containment, suppose τ ∈ Mn(i, j) is given. Let I be the indices where

the elements of [l] appear in τ . Also let π and σ be τ restricted to I and to [n] − I , respectively
(where l has been subtracted from every element of the latter restriction). Then τ = π

⊔⊔+
I σ

with π ∈ Ml(i
′, j ′) and σ ∈ Mn−l(i

′′, j ′′) for i′, i′′, j ′, j ′′ satisfying the equations in the state-
ment of the lemma. Hence we are done. �

As an application of the two previous lemmas, let us reprove a result from [1] which we will
need later.

Corollary 3.3. We have

m
n,n
n+1(i, j) = mn,n

n (i, j) + (n − 1)!.
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Proof. In Lemma 3.2, replace n by n + 1 and let k = l = n. Note that M1(i
′′, j ′′) = {1} when

i′′ = j ′′ = 0 and is the empty set otherwise. So taking cardinalities we obtain

mn+1(i, j) =
∑
i′,I

mn(i
′, j).

Now note that we must have I = [n + 1] − {a} for some a ∈ [n + 1]. It follows that wt I =
n + 1 − a and thus, modulo n, wt I takes on the values 1, . . . , n − 1 each exactly once and the
value 0 twice. Using this fact and Proposition 2.1 gives

∑
i′,I

mn(i
′, j) = mn(i, j) +

n−1∑
i′=0

mn(i
′, j) = mn(i, j) + (n − 1)!

which completes the proof. �
We now have all the tools in place to prove Theorem 1.1 which we restate here for conve-

nience.

Theorem 3.4. Let k, l be relatively prime and less than or equal to n. Then

mk,l
n (i, j) = n!

kl
.

Proof. We proceed by induction on n. As noted after the original definition, the matrix m
k,l
n is

the transpose of m
l,k
n . So it will suffice to prove the result for either l < k or l > k in both the

base case and induction step.
We take as our base case when l < k = n. But this has already been taken care of by

Lemma 3.1.
For the induction step we assume k < l < n. We can appeal to the base case to see that ml(i, j)

is independent of i, j . Thus there are bijections between any two sets of the form Ml(i, j). We
will now construct a bijection between Mn(i, j) and Mn(i, j + 1). By Proposition 2.1, this will
finish the proof. Decompose these two sets as in Lemma 3.2. Then, since i is being held constant,
every set Mn−l (i

′′, j ′′) appearing in the expansion of the Mn(i, j) also occurs in that of Mn(i, j +
1). The only difference is that in the first expansion it is shuffled with Ml(i

′, j ′) and in the
second with Ml(i

′, j ′ + 1). But there is a bijection between these two sets and so also between
the corresponding shuffles. It follows that we have a bijection between the disjoint unions, i.e.,
between Mn(i, j) and Mn(i, j + 1). �

As already mentioned, the previous theorem is not true as stated if k, l are not relatively prime
and we shall see some examples of this in the next section dealing with the case when k = l.
However, one can extend this result to the case where the parameters have a greatest common
divisor d , for any d � 1, as follows.

Theorem 3.5. Let k, l be relatively prime and let d � 1. Then

mkd,ld
n (i, j) = m

d,d
n (i, j)

kl
.
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Otherwise put, m
kd,ld
n admits a block decomposition into kl submatrices of dimension d × d ,

each of which equals 1
kl

m
d,d
n .

Proof. The proof is similar to that of Theorem 3.4. So we will merely sketch it, adding details
only when there are significant differences from the previous proof.

We first need an analogue of Proposition 2.1 which is that

mkd,d
n (i, j) = m

d,d
n (i, j)

k
(4)

for any k with n � kd . To show this, it suffices to find a bijection

g :Mkd,d
n (i, j) → Mkd,d

n (i + d, j)

for all i, j since then

md,d
n (i, j) =

∑
i′

mkd,d
n (i′, j) = kmkd,d

n (i, j)

where the sum is over all i′ with i′ ≡ i (mod d) and 1 � i′ � kd . Given τ ∈ M
kd,d
n (i, j), write

τ = π
⊔⊔+

I σ where π is the subsequence of τ which is a permutation of [kd], which also
uniquely determines σ and I . Define g(τ) = fd(π)

⊔⊔+
I σ where fd is the map defined at the

beginning of this section. It is easy to verify, using computations similar to those in Lemma 3.1,
that g(τ) ∈ M

kd,d
n (i + d, j) and that g is invertible. So this proves Eq. (4).

Next we need a version of Lemma 3.1 itself which is

m
kd,ld
kd (i, j) = m

d,d
kd (i, j)

kl
(5)

for k, l relatively prime and l < k. Recalling that m
k,l
n and m

l,k
n are transposes, Eq. (4) can be

rewritten

md,ld
n (i, j) = m

d,d
n (i, j)

l
.

We also have

md,ld
n (i, j) =

∑
i′

mkd,ld
n (i′, j)

where the sum is over all i′ with i′ ≡ i (mod d) and 1 � i′ � kd . So to prove Eq. (5), it suffices to
find a bijection between M

kd,ld
kd (i, j) and M

kd,ld
kd (i + d, j) for all i, j . Using fld gives a bijection

between M
kd,ld
kd (i, j) and M

kd,ld
kd (i + ld, j). But since k and l are relatively prime, iteration of

this map eventually produces the desired bijection and we have Eq. (5).
Finally, we need an induction on n to prove the full result, where the previous paragraph

gives us the base case when n = kd (assuming, without loss of generality, that l < k). But now
Lemma 3.2 can be used in much the same way as in the proof of Theorem 3.4 to complete the
induction step. Specifically, this Lemma can be used to lift the bijections in M

kd,ld
kd to bijections



Aut
ho

r's
   

pe
rs

on
al

   
co

py

H. Barcelo et al. / Advances in Applied Mathematics 39 (2007) 269–281 277

between M
kd,ld
n (i, j) and M

kd,ld
n (i, j + d) for all i, j . By transposition, we also get bijections

between M
kd,ld
n (i, j) and M

kd,ld
n (i + d, j). Then the proof is finished by noting that

md,d
n (i, j) =

∑
i′,j ′

mkd,ld
n (i′, j ′)

where the sum is over all i′, j ′ with i′ ≡ i (mod d), j ′ ≡ j (mod d), 1 � i′ � kd , and 1 �
j ′ � ld . �
4. The case k = l

Theorem 3.5 reduces computation of the matrices m
k,l
n to the case where k = l which we will

now consider. We first derive a formula for the special case m
n,n
n (i, j). We will use techniques

from the representation theory of the symmetric group Sn. More information about these methods
can be found in the texts of Sagan [7] or Stanley [9, Chapter 7]. To state our result, we use μ and
φ for the number-theoretic Möbius and Euler totient functions, respectively. We also let i ∧ j

denote the greatest common divisor of i and j .

Theorem 4.1. Let 1 � i, j � n. Then

mn,n
n (i, j) = 1

n2

∑
d|n

dn/d(n/d)!φ(d)2
μ( d

i∧d
)μ( d

j∧d
)

φ( d
i∧d

)φ( d
j∧d

)
. (6)

Proof. Let ω be a primitive nth root of unity and consider the character ωi of the cyclic subgroup
of Sn generated by an n-cycle. Let χn,i denote the character obtained by inducing ωi up to Sn.
It is easy to see that χn,i is only nonzero on conjugacy classes of type dn/d where d|n. On these
classes, Foulkes [3] showed that its value is

1

n
dn/d(n/d)!φ(d)

μ( d
i∧d

)

φ( d
i∧d

)
.

It follows that the inner product 〈χn,i , χn,j 〉 is given by the right-hand side of Eq. (6).
The following fact was discovered independently by Kraśkiewicz and Weyman [5], and by

Stanley [9, Exercise 7.88 b]. The multiplicity in χn,i of the irreducible character of Sn indexed
by a partition λ is the number, f λ

n,i , of standard Young tableaux of shape λ with major index
congruent to i modulo n. Using the decomposition into irreducibles we obtain

〈χn,i , χn,j 〉 =
∑
λ�n

f λ
n,if

λ
n,j .

But via the Robinson–Schensted correspondence one sees that this sum is exactly m
n,n
n (i, j), so

we are done. �
Using this theorem to calculate the matrices m

n,n
n for the values 3 � n � 5 gives the following

table. (For n = 1,2 we just get identity matrices.)
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m
3,3
3 =

[2 0 0
0 1 1
0 1 1

]
,

m
4,4
4 =

⎡
⎢⎣

3 1 1 1
1 2 1 2
1 1 3 1
1 2 1 2

⎤
⎥⎦ ,

m
5,5
5 =

⎡
⎢⎢⎢⎣

8 4 4 4 4
4 5 5 5 5
4 5 5 5 5
4 5 5 5 5
4 5 5 5 5

⎤
⎥⎥⎥⎦ .

As an application of this theorem, we note the following useful result.

Corollary 4.2. Suppose i ∧ n = i′ ∧ n and j ∧ n = j ′ ∧ n where 1 � i, i′, j, j ′ � n. Then

mn,n
n (i, j) = mn,n

n (i′, j ′).

So to determine the matrix m
n,n
n it suffices to determine the entries m

n,n
n (i, j) when i and j

divide n. Similarly, the numbers m
n,n
n+1(i, j) only depend on i ∧ n, j ∧ n, and n.

Proof. The first part follows immediately from Eq. (6) and the fact that we have

i ∧ d = (i ∧ n) ∧ d

whenever d|n. The second part follows from the first and Corollary 3.3. �
The previous theorem will be useful for the base cases of various inductive proofs. To do the

induction step, we will need a type of shuffle π
⊔⊔+

γ σ where the distances between elements of
π are restricted. Suppose γ = (g1, g2, . . . , gl−1) is a composition (ordered partition) and l = |π |.
Let π

⊔⊔+
γ σ be the set of all shuffles in π

⊔⊔+
σ such that if the elements of π are at indices

I = {i1 < i2 < · · · < il} then it+1 − it = gt for 1 � t < l. By way of illustration,

132
⊔⊔+

(1,2) 321 = {136254, 613524, 651342}.

In this situation, we also define the weight of the composition to be

wtγ = invτ (π,σ ) =
l−1∑
t=1

(gt − 1)(l − t)

where τ is the shuffle in π
⊔⊔+

γ σ whose first element coincides with the first element of π . In
the example above

wt(1,2) = inv136254(132,654) = 1.
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Lemma 4.3. Given n, l with n � l, we have

Ml,l
n (i, j) =

⊎[
M

l,l
l (i′, j ′)

⊔⊔+
γ M

l,l
n−l (i

′′, j ′′)
]

(7)

where the disjoint union is over all i′, j ′, i′′, j ′′, γ such that

i ≡ i′ + i′′ + wtγ (mod l) and j ≡ j ′ + j ′′ (mod l).

Proof. The proof is much the same as that of Lemma 3.2, just noting that since |π | = l we have
invτ (π,σ ) ≡ wtγ (mod l) for all τ ∈ π

⊔⊔+
γ σ . �

5. Primes and prime powers

We now specialize to the case where n is a prime p. Then the sum in (6) simplifies greatly and
we can readily write down the entries of the matrix. To do so conveniently in block form, let Jk,l

be the k × l all ones matrix. We can also use Corollary 3.3 to give the entries for the associated
matrix from Sp+1.

Proposition 5.1. Let p be prime. Then we have

M
p,p
p = (p − 1)!

p
Jp,p + 1

p

[
(p − 1)2J1,1 −(p − 1)J1,p−1

−(p − 1)Jp−1,1 Jp−1,p−1

]

and

M
p,p

p+1 = M
p,p
p + (p − 1)!Jp,p.

In fact, we have the same block decomposition for M
p,p
n whenever n is a multiple of p or one

more than a multiple of p.

Theorem 5.2. For each prime p there are nonnegative integer sequences (qn)n�1, (rn)n�1, and
(sn)n�1, such that

M
p,p
np =

[
qnJ1,1 rnJ1,p−1

rnJp−1,1 snJp−1,p−1

]
.

The matrices M
p,p

np+1 have the same block decomposition (for three other sequences).

Proof. We will prove the result for Snp as the one for Snp+1 is proved similarly. We proceed by
induction on n, with the previous proposition providing the base case.

Since Mnp is symmetric, the statement in the theorem is equivalent to showing that for any
i � 0 and any 1 � j < p − 1 we have mnp(i, j) = mnp(i, j + 1). Decompose both sides of this
equation using Lemma 4.3 with l = p and n replaced by np. Note that by the choice of l and n,
induction applies to the matrices on the right-hand side of (7). Furthermore, since i is being
held constant, the same i′, i′′, and γ will occur in the expansions for the (i, j) and (i, j + 1)

entries. Also, the equation j ≡ j ′ + j ′′ (mod p) has precisely p solutions of which exactly two
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involve zero because of the range of j . But the same can be said of j + 1. Thus when one takes
cardinalities in (7), the two summations will have identical summands. Hence we are done. �

When n is a prime power pr , then the sum (6) also simplifies. Using Corollary 4.2 and symme-
try, one sees that to determine the matrix for this value of n we need only compute m

n,n
n (pi,pj )

for i � j . In fact, because of zero terms in the sum, for given i all the values for j > i are equal.

Proposition 5.3. Suppose n = pr where p is prime and 0 � i � j � r . The matrix m
n,n
n is

completely determined by the values

mn,n
n

(
pi,pj

) = 1

p2r

i+1∑
k=0

(
pk

)pr−k (
pr−k

)!φ(
pk

)2
ψ(i, j, k)

where

ψ(i, j, k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if k � i,

1

(p − 1)2
if k = i + 1 and i = j ,

−1

p − 1
if k = i + 1 and i < j .

Similarly, Theorem 5.2 and its proof can be extended without difficulty to the following result.

Theorem 5.4. Suppose k = l = pr where p is prime and 0 � i � j � r . The matrix m
pr,pr

npr is

completely determined by its entries in positions (pi,pj ). Furthermore, given i all these entries
for j > i are equal. The same is true for the matrix m

pr,pr

npr+1.

In general, it is not easy to explicitly compute the sequences (qn)n�1, (rn)n�1, and (sn)n�1 in
Theorem 5.2 because the expression (7) of Lemma 4.3 is so complicated. But when p = 2 things
simplify greatly and we also get equality of the diagonal elements which is not true in general.

To state our results compactly, let Bn = M
2,2
n and similarly for the matrix bn. Also, if � is a

set of compositions of length |π | − 1 then let

π
⊔⊔+

� σ =
⊎
γ∈�

(
π

⊔⊔+
γ σ

)
.

Finally, let

O = {1,3,5, . . .} and E = {2,4,6, . . .}.

The next theorem follows easily from Lemma 4.3 and induction, so we will merely state
it. None of the sequences mentioned in this result have been previously submitted to Sloane’s
encyclopedia [8].
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Theorem 5.5. Suppose n � 2.

(1) Bn(i, j) = (
12

⊔⊔+
O Bn−2(i, j)

)⊎(
12

⊔⊔+
E Bn−2(i + 1, j)

)⊎
(
21

⊔⊔+
E Bn−2(i, j + 1)

)⊎(
21

⊔⊔+
O Bn−2(i + 1, j + 1)

)
.

(2) b2n(i, j) = 2n2b2n−2(i, j) + 2n(n − 1)b2n−2(i + 1, j),
b2n+1(i, j) = 2n(n + 1)b2n−1(i, j) + 2n2b2n−1(i + 1, j).

(3) The matrices c2n := b2n/(2n−1n!) and c2n+1 := b2n+1/(2n−1n!) have integer entries satisfy-
ing

c2n(i, j) = nc2n−2(i, j) + (n − 1)c2n−2(i + 1, j),

c2n+1(i, j) = (n + 1)c2n−1(i, j) + nc2n−1(i + 1, j).

(4) bn(i, j) = bn(i + 1, j + 1).
(5) b2n = (2n)b2n−1.
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