A Cyclic Derivative in Noncommutative Algebra

Gian-Carlo Rota*
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Bruce Sagan
Université Louis Pasteur, Paris, France

AND

Paul R. Stein ${ }^{\dagger}$
Los Alamos Scientific Laboratory, Los Alamos, New Mexico
Communicated by D. Buchsbaum
Received April 25, 1979

DEDICATED TO M. P. SCHÜTZENBERGER
... questi che guida in alto gli occhi miei.-Purg. XXI, 124.

Contents. 1. Introduction. 2. Preliminaries. 3. The cyclic derivative. 4. Taylor's formula and the chain rule. 5. Rational functions (Table of cyclic derivatives). 6. Cyclic integration. 7. The Cayley operator. 8. Further work.

1. Introduction

The problem of extending the notion of derivative to noncommuting polynomials, or to more general noncommutative algebras, has been with us for a long time. Of the various attempts during the past century only one has survived and found notable applications, the Hausdorff derivative. F. Hausdorff's prescription for the derivative of a monomial, say $a x b x^{2} c x^{3}$, is to take the ordinary derivative while preserving the order of the factors, as in the example

$$
H\left\langle a x b x^{2} c x^{3}\right\rangle=a b x^{2} c x^{2}+2 a x b x c x^{3}+3 a x b x^{2} c x^{2} .
$$

[^0]This rule extends by linearity and continuity to noncommuting formal power series (see, e.g., the discussion in [4]).

A generalization of Taylor's formula for $f(x+a)$, where f is a power series in noncommuting letters, can be obtained using the Hausdorff derivative (Section 4 below). However, computing the Hausdorff derivative of $f(a x)$ does not yield a simple result. This happens because the chain rule for the Hausdorff derivative is more complicated than its commutative analog.

We introduce here an altogether different notion of derivative, which we propose to call the cyclic derivative. This derivative applies to a wide class of noncommutative algebras, beginning with the algebra of noncommutative formal power series in a variable x and constants a, b, \ldots, c. The Hausdorff derivative can be characterized as the unique linear operator on this algebra satisfying
(1) $H\langle a\rangle=0$,
(2) $H\langle x\rangle=1$,
(3) $H\langle f g\rangle=H\langle f\rangle \cdot g+f \cdot H\langle g\rangle$,
where f and g are arbitrary formal power series. We show in Section 3 that there is an analogous characterization of the cyclic derivative when (3) is replaced by the cyclic product rule. A more important feature of the cyclic derivative is the existence of a simple chain rule for the composition of formal power series which reduces to the ordinary chain rule when the elements a, b, \ldots, x commute. As an example, the cyclic derivative of $f(a x)$, where $f(x)$ is a formal power series in x alone, is just $f^{\prime}(a x) \cdot a$.

The cyclic derivative of a monomial, say $a x b x^{2} c x^{3}$, is computed using the following three steps. First, one takes all the cyclic permutations of the monomial; so, in the above example $x a x b x^{2} c x^{2}, x^{2} a x b x^{2} c x, x^{3} a x b x^{2} c, c x^{3} a x b x^{2}, x c x^{3} a x b x$, $x^{2} c x^{2} a x b, b x^{2} c x^{3} a x, x b x^{2} c x^{3} a, a x b x^{2} c x^{3}$; second, one crosses out all monomials not starting with x, and removes the initial x from the rest; finally one adds the remaining terms, thereby obtaining

$$
\begin{aligned}
D\left\langle a x b x^{2} c x^{3}\right\rangle= & a x b x^{2} c x^{2}+x a x b x^{2} c x+x^{2} a x b x^{2} c+c x^{3} a x b x \\
& +x c x^{3} a x b+b x^{2} c x^{3} a .
\end{aligned}
$$

The extension to formal power series is immediate.
The cyclic derivative is not a derivation (although it is cyclically invariant), and thus the cyclic analog of Taylor's formula is weaker than the Hausdorff version. This is compensated for by the fact that the cyclic derivative enjoys a more elegant chain rule. Thus, the cyclic and Hausdorff derivatives complement each other.

We were led to the definition of the cyclic derivative while reading some work of Turnbull, who was motivated by the properties of the Cayley operator
$\Omega=\left(\partial / \partial x_{j i}\right)$ of classical invariant theory (Section 7 below). Turnbull computed several properties of the operator $P \rightarrow \Omega \operatorname{tr}(P)$, where P is a polynomial in constant n by n matrices A, B, \ldots, C and a variable matrix X whose entries $x_{i j}$ are independent indeterminates; he succeeded in obtaining a generalization of Taylor's formula along the lines of Proposition 4.1 below. However, he missed, even in the special case of finite n by n matrices, our main result: the chain rule (see Theorem 4.2). Nonetheless, we take this opportunity to express our indebtedness to Turnbull's pioneering work. We also wish to thank Ira Gessel for his careful reading of the manuscript, and several suggestions.

2. Preliminaries

We are given an alphabet A having a distinguished letter, denoted by x and called the variable, and an indefinite supply of other letters a, b, \ldots called constants. An element w of the free monoid M generated by A is called a word. The degree of $w \in M$ is the number of occurrences of the letter x in w while the length of w is the total number of letters it contains. The identity element of the monoid is written 1 and is called the empty word; it has length zero.

Let K be a field of characteristic zero. The algebra of noncommutative polynomials $K\{a, b, \ldots, x\}$ is the set of all linear combinations

$$
P=\sum_{i=1}^{n} k_{i} w_{i}, \quad k_{i} \in K, w_{i} \in M
$$

with the multiplication inherited from M. We will refer to the elements of K as scalars to distinguish them from the constants in A. Note that this algebra is graded by length. We let $p^{(l)}$ denote the homogeneous part of p of length l.

We now define a norm on $K\{a, b, \ldots, x\}$ by

$$
\begin{aligned}
\|p\| & =0, & & \text { if } p=0 \\
& =1 /(l+1), & & \text { otherwise }
\end{aligned}
$$

where l is the smallest integer such that $p^{(l)} \neq 0$. The verification that $\|\|$ is indeed a norm is easy and is left as an exercise. The completion of $K\{a, b, \ldots, x\}$ in the topology induced by $\|\|$ is the well-known algebra of noncommutative formal power series $K\{\{a, b, \ldots, x\}\}$. Consider any $f \in K\{\{a, b, \ldots, x\}\}$, say $f=$ $\lim _{i \rightarrow \infty} p_{i}$. Then for any integer $l \geqslant 0$ there exists an integer $I \geqslant 0$ such that $p^{(i)}=p_{I}^{(l)}$ for all $i \geqslant I$. Letting $p^{(l)}=p_{I}^{(l)}$ we obtain in the usual formal expansion,

$$
f=\sum_{l=0}^{\infty} p^{(l)} .
$$

It can be shown that the polynomials $p^{(l)}$ are independent of the sequence used to define f.

For a given word $w=c_{1} c_{2} \cdots c_{n} \neq 1$, where the c_{i} are letters, we define an operator $C w$ mapping formal power series into formal power series called the cyclic operator. The action of $C z$ on a formal power series f is given by

$$
\langle C w \mid f\rangle=c_{1} c_{2} \cdots c_{n} f+c_{2} c_{3} \cdots c_{n} f c_{1}+\cdots+c_{n} f c_{1} c_{2} \cdots c_{n-1} .
$$

In addition, we set $\langle C 1 \mid f\rangle=0$ for all formal power series f. An important special case is the action of the operator $C w$ on the formal power series $f=1$, which gives

$$
\begin{equation*}
\langle C w \mid 1\rangle=c_{1} c_{2} \cdots c_{n}+c_{2} c_{3} \cdots c_{n} c_{1}+\cdots+c_{n} c_{1} c_{2} \cdots c_{n-1} . \tag{2.1}
\end{equation*}
$$

We will abbreviate $\langle C w \mid 1\rangle$ to $C\langle w\rangle$.
By linearity and continuity we can extend the cyclic operator to polynomials and then to formal power series. If $p=\sum_{i=1}^{r} k_{i} w_{i}$ is a polynomial, we have

$$
\langle C p \mid f\rangle=\sum_{i=1}^{r} k_{i}\left\langle C w_{i} \mid f\right\rangle ;
$$

and if $g=\sum_{l=1}^{\infty} p^{(l)}$, then

$$
\langle C g \mid f\rangle=\sum_{l=0}^{\infty}\left\langle C p^{(l)} \mid f\right\rangle .
$$

The following lemma is useful:
Lemma 2.2 (Cyclic Product Rule). Let f_{1}, f_{2}, and f be formal power series. Then

$$
\left\langle C f_{1} f_{2} \mid f\right\rangle=\left\langle C f_{1} \mid f_{2} f\right\rangle+\left\langle C f_{2} \mid f f_{1}\right\rangle .
$$

Proof. First let f_{1} and f_{2} be words, say $f_{1}=w_{1}=c_{1} c_{2} \cdots c_{s}$ and $f_{2}=w_{2}=$ $d_{1} d_{2} \cdots d_{t}$ so

$$
\begin{aligned}
\left\langle C w_{1} w_{2} \mid f\right\rangle= & c_{1} c_{2} \cdots c_{s} d_{1} d_{2} \cdots d_{t} f+\cdots+c_{s} d_{1} d_{2} \cdots d_{t} f c_{1} c_{2} \cdots{ }_{k s-1} \\
& +d_{1} d_{2} \cdots d_{t} f c_{1} c_{2} \cdots c_{s}+\cdots+d_{j} f c_{1} c_{2} \cdots c_{s} d_{1} d_{2} \cdots d_{t-1} \\
= & c_{1} c_{2} \cdots c_{s} w_{2} f+\cdots+c_{s} w_{2} f c_{1} c_{2} \cdots c_{s-1} \\
& +d_{1} d_{2} \cdots d_{t} f w_{1}+\cdots+d_{t} f w_{1} d_{1} d_{2} \cdots d_{t-1} \\
= & \left\langle C w_{1} \mid w_{2} f\right\rangle+\left\langle C w_{2} \mid f w_{1}\right\rangle .
\end{aligned}
$$

By linearity and continuity the result for words extends to the case where f_{1} and f_{2} are formal power series.
Q.E.D.

Proposition 2.3. Let $f_{1}, f_{2}, \ldots, f_{n}$ and f be formal power series. Then

$$
\begin{align*}
\left\langle C f_{1} f_{2} \cdots{ }_{\alpha n} \mid f_{n}\right\rangle= & \left\langle C f_{1} \mid f_{2} \cdots f_{n} f\right\rangle+\left\langle C f_{2} \mid f_{3} \cdots f_{n} f f_{1}\right\rangle \\
& +\cdots+\left\langle C f_{1} \mid f f_{1} f_{2} \cdots f_{n-1}\right\rangle . \tag{2.4}
\end{align*}
$$

Proof. Letting $g=f_{1} f_{2} \cdots f_{n-1}$ we have

$$
\begin{aligned}
\left\langle C f_{1} f_{2} \cdots f_{n} \mid f\right\rangle & =\left\langle C g f_{n} \mid f\right\rangle \\
& =\left\langle C g \mid f_{n} f\right\rangle+\left\langle C f_{n} \mid f g\right\rangle \\
& =\left\langle C f_{1} f_{2} \cdots f_{n-1} \mid f_{n} f\right\rangle+\left\langle C f_{n} \mid f f_{1} f_{2} \cdots f_{n-1}\right\rangle ;
\end{aligned}
$$

Eq. (2.4) now follows by induction.
Q.E.D.

As an immediate corollary we infer

Corollary 2.5. If f_{1} and f_{2} are formal power series then

$$
\left\langle C\left(f_{1}+f_{2}\right)^{n} \mid f_{1}+f_{r}\right\rangle=n \cdot\left\langle C\left(f_{1}+f_{2}\right) \mid\left(f_{1}+f_{2}\right)^{n}\right\rangle .
$$

3. The Cyclic Derivative

We now define a basic notion which generalizes the derivative of a commutative formal power series to the noncommutative algebra $K\{\{a, b, \ldots, x\}\}$. Given a word $w=c_{1} c_{2} \cdots c_{n}$, let the truncation operator T act on w by

$$
\begin{aligned}
T\langle w\rangle=T\left\langle c_{1} c_{2} \cdots c_{n}\right\rangle & =0 & & \text { if } c_{1} \neq x \text { or } w=1 \\
& =c_{2} c_{3} \cdots c_{n} & & \text { if } c_{1}=x .
\end{aligned}
$$

The operator T extends by linearity to polynomials and then by continuity to formal power series. Now for each formal power series $f \in K\{\{a, b, \ldots, x\}\}$, the cyclic derivative operator $D f: K\{\{a, b, \ldots, x\}\} \rightarrow K\{\{a, b, \ldots, x\}\}$ is the operator mapping formal power series into formal power series by the rule

$$
\langle D f \mid g\rangle=T\langle C f \mid g\rangle
$$

In particular, if g is 1 then the formal power series $\langle D f \mid 1\rangle=T\langle C f \mid 1\rangle$ is called the cyclic derivative of f and is denoted by $D\langle f\rangle$.

Example 3.1. For the constant $a \in A, a \neq x$, we have $D\langle a\rangle=T\langle C a \mid 1\rangle=$ $T\langle a\rangle=0$.

Example 3.2. It follows from (2.1) that $C x^{i}=i x^{i}$. Hence if $f=\sum_{i=0}^{\infty} k_{i} x^{i}$, $k_{i} \in K$, then

$$
D\langle f\rangle=T\langle C\langle f\rangle\rangle=T\left\langle\sum_{i=0}^{\infty} i k_{i} x^{i}\right\rangle=\sum_{i=1}^{\infty} i k_{i} x^{i-1}
$$

However, if $f=\sum_{i=0}^{\infty} k_{i} a^{i}$ then $D\langle f\rangle=T\left\langle\sum_{i=0}^{\infty} i k_{i} a^{i}\right\rangle=0$.
Example 3.3.

$$
\begin{aligned}
D\left\langle a x^{n}\right\rangle & =T\left\langle C\left\langle x^{n}\right\rangle\right\rangle \\
& =T\left\langle a x^{n}+x^{n} a+x^{n-1} a x+\cdots+x a x^{n-1}\right\rangle \\
& =x^{n-1} a+x^{n-2} a x+\cdots+a x^{n-1} \\
& =C\left\langle a x^{n-1}\right\rangle .
\end{aligned}
$$

We can also write

$$
D\left\langle a x^{n}\right\rangle=\left\langle D a \mid x^{n}\right\rangle+\left\langle D x \mid x^{n-1} a\right\rangle+\left\langle D x \mid x^{n-2} a x\right\rangle+\cdots+\left\langle D x \mid a x^{n-1}\right\rangle .
$$

This is a special case of

Theorem 3.4 (Cyclic Derivative Product Rule). Let $f_{1}, f_{2}, \ldots, f_{n}$ be formal power series. Then

$$
\begin{aligned}
D\left\langle f_{1} f_{2} \cdots f_{n}\right\rangle= & \left\langle D f_{1}\right|\left(f_{2} f_{3} \cdots f_{n}\right\rangle+\left\langle D f_{2} \mid f_{3} \cdots f_{n} f_{r}\right\rangle \\
& +\cdots+\left\langle D f_{n} \mid f_{1} f_{2} \cdots f_{n-1}\right\rangle .
\end{aligned}
$$

Proof. By the definition of D and Proposition 2.3

$$
\begin{aligned}
D\left\langle f_{1} f_{2} \cdots f_{n}\right\rangle= & T\left\langle C f_{1} f_{2} \cdots f_{n} \mid 1\right\rangle \\
= & T\left\langle C f_{1} \mid f_{2} f_{3} \cdots f_{n} 1\right\rangle+T\left\langle C f_{2} \mid f_{3} \cdots f_{n} 1 f_{1}\right\rangle \\
& +\cdots+T\left\langle C f_{n} \mid 1 f_{1} f_{2} \cdots f_{n-1}\right\rangle \\
= & \left\langle D f_{1} \mid f_{2} f_{3} \cdots f_{n}\right\rangle+\left\langle D f_{2} \mid f_{3} \cdots f_{n} f_{1}\right\rangle \\
& +\cdots+\left\langle D f_{n} \mid f_{1} f_{2} \cdots f_{n-1}\right\rangle .
\end{aligned}
$$

The product rule (Theorem 3.4) can be used to characterize the cyclic derivative in the same way that the Hausdorff derivative is characterized as a derivation. Specifically, a map h from $K\{\{a, b, \ldots, x\}\}$ to the algebra of K-linear continuous endomorphisms of $K\{\{a, b, \ldots, x\}\}$

$$
h: K\{\{a, b, \ldots, x\}\} \rightarrow \operatorname{End} K\{\{a, b, \ldots, x\}\}
$$

is called a cyclic derivation if for all formal power series f_{1}, f_{2}, and f we have

$$
\left\langle h f_{1} f_{2} \mid f\right\rangle=\left\langle h f_{1} \mid f_{2} f\right\rangle+\left\langle h f_{2} \mid f f_{1}\right\rangle
$$

where $\left\langle h f_{1} f_{2} \mid f\right\rangle$ denotes the image of $f_{1} f_{2}$ under h evaluated at f.
Theorem 3.5. The cyclic derivative operator D is the unique cyclic derivation satisfying
(i) $D x=i d$ (the identity endomorphism),
(ii) for all constants, $a, D a=0$ (the zero endomorphism).

Proof. Conditions (i) and (ii) follow directly from the definition of D; the fact that D is a cyclic derivation can be deduced from Lemma 2.2 by applying T to both sides of the product rule for C.

Now let h be any cyclic derivation satisfying (i) and (ii). Since both D and h are K-linear and continuous it suffices to prove that $h w=D w$ for any word w. Induct on the length of $w .\langle h 1 \mid f\rangle=\langle h 1 \mid 1 f\rangle+\left\langle h 1 \mid f_{1}\right\rangle=2\langle h 1 \mid f\rangle$, so $h 1=D 1=0$. If $w=x$ or $w=a$ we are done by assumption. Now if

$$
w=c_{1} c_{2} \cdots c_{n}=c_{1} v
$$

where the c_{i} are letters and $v=c_{2} c_{3} \cdots c_{n}$, we have

$$
\begin{array}{rlr}
\langle h w v \mid f\rangle & =\left\langle h c_{1} \mid v f\right\rangle+\left\langle h v \mid f c_{1}\right\rangle \\
& =\left\langle D c_{1} \mid v f\right\rangle+\left\langle D v \mid f c_{1}\right\rangle \quad \text { (by induction) } \\
& =\langle D w \mid f\rangle & \\
\text { Q.E.D. }
\end{array}
$$

We introduce the permutation operator, P. For distinct letters $c_{1}, c_{2}, \ldots, c_{s}$ where c_{k} may be either a constant or the letter x-we denote by

$$
P\left\langle c_{1}{ }^{i} c_{2}{ }^{j} \cdots c_{s}{ }^{n}\right\rangle
$$

the sum of all distinct words containing i occurrences of c_{1}, j occurrences of c_{2}, etc., each word appearing exactly once. For example,

$$
\begin{aligned}
P\left\langle a^{2} x^{3}\right\rangle= & a^{2} x^{3}+a x^{3} a+x^{3} a^{2}+x^{2} a^{2} x+x a^{2} x^{2}+a x a x^{2} \\
& +x a x^{2} a+a x^{2} a x+x^{2} a x a+\text { xaxax. }
\end{aligned}
$$

Some properties of the permutation operator are stated in
Proposition 3.6. (i) For integers $i, j, \ldots, n \geqslant 1$ we have

$$
\begin{aligned}
P\left\langle c_{1}{ }^{i} c_{2}^{j} \cdots c_{s}^{n}\right\rangle= & c_{1} \cdot P\left\langle c_{1}^{i-1} c_{2}^{j} \cdots c_{s}{ }^{n}\right\rangle+c_{2} \cdot P\left\langle c_{1}{ }^{i} c_{2}^{j-1} \cdots c^{n}\right\rangle \\
& +\cdots+c_{s} \cdot P\left\langle c_{1}{ }^{i} c_{2}^{j} \cdots c_{s}^{n-1}\right\rangle .
\end{aligned}
$$

(ii) (Noncommutative Multinomial Identity)

$$
\left(c_{1}+c_{2}+\cdots+c_{s}\right)^{n}=\sum_{i+j+\cdots+k=n} P\left\langle c_{1}{ }^{i} c_{2}^{j} \cdots c_{s}^{k}\right\rangle
$$

(iii) $C\left\langle P\left\langle c_{1}{ }^{i} c_{2}{ }^{j} \cdots c_{s}{ }^{n}\right\rangle\right\rangle=(i+j+\cdots+n) \cdot P\left\langle c_{1}{ }^{i} c_{2}{ }^{j} \cdots c_{s}{ }^{n}\right\rangle$.
(iv) If $c_{1}, c_{2}, \ldots, c_{s-1}$ are constants, $c_{s}=x$, and $n \geqslant 1$ is an integer, then

$$
T\left\langle P\left\langle c_{1}{ }^{i} c_{2}{ }^{j} \cdots x^{n}\right\rangle\right\rangle=P\left\langle c_{1}{ }^{i} c_{2}{ }^{j} \cdots x^{n-1}\right\rangle .
$$

Proof. (i) Obvious from the definition of P.
(ii) Inducting on n and using (i) we have

$$
\begin{aligned}
\left(c_{1}+c_{2}+\cdots+c_{s}\right)^{n} & =\left(c_{1}+c_{2}+\cdots+c_{s}\right) \cdot \sum_{i+j+\cdots+k=n-1} P\left\langle c_{1}{ }^{i} c_{2}{ }^{j} \cdots c_{s}^{k}\right\rangle \\
& =\sum_{i+j+\cdots+k=n} P\left\langle c_{1}{ }^{i} c_{2}^{j} \cdots c_{s}^{k}\right\rangle
\end{aligned}
$$

(iii) If w is any word appearing in $P\left\langle c_{1}{ }^{i} c_{2}{ }^{j} \cdots c_{s}{ }^{n}\right\rangle$ then all the cyclic permutations of w also appear in $P\left\langle c_{1}{ }^{i} c_{2}{ }^{j} \cdots c_{s}{ }^{n}\right\rangle$. Furthermore, all the cyclic permutations of w appear in $C\langle w\rangle$ with the same multiplicity m; hence $C\langle(1 / m) w\rangle$ contains all cyclic permutations of w with multiplicity one. Thus we can find a polynomial

$$
p=\frac{1}{m_{1}} w_{1}+\frac{1}{m_{2}} w_{2}+\cdots+\frac{1}{m_{k}} w_{k}
$$

such that $P\left\langle c_{1}{ }^{i} c_{2}{ }^{j} \cdots c_{s}{ }^{n}\right\rangle=C\langle p\rangle$. Now

$$
\begin{align*}
& C\left\langle P\left\langle c_{1}{ }^{i} c_{2}{ }^{j} \cdots c_{s}{ }^{n}\right\rangle\right\rangle= C\langle C\langle p\rangle\rangle \\
&=(i+j+\cdots+n) \cdot C\langle p\rangle \quad \begin{array}{c}
\text { (since } p \text { is homogeneous of } \\
\text { length } i+j+\cdots+n)
\end{array} \\
&=(i+j+\cdots+n) \cdot P\left\langle c_{1}{ }^{i} c_{2}{ }^{j} \cdots c_{s}{ }^{n}\right\rangle .
\end{align*}
$$

We can now investigate the relationship between the permutation operator P and the cyclic derivative D. For the remainder of this section the letters, a, b, c will denote constants.

Corollary 3.7 (Cyclic Exponent Rule).

$$
\begin{aligned}
D\left\langle P\left\langle a^{i} b^{j} \cdots x^{n}\right\rangle\right\rangle & =T\left\langle C\left\langle P\left\langle a^{i} b^{j} \cdots x^{n}\right\rangle\right\rangle\right\rangle \\
& =T\left\langle(i+j+\cdots+n) \cdot P\left\langle a^{i} b^{j} \cdots x^{n}\right\rangle\right\rangle \\
& =(i+j+\cdots+n) \cdot P\left\langle a^{i} b^{j} \cdots x^{n-1}\right\rangle .
\end{aligned}
$$

There is also a cyclic analog of the classical polarization operator. For any constant, a, let a denote the operator mapping the power series f to the power series $a f$.

Lemma 3.8. $\quad C \mathrm{a} P\left\langle a^{i} b^{j} c^{k} \cdots x^{n}\right\rangle=(i+1) \cdot P\left\langle a^{i+1} b^{j} c^{k} \cdots x^{n}\right\rangle$ where juxtaposition of operators indicates composition.

Proof. Let $P\left\langle a^{i} b^{j} c^{k} \cdots x^{n}\right\rangle=w_{1}+w_{2}+\cdots+w_{m}$. Then

$$
\begin{align*}
C \mathbf{a} P\left\langle a^{i} b^{j} c^{k} \cdots x^{n}\right\rangle & =C\left\langle a w_{1}+a w_{2}+\cdots+a w_{m}\right\rangle \\
& =C\left\langle a w_{1}\right\rangle+C\left\langle a w_{2}\right\rangle+\cdots+C\left\langle a w_{m}\right\rangle \tag{3.9}
\end{align*}
$$

Now each w_{r} is a summand in $P\left\langle a^{i} b^{j} c^{k} \cdots x^{n}\right\rangle$; so $a w_{r}$, and thus each monomial in $C\left\langle a w_{r}\right\rangle$, appears in $P\left\langle a^{i+1} b^{j} c^{k} \cdots x^{n}\right\rangle$. In fact, each monomial of $P\left\langle a^{i+1} b^{j} c^{k} \cdots x^{n}\right\rangle$ is represented $i+1$ times in (3.9). For if w is a summand in $P\left\langle a^{i+1} b^{j} c^{k} \cdots x^{n}\right\rangle$, say

$$
w=v_{1} a v_{2} a \cdots v_{i+1} a v_{i+2}
$$

where the v_{k} are words (possibly empty) not containing a, then w appears in each of $C \mathbf{a}\left\langle v_{2} a v_{3} \cdots a v_{i+2} v_{1}\right\rangle, C \mathbf{a}\left\langle v_{3} a v_{4} \cdots a v_{i+2} v_{1} a v_{2}\right\rangle, \ldots, C \mathbf{a}\left\langle v_{i+2} v_{1} a v_{2} a \cdots a v_{i+1}\right\rangle$ and nowhere else.
Q.E.D.

Example 3.10 (Cyclic Polarization Operator).

$$
\begin{aligned}
D \mathbf{a}\left\langle P\left\langle a^{i} b^{j} c^{k} \cdots x^{n}\right\rangle\right\rangle & =T\left\langle C \mathbf{a} P\left\langle a^{i} b^{j} c^{k} \cdots x^{n}\right\rangle\right\rangle \\
& =T\left\langle(i+1) \cdot P\left\langle a^{i+1} b^{j} c^{k} \cdots x^{n}\right\rangle\right\rangle \\
& =(i+1) \cdot P\left\langle a^{i+1} b^{j} c^{k} \cdots x^{n-1}\right\rangle .
\end{aligned}
$$

It is clear from Example 3.10 that the operators $D \mathbf{a}$ and $D \mathbf{b}$ commute when applied to $P\left\langle a^{i} b^{j} c^{k} \cdots x^{n}\right\rangle$.

The following example will be of use in the sequel.
Example 3.11. $(D \mathbf{a})^{m}\left\langle x^{n}\right\rangle=m!\cdot P\left\langle\boldsymbol{a}^{m} x^{n-m}\right\rangle$, where $m \leqslant n$, and where $(D \mathbf{a})^{m}$ indicates iteration of the polarization operator m times.

4. Taylor's Formula and the Chain Rule

We recall some elementary facts about the Hausdorff derivative. For any constant a and any word $w=c_{1} c_{2} \cdots c_{n}$ the Hausdorff polarization operator H_{a} is defined as follows. If m of the c_{i} equal x, then $H_{a}\langle w\rangle$ is the sum of the m words obtained by replacing each occurrence of x in turn by a. For example, $H_{a}\left\langle x^{2} b x b\right\rangle=a x b x b+x a b x b+x^{2} b a b$. The Hausdorff derivative H is obtained
by setting the substituted " a " equal to 1 in $H_{a}\langle w\rangle$, for example, $H\left\langle x^{2} b x b\right\rangle=$ $x b x b+x b x b+x^{2} b^{2}$.

In terms of the Hausdorff polarization operator, for every formal power series $f(x)$ in noncommuting letters one derives the following analog of Taylor's formula:

$$
f(x+a)=f(x)+H_{a}\langle f(x)\rangle+\frac{1}{2!}\left(H_{a}\right)^{2}\langle f(x)\rangle+\cdots=e^{H_{a}}\langle f(x)\rangle .
$$

The analogous formula for the cyclic polarization operator is the following:
Proposition 4.1. Let $f(x)=\sum_{n=0}^{\infty} k_{n} x^{n}$ be a formal power in x having only scalar coefficients $k_{n} \in K$. Then

$$
f(x+a)=f(x)+D \mathbf{a}\langle f(x)\rangle+\frac{1}{2!}(D \mathbf{a})^{2}\langle f(x)\rangle+\cdots=e^{D \mathrm{a}}\langle f(x)\rangle
$$

Proof. This follows easily using the results of Section 3, for

$$
\begin{align*}
f(x+a) & =\sum_{n=0}^{\infty} k_{n}(x+a)^{n} \\
& =\sum_{n=0}^{\infty} k_{n} \sum_{i=0}^{n} P\left\langle a^{i} x^{n-i}\right\rangle \quad \text { (Proposition 3.6) } \\
& =\sum_{i=0}^{\infty} \sum_{n=i}^{\infty} k_{n} P\left\langle a^{i} x^{n-i}\right\rangle \\
& =\sum_{i=0}^{\infty} \sum_{n=i}^{\infty} \frac{k_{n}}{i!}(D \mathbf{a})^{i}\left\langle x^{n}\right\rangle \quad \text { (Example 3.11) } \\
& =\sum_{i=0}^{\infty} \frac{1}{i!}(D \mathbf{a})^{i}\left\langle\sum_{n=0}^{\infty} k_{n} x^{n}\right\rangle \\
& =\sum_{i=0}^{\infty} \frac{1}{i!}(D \mathbf{a})^{i}\langle f(x)\rangle .
\end{align*}
$$

Taylor's formula for the cyclic polarization operator applies to a smaller class of formal power series than does the analogous formula for the Hausdorff polarization operator. This weakness of the cyclic polarization operator is compensated for by the existence of an analog of the chain rule for the cyclic derivative of composite functions.

Let $f=f(x)$ and $g=g(x)$ be noncommutative formal power series in x and assume that g has no term of length 0 . Denote by $f(g)$ the power series obtained
by replacing every occurrence of x in f by g. Similarly let $D_{g}\langle f\rangle$ denote the same substitution applied to the power series $D\langle f\rangle$.

Theorem 4.2 (Chain Rule). With f and g as above

$$
D\langle f(g)\rangle=\left\langle D g \mid D_{g}\langle f\rangle\right\rangle
$$

Proof. First consider the case where f is a word $f=v_{1} x v_{2} \cdots x v_{m}$ where the v_{i} are words not containing x (possibly empty). Then for any formal power series g :

$$
\begin{aligned}
D\langle f(g)\rangle= & D\left\langle v_{1} g v_{2} \cdots g v_{m}\right\rangle \\
= & \left\langle D v_{1} \mid g v_{2} \cdots g v_{m}\right\rangle+\left\langle D g \mid v_{2} \cdots g v_{m} v_{1}\right\rangle \\
& +\cdots+\left\langle D g \mid v_{m} v_{1} g v_{2} \cdots v_{m-1}\right\rangle+\left\langle D v_{m} \mid v_{1} g v_{2} \cdots v_{m-1} g\right\rangle
\end{aligned}
$$

But $D v_{i}$ is the zero operator, since v_{i} contains no x. Hence in this case we have $D\langle f(g)\rangle=\left\langle D g \mid D_{g}\langle f\rangle\right\rangle$ as desired. The result extends from words to polynomials (by linearity) and then to power series (by continuity).
Q.E.D.

Some examples are in order.
Example 4.3. Let $f(x)=x^{n}, g(x)=a x$, then

$$
\begin{aligned}
D\left\langle(a x)^{n}\right\rangle & =\left\langle D a x \mid D_{a x}\left\langle x^{n}\right\rangle\right\rangle \\
& =\left\langle D a x \mid n(a x)^{n-1}\right\rangle \\
& =T\left\langle a x \cdot n(a x)^{n-1}+x \cdot n(a x)^{n-1} \cdot a\right\rangle \\
& =n(a x)^{n-1} \cdot a,
\end{aligned}
$$

as we might expect from the classical rule of the calculus. Similarly, $D\left\langle(x a)^{n}\right\rangle=$ $a \cdot n(a x)^{n-1}$.

The reader can also verify that the cyclic derivatives of exponentials and logarithms behave much like their classical counterparts, for example, $D\left\langle e^{a x}\right\rangle=$ $e^{a x} \cdot a$ and $D\langle\log (1+a x)\rangle=(1+a x)^{-1} \cdot a$. Here the functions $e^{x}, \log (1+x)$, and $(1+x)^{-1}$ are defined in terms of their usual power series expansions. It should be noted that the corresponding Hausdorff derivatives of these formal power series do not have any simple form.

The next example shows some of the peculiarities of taking cyclic derivatives:
Example 4.4. Let $f(x)=e^{x}, g(x)=a x b x$. Then

$$
\begin{aligned}
D\left\langle e^{a x b x}\right\rangle & =\left\langle D a x b x \mid D_{a x b x}\left\langle e^{x}\right\rangle\right\rangle \\
& =\left\langle D a x b x \mid e^{a x b x}\right\rangle \\
& =b x e^{a x b x} \cdot a+e^{a x b x} \cdot a x b .
\end{aligned}
$$

In a commutative algebra, this result reduces to $\left(e^{a b x^{2}}\right)^{\prime}=2 a b x e^{a b x^{2}}$, as expected.

5. Rational Functions

As an application of the results of the previous two sections we show that the derivative of a rational formal power series (rational function) is a rational formal power series. The rational formal power series are defined inductively by
(i) monomials are rational formal power series,
(ii) the sums and products of rational formal power series are rational,
(iii) if r is a rational formal power series such that $r^{(0)}=0(r$ contains no term of length zero) then $(1-r)^{-1}$ is rational.

Theorem 5.1. Ifr is a rational formal power series then so is its cyclic derivative $D\langle r\rangle$.

Proof. The proof has three parts.
(i) If w is a monomial and r is any rational formal power series then $\langle D w \mid r\rangle$ is a rational function. For if $w=c_{1} c_{2} \cdots c_{n}$ where the c_{i} are letters, then

$$
\langle D w \mid r\rangle=T\left\langle c_{1} c_{2} \cdots c_{n} r+c_{2} \cdots c_{n} r c_{1}+\cdots+c_{n} r c_{1} c_{2} \cdots c_{n-1}\right\rangle
$$

which is the sum of rational functions.
(ii) If r_{1} and r_{2} are rational functions such that $\left\langle D r_{1} \mid r\right\rangle$ and $\left\langle D r_{2} \mid r\right\rangle$ are rational for any rational function r then $\left\langle D\left(r_{1}+r_{2}\right) \mid r\right\rangle$ and $\left\langle D r_{1} r_{2} \mid r\right\rangle$ are also rational functions. This follows because

$$
\left\langle D\left(r_{1}+r_{2}\right) \mid r\right\rangle=\left\langle D r_{1} \mid r\right\rangle+\left\langle D r_{2} \mid r\right\rangle
$$

and

$$
\left\langle D r_{1} r_{2} \mid r\right\rangle=\left\langle D r_{1} \mid r_{2} r\right\rangle+\left\langle D r_{2} \mid r r_{1}\right\rangle
$$

(iii) If q is a rational function satisfying $q^{(0)}=0$ and $\langle D q \mid r\rangle$ is rational for any rational function r, then $\left\langle D(1-q)^{-1} \mid r\right\rangle$ is a rational function. For this case we need the following identity which will be proved later:

$$
\left\langle\left. C \frac{1}{1-q} \right\rvert\, r\right\rangle=\left\langle C q \left\lvert\, \frac{1}{1-q} \cdot r \cdot \frac{1}{1-q}\right.\right\rangle .
$$

assuming this formula we have

$$
\begin{aligned}
\left\langle\left. D \frac{1}{1-q} \right\rvert\, r\right\rangle & =T\left\langle\left. C \frac{1}{1-q} \right\rvert\, r\right\rangle \\
& =T\left\langle C q \left\lvert\, \frac{1}{1-q} \cdot r \cdot \frac{1}{1-q}\right.\right\rangle \\
& =\left\langle D q \left\lvert\, \frac{1}{1-q} \cdot r \cdot \frac{1}{1-q}\right.\right\rangle
\end{aligned}
$$

which is rational by our assumptions about $D q$.

To complete the proof we require:
Lemma 5.2.

$$
\left\langle\left. C \frac{1}{1-q} \right\rvert\, r\right\rangle=\left\langle C q \left\lvert\, \frac{1}{1-q} \cdot r \cdot \frac{1}{1-q}\right.\right\rangle
$$

Proof.

$$
\begin{aligned}
\left\langle\left. C \frac{1}{1-q} \right\rvert\, r\right\rangle= & \left\langle C\left(1+q+q^{2}+q^{3}+\cdots\right) \mid r\right\rangle \\
= & \langle C 1 \mid r\rangle+\langle C q \mid r\rangle+\left\langle C q^{2} \mid r\right\rangle+\left\langle C q^{3} \mid r\right\rangle+\cdots \\
= & 0+\langle C q \mid r\rangle+\langle C q \mid q r\rangle+\langle C q \mid r q\rangle \\
& +\left\langle C q \mid q^{2} r\right\rangle+\langle C q \mid q r q\rangle+\left\langle C q \mid r q^{2}\right\rangle+\cdots
\end{aligned}
$$

by Proposition 2.2. Hence we have

$$
\begin{align*}
\left\langle\left. C \frac{1}{1-q} \right\rvert\, r\right\rangle & =\left\langle C q \mid r+q r+r q+q^{2} r+q r q+r q^{2}+\cdots\right\rangle \\
& =\left\langle C q \left\lvert\, \frac{1}{1-q} \cdot r \cdot \frac{1}{1-q}\right.\right\rangle
\end{align*}
$$

As an example, we compute the derivative of the rational power series product

$$
\frac{1}{1-a x} \cdot \frac{1}{1-b x} .
$$

Example 5.3.

$$
\begin{aligned}
D\langle & \left.\frac{1}{1-a x} \cdot \frac{1}{1-b x}\right\rangle \\
= & \left\langle\left. D \frac{1}{1-a x} \right\rvert\, \frac{1}{1-b x}\right\rangle+\left\langle\left. D \frac{1}{1-b x} \right\rvert\, \frac{1}{1-a x}\right\rangle \\
= & T\left\langle\left. C \frac{1}{1-a x} \right\rvert\, \frac{1}{1-b x}\right\rangle+T\left\langle\left. C \frac{1}{1-b x} \right\rvert\, \frac{1}{1-a x}\right\rangle \\
= & T\left\langle C a x \left\lvert\, \frac{1}{1-a x} \cdot \frac{1}{1-b x} \cdot \frac{1}{1-a x}\right.\right\rangle \\
& +T\left\langle C b x \left\lvert\, \frac{1}{1-b x} \cdot \frac{1}{1-a x} \cdot \frac{1}{1-b x}\right.\right\rangle \\
= & \left(\frac{1}{1-a x} \cdot \frac{1}{1-b x} \cdot \frac{1}{1-a x}\right) \cdot a \\
& +\left(\frac{1}{1-b x} \cdot \frac{1}{1-a x} \cdot \frac{1}{1-b x}\right) \cdot b .
\end{aligned}
$$

To conclude this section we present a table of cyclic derivatives.

Table of Cyclic Derivatives

Throughout this table n denotes a positive integer. All transcendental and rational functions of x are defined in terms of their usual Taylor expansions. For the derivatives of Sections I, II, and III, " a " may be replaced by any word containing only constants.
I. Chain rule with $x+a: D\langle f(x+a)\rangle=D_{x+a}\langle f(x)\rangle$

1. $D\left\langle(x+a)^{n}\right\rangle=n(x+a)^{n-1}$
2. $D\left\langle(1-x-a)^{-n}\right\rangle=n(1-x-a)^{-n-1}$
3. $D\left\langle e^{x+a}\right\rangle=e^{x+a}$
4. $D\langle\log (1+x+a)\rangle=(1+x+a)^{-1}$
II. Chain rule with $a x: D\langle f(a x)\rangle=D_{a x}\langle f(x)\rangle \cdot a$
5. $D\left\langle(a x)^{n}\right\rangle=n(a x)^{n-1} \cdot a$
6. $D\left\langle(1-a x)^{-n}\right\rangle=n(1-a x)^{-n-1} \cdot a$
7. $D\left\langle e^{a x}\right\rangle=e^{a x} \cdot a$
8. $\quad D\langle\log (1+a x)\rangle=(1+a x)^{-1} \cdot a$
III. Chain rule with $x a: D\langle f(x a)\rangle=a \cdot D_{x a}\langle f(x)\rangle$
9. $D\left\langle(x a)^{n}\right\rangle=a \cdot n(x a)^{n-1}$
10. $D\left\langle(1-x a)^{-n}\right\rangle=a \cdot n(1-x a)^{-n-1}$
11. $D\left\langle e^{x a}\right\rangle=a \cdot e^{x a}$
12. $\quad D\langle\log (1+x a)\rangle=a \cdot(1+x a)^{-1}$
IV. Derivatives of $a \cdot f(x)$
13. $D\left\langle a \cdot x^{n}\right\rangle=\sum_{i=0}^{n-1} x^{i} \cdot a \cdot x^{n-i-1}$
14. $\quad D\left\langle a \cdot(1-x)^{-1}\right\rangle=(1-x)^{-1} \cdot a \cdot(1-x)^{-1}$
15. $D\left\langle a \cdot(1-x)^{-n}\right\rangle=\sum_{i=1}^{n}(1-x)^{-i} \cdot a \cdot(1-x)^{-n+i-1}$
16. $\quad D\left\langle a \cdot e^{x}\right\rangle=\sum_{i=0}^{\infty} \frac{1}{(i+1)!} \sum_{j=0}^{i} x^{j} \cdot a \cdot x^{i-j}$
17. $\quad D\langle a \cdot \log (1+x)\rangle=\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i+1} \sum_{j=0}^{i} x^{j} \cdot a \cdot x^{i-j}$

V. Miscellaneous

1. $D\left\langle e^{a x b x}\right\rangle=b x e^{a x b x} \cdot a+e^{a x b x} \cdot a x b$
2. $D\left\langle\frac{1}{1-a x} \cdot \frac{1}{1-b x}\right\rangle=\frac{1}{1-a x} \cdot \frac{1}{1-b x} \cdot \frac{1}{1-a x} \cdot a$

$$
+\frac{1}{1-b x} \cdot \frac{1}{1-a x} \cdot \frac{1}{1-b x} \cdot b
$$

3. $D\left\langle e^{(1-a x)^{-1}}\right\rangle=\frac{1}{1-a x} \cdot e^{(1-a x)^{-1}} \cdot \frac{1}{1-a x} \cdot a$

6. Cyclic Integration

The cyclic integral, namely, the inverse of the cyclic derivative, turns out to be much simpler to compute than the usual commutative integral. Given a formal power series $f \in K\{\{a, b, \ldots, x\}\}$ we say that the formal power series g is an integral of f,

$$
\int\langle f\rangle d x=g
$$

whenever $D\langle g\rangle=f$. Clearly, if g_{0} is any formal power series such that $D\left\langle g_{0}\right\rangle=0$ then we also have $\int\langle f\rangle d x=g+g_{0}$. Thus, we begin by describing the kernel of the cyclic derivative D.

For $g_{0} \in \operatorname{ker} D$, let $g_{0}=\sum_{l-0}^{\infty} p^{(l)}$ be the expansion of g_{0} into polynomials homogeneous of length l. Now $D\left\langle g_{0}\right\rangle=\sum_{l=0}^{\infty} D\left\langle p^{(l)}\right\rangle=0$ if and only if $D\left\langle p^{(l)}\right\rangle=0$ for all l, hence it suffices to determine the homogeneous polynomials in the kernel of D.

If $C\left\langle p^{(l)}\right\rangle=0$ then necessarily $D\left\langle p^{(l)}\right\rangle=0$. Conversely, if $D\left\langle p^{(l i}\right\rangle=0$ consider the decomposition

$$
p^{(l)}=p_{0}^{(l)}+p_{1}^{(l)}
$$

where $p_{0}^{(l)}$ contains all the monomials of degree zero occurring in $p^{(l)}$ while $p_{1}^{(l)}$ contains all the monomials of positive degree (recall that the degree of a monomial w is the number of occurrences of x in w). Clearly $D\left\langle p_{0}^{(l)}\right\rangle=0$ and it follows that $D\left\langle p_{1}^{(l)}\right\rangle=0$. In fact we must have $C\left\langle p_{1}^{(l)}\right\rangle=0$. For if $C\left\langle p_{1}^{(l)}\right\rangle=$ $\sum_{i=1}^{n} k_{i} w_{i}$, where the w_{i} are distinct words of positive degree and each $k_{i} \neq 0$, then for some index j we must have $w_{j}=x v$ for some word v. But now $T\left\langle w_{j}\right\rangle=$ $v \neq T\left\langle w_{i}\right\rangle$ for any $i \neq j$. Thus $k_{j} v$ is a nonzero summand in $T\left\langle C\left\langle p_{1}^{(l)}\right\rangle\right\rangle=$ $D\left\langle p_{1}^{(l)}\right\rangle$ which is a contradiction. Hence $\operatorname{ker} D=\operatorname{ker} C$ for polynomials of positive degree.

The polynomials in ker C are of the form $p-q$ where q is a cyclic permutation of p. More precisely, linearly order the alphabet A. For any word w let w^{*} be that summand in $C\langle w\rangle$ which is smallest lexicographically. The word w^{*} is unique, although it may appear several times in $C\langle w\rangle$.

Proposition 6.1. Let $V^{(l)}$ be the set of all homogeneous polynomials of length l in the kernel of D. Also let $V_{0}^{(l)}$ (respectively, $V_{1}^{(l)}$) be the set of all homogeneous polynomials of length l and degree zero (respectively, positive degree) in the kernel of D. Then:
(i) $V^{(l)}, V_{0}^{(l)}$, and $V_{1}^{(l)}$ are vector spaces for all l with

$$
V^{(l)}=V_{0}^{(l)}+V_{1}^{(l)}
$$

(ii) $V_{0}^{(l)}$ contains every polynomial of degree 0 and length l.
(iii) $V_{0}^{(l)}$ has as a basis the set
$\left\{w-w^{*} \mid w\right.$ is a word of length l and positive degree, $\left.w-w^{*} \neq 0\right\}$.
Proof. (i) Easy, left to the reader.
(ii) Clear, since the derivative of a constant is zero.
(iii) Obviously $w-w^{*} \in \operatorname{ker} D$ for any w. To show that the given set of expressions span, take $p_{1}^{(l)} \in V_{1}^{(l)}$ say

$$
\begin{equation*}
p_{1}^{(l)}=\sum_{i=1}^{I-1} k_{i} w_{i}+\sum_{i=I}^{J-1} k_{i} w_{i}+\cdots+\sum_{i=M}^{N} k_{i} w_{i} \tag{6.2}
\end{equation*}
$$

where the words are grouped so that w_{i} and w_{j} occur in the same summation if and only if $C\left\langle w_{i}\right\rangle=C\left\langle w_{j}\right\rangle$.

Now from ker $D=\operatorname{ker} C$ on $V_{1}^{(l)}$ we have

$$
\begin{aligned}
0=C\left\langle p_{1}^{(l)}\right\rangle & =\sum_{i=1}^{I-1} k_{i} C\left\langle w_{i}\right\rangle+\sum_{i=I}^{J-1} k_{i} C\left\langle w_{i}\right\rangle+\cdots+\sum_{i=M}^{N} k_{i}\left\langle w_{i}\right\rangle \\
& =\sum_{i=1}^{I-1} k_{i} C\left\langle w_{1}^{*}\right\rangle+\sum_{i=I}^{J-1} k_{i} C\left\langle w_{I}^{*}\right\rangle+\cdots+\sum_{i=M}^{N} k_{i} C\left\langle w_{M}^{*}\right\rangle
\end{aligned}
$$

whence

$$
\sum_{i=1}^{I-1} k_{i}=\sum_{i=I}^{J-1} k_{i}=\cdots=\sum_{i=M}^{N} k_{i}=0
$$

Thus we can write

$$
\begin{aligned}
p_{1}^{(l)} & =\sum_{i=1}^{I-1} k_{i}\left(w_{i}-w_{1}^{*}\right)+\sum_{i=I}^{J-1} k_{i}\left(w_{i}-w_{I}^{*}\right)+\cdots+\sum_{i=M}^{N} k_{i}\left(w_{i}-w_{M}^{*}\right) \\
& =\sum_{i=1}^{I-1} k_{i}\left(w_{i}-w_{i}^{*}\right)+\sum_{i=I}^{J-1} k_{i}\left(w_{i}-w_{i}^{*}\right)+\cdots+\sum_{i=M}^{N} k_{i}\left(w_{i}-w_{i}^{*}\right) \\
& =\sum_{i=1}^{N} k_{i}\left(w_{i}-w_{i}^{*}\right), \quad \text { as desired. }
\end{aligned}
$$

Linear independence of the $w-w^{*}$ follows immediately from the fact that each binomial contains a word not found in any other.
Q.E.D.

We can now determine which formal power series are integrable:
Theorem 6.3. For any formal pozer series f the following statements are equivalent:
(i) f is integrable.
(ii) If a word w is a summand in f with coefficient $k \in K$ then every word in $D\langle x w\rangle$ is a summand in f with the same coefficient k.

Proof. (i) \rightarrow (ii) Suppose there exists a formal power series g such that $D\langle g\rangle=f$. Suppose $k w$ is a summand in f, and let the length of w be $l-1 \geqslant 0$. If we denote by $p_{1}^{(l)}$ the homogeneous component of g of length l and positive degree then $k w$ is a summand in $D\left\langle p_{1}^{(l)}\right\rangle$. Decomposing $p_{1}^{(l)}$ as in (6.2) we obtain

$$
D\left\langle p_{1}^{(1)}\right\rangle=\sum_{i=1}^{I-1} k_{i} D\left\langle w_{1}^{*}\right\rangle+\sum_{i=I}^{J-1} k_{i} D\left\langle w_{I}^{*}\right\rangle+\cdots+\sum_{i=M}^{N-1} k_{i} D\left\langle w_{M}^{*}\right\rangle .
$$

Since the summands in $D\left\langle w_{1}^{*}\right\rangle, D\left\langle w_{1}^{*}\right\rangle, \ldots, D\left\langle w_{M}^{*}\right\rangle$ are all distinct, $k w$ is a summand in $\sum k_{i} D\left\langle w_{L}^{*}\right\rangle$ for some index L. So $D\langle x w\rangle=D\left\langle w_{L}\right\rangle^{*}$ and hence every word in $D\langle x w\rangle$ appears with the same coefficient.
(ii) \rightarrow (i). It suffices to show that the l th homogeneous component $p^{(l)}$ of f is integrable. Induct on the number of summands in $p^{(l)}$. If $p^{(l)}=k w$ then $D\langle x w\rangle$ has only one term, so that $x w=(x v)^{m}$ for some word v not containing x and some integer $m \geqslant 1$. Thus $\int\left\langle p^{(l)}\right\rangle d x=(1 / m) k \cdot x w$.

Now consider $p^{(l)}=\sum_{i=1}^{n} k_{i} w_{i}$ where $k_{1} w_{1}=k w$. Clearly

$$
\begin{equation*}
D\langle x w\rangle=m w+m v_{1}+m v_{2}+\cdots+m v_{r} \tag{6.4}
\end{equation*}
$$

where the w and v_{i} are distinct words and m is an integer greater than 0 . By assumption $p^{(l)}-(k / m) D\langle x w\rangle$ has $n-r-1<n$ summands and by induction we can find g such that

$$
\int\left\langle p^{(l)}-\frac{k}{m} D\langle x w\rangle\right\rangle d x=g
$$

that is,

$$
\int\left\langle p^{(l)}\right\rangle d x=g+\frac{k}{m} \cdot x w .
$$

The second half of the preceding proof gives an algorithm for computing $\int\langle f\rangle d x$ whenever the integral exists. Specifically, take any monomial $k w$ in f of minimal length. If $D\langle x w\rangle$ does not satisfy (ii) then the algorithm terminates
and f is not integrable. If (ii) is satisfied then (k / m) $\cdot x w(m$ as in (6.4)) is noted as a summand in $\int\langle f\rangle d x$ and the procedure is applied again to $f-(k / m) \cdot x w$.

Example 6.5. $\int\left\langle e^{a x} \cdot a\right\rangle d x=e^{a x}$. However Theorem 6.3 shows that $\int\left\langle e^{a x}\right\rangle d x$ and $\int\left\langle a \cdot e^{a x}\right\rangle d x$ do not exist. Similar results hold for $e^{x a}$.

Example 6.6.

$$
\int\left\langle P\left\langle a^{i} b^{i} c^{k} \cdots x^{n}\right\rangle\right\rangle d x=\frac{1}{i+j+k+\cdots+n+1} \cdot P\left\langle a^{i} b^{j} c^{k} \cdots x^{n+1}\right\rangle
$$

(cf. Corollary 3.7). Also for $i \geqslant 1$

$$
\int\left\langle P\left\langle a^{i} b^{j} c^{k} \cdots x^{n}\right\rangle\right\rangle d x=\frac{1}{i} a \cdot P\left\langle a^{i-1} b^{j} c^{k} \cdots x^{n+1}\right\rangle
$$

(cf. Example 3.10). Hence for $i \geqslant 1$

$$
\begin{gathered}
D\left\langle\frac{1}{i+j+k+\cdots+n+1} \cdot P\left\langle a^{i} b^{j} c^{k} \cdots x^{n+1}\right\rangle\right. \\
\left.\quad-\frac{1}{i} a \cdot P\left\langle a^{i-1} b^{j} c^{k} \cdots x^{n+1}\right\rangle\right\rangle=0
\end{gathered}
$$

7. The Cayley Operator

Let A be an algebra which is the quotient of the formal power series algebra $K\{\{a, b, \ldots, x\}\}$ by an ideal I. Suppose that the ideal I is invariant under D, that is, that $\langle D f \mid g\rangle \in I$ whenever either f or g belongs to I. Then D induces an operator, again denoted by D, on the quotient $K\{\{a, \ldots, x\}\} / I$, and such an operator will enjoy the same formal properties as the operator D. Thus, a cyclic derivative can be defined on several algebras of common occurrence; among these, the simplest is the commutative algebra, defined by the ideal generated by the identity $c_{1} c_{2}-c_{2} c_{1}$, and more generally, the algebras satisfying the standard identities

$$
\sum_{\sigma}{ }_{\sigma} c_{\sigma 1} c_{\sigma 2} \cdots c_{\sigma n}=0
$$

for some n.
We shall consider one particular case in detail, namely, a finite-dimensional matrix algebra generated by "constant" matrices and a "variable" matrix X, which, as we shall see, can be considered as a matrix whose entries are independent transcendentals $x_{i j}$. It will turn out that the cyclic derivative on this algebra is $\Omega \operatorname{tr}(F)$, where Ω is the Cayley operator of classical invariant theory,
and $\operatorname{tr}(F)$ is the trace of the matrix F. This application shows that the cyclic derivative is intimately connected with questions relating to invariant theory.

Consider the noncommutative algebra $K\left\{\left\{e_{11}, e_{12}, \ldots, e_{n n}\right\}\right\}$ with n^{2} constants $e_{i j}, 1 \leqslant i, j \leqslant n$, and let $K^{1}=K\left[\left[x_{11}, x_{12}, \ldots, x_{n n}\right]\right]$ be the commutative formal power series algebra in n^{2} indeterminates. We denote the algebra of $n \times n$ matrices with entries in K^{1} by $\operatorname{Mat}_{n}\left(K^{1}\right)$. Define a map

$$
\phi: K\left\{\left\{e_{11}, e_{12}, \ldots, e_{n n}, X\right\}\right\} \rightarrow \operatorname{Mat}_{n}\left(K^{1}\right)
$$

by

$$
\phi\left(e_{i j}\right)=E_{i j}, \quad \text { where } \quad E_{i j}=\text { the matrix having } 1 \text { in the }
$$

$$
(i, j) \text { position and } 0 \text { elsewhere, }
$$

and

$$
\phi(x)=X, \quad \text { where } \quad X=\sum_{i, j} x_{i j} E_{i j}=\left[x_{i j}\right]
$$

Obviously ϕ is onto and $I=\operatorname{ker} \phi$ is a two-sided ideal generated by $e_{i j} e_{k l}-\delta_{j k} e_{i l}$. Hence,

$$
\Phi: K\left\{\left\{e_{11}, e_{12}, \ldots, e_{n n}, x\right\}\right\} / I \rightarrow \operatorname{Mat}_{n}\left(K^{1}\right)
$$

is an isomorphism. From the remarks above the cyclic derivative operator extends to $K\left\{\left\{e_{11}, e_{12}, \ldots, e_{n n}, x\right\}\right\} / I$ and thus to $\operatorname{Mat}_{n}\left(K^{1}\right)$ with $D\langle X\rangle=I$, $D\left\langle E_{i j}\right\rangle=0$ where I is the identity matrix and 0 is the zero matrix.

Recall that the Cayley operator Ω is defined as the map (see, for example, [6] or [7])

$$
\Omega: K^{1} \rightarrow \operatorname{Mat}_{n}\left(K^{1}\right)
$$

where

$$
\Omega(f)=\left[\frac{\partial f}{\partial x_{j i}}\right] \quad \text { for } \quad f \in K^{1}
$$

The (i, j) entry of this matrix is the partial derivative with respect to $x_{j i}$, the transpose of what might be expected.

It turns out that the Cayley operator is closely related to the image of the cyclic derivative in the matrix algebra:

Theorem 7.1. Let $F=\sum_{l=0}^{\infty} P^{(l)}$ where $P^{(l)}$ is a homogeneous polynomial of length l in the matrix X and matrices with entries in K. Then

$$
D\langle F\rangle=\Omega(\operatorname{trace} F)
$$

Proof. By linearity and continuity we can specialize to the case where F is a
word, say, of degree d. In fact we can assume that $F=A_{1} X A_{2} X A_{3} \cdots X A_{d+1}$ where the matrices A_{k} have scalar entries. Now,

$$
\begin{aligned}
\Omega(\operatorname{trace} F)= & \Omega\left(\sum_{p, q, r, s, t, u, \ldots, v} a_{p q}^{1} x_{a r} a_{r s}^{2} x_{s t} a_{t u}^{3} \cdots a_{v p}^{a+1}\right) \\
= & {\left[\frac{\partial}{\partial x_{j i}}\left(\sum_{p, q, r, s, t, u, \ldots, v} a_{p q}^{1} x_{q r} a_{r s}^{2} x_{s t} a_{t u}^{3} \cdots a_{v p}^{d+1}\right)\right] } \\
= & {\left[\sum_{p, s, t, u, \ldots, v} a_{p j}^{1} \hat{x}_{j i} a_{i s}^{2} x_{s t} a_{t u}^{3} \cdots a_{v p}^{d+1}\right.} \\
& \left.+\sum_{p, a_{r}, u, \ldots, v} a_{p q}^{1} x_{q r} a_{r j}^{2} \hat{x}_{j i} a_{i u}^{3} \cdots a_{v p}^{d+1}+\cdots\right]
\end{aligned}
$$

where $\hat{x}_{j i}$ indicates that $x_{j i}$ is deleted

$$
\begin{aligned}
= & {\left[\sum_{p, s, t, u, \ldots, v} a_{i s}^{2} x_{s t} a_{t u}^{3} \cdots a_{v p}^{d+1} a_{p j}^{1}\right] } \\
& +\left[\sum_{p, q, r, u, \ldots, v} a_{i u}^{3} \cdots a_{v p}^{d+1} a_{v p}^{1} x_{q r} a_{r j}^{2}\right]+\cdots \\
= & A_{2} X A_{3} \cdots A_{d+1} A_{1}+A_{3} X \cdots A_{d+1} A_{1} X A_{2}+\cdots \\
= & D\left\langle A_{1} X A_{2} X A_{3} \cdots A_{d+1}\right\rangle .
\end{aligned}
$$

8. Further Work

Several lines of work are suggested by the preceding considerations.
(1) An investigation of the cyclic derivative in certain specific algebras might lead to more general versions of Taylor's formula. The algebras defined by standard identities mentioned in the preceding section are prime candidates.
(2) Is it possible, by a limiting process, to extend the cyclic derivative to the von Neumann hyperfinite algebra? This might be a foot in the door for an extension of some of the results of the theory of invariants for matrices to von Neumann algebras.
(3) We have not been able to obtain any significant properties of cyclic derivatives in several variables, say for formal series containing x and y. The main difficulty is that the cyclic derivatives in x and y do not commute.
(4) The cyclic chain rule (Theorem 4.2) probably extends to higher order derivatives, but the extension remains to be carried out.
(5) Differential equations in the cyclic derivative seems a promising field of investigation. In this connection, some recent work of Schützenberger is suggestive (see [5]).
(6) The connection between the Cayley operator and the cyclic derivative, developed in Theorem 7.1, suggests that one gets at other operators of classical invariant theory by similar methods. We are thinking of the operators $A \rightarrow$ $\Omega \operatorname{tr}\left(A^{(k)}\right)$, where $A^{(k)}$ is the k th compound matrix of the n by n matrix A, that is, the matrix whose entries are all the k by k minors of A. Is it possible to define operators on the free algebra which reduce to these operators by the method of Section 7? The case $k=n$ is particularly important. We note that for $k>1$ these operators are not linear.
(7) It may be worthwhile to determine all linear operators which commute with the cyclic derivative. In this connection, it is worth noting that the cyclic derivative is associated to a coalgebra structure on the free algebra in the letters x, a, b, \ldots. If m is a word, set

$$
\Delta m=\sum_{i, j} m_{i} \otimes m_{j}
$$

where m_{i} and m_{j} are all words whose product $m_{i} m_{j}$ is a cyclic permutation of the word m. Defining a linear functional L as $L(x)=1, L(m)=0$ for all other words, one sees that

$$
D m=\sum_{i, j} L\left(m_{i}\right) m_{j}
$$

The comultiplication Δ is coassociative, and is in fact associated with a bialgebra structure, where the multiplication of two words is not their juxtaposition but their shuffle product.
(8) By investigating the analogs of Abel's functional equation for the cyclic derivative, one may be led to a cyclic analog of the Lagrange inversion formula. In this connection, some recent work of Gessel points the way [2].
(9) The fact that the cyclic derivatives of elementary transcendental functions are simple generalizations of the commutative case supports the conjecture that a theory of noncommutative hypergeometric functions can be developed in the present context.
(10) The cyclic derivative can be extended to polynomials in the constants $a, a^{-1}, b, b^{-1}, \ldots, x, x^{-1}$ by setting $D x^{-1}=-x^{-1} a x^{-1}$, and one easily verifies that this is the only consistent definition. It is, however, difficult to complete this algebra to an algebra of formal power series.

References

1. S. Eilenberg, "Automata, Languages, and Machines," Vol. A., Academic Press, New York, 1974.
2. I. M. Gessel, A noncommutative generalization and q-analog of the Lagrange inversion formula, preprint.
3. R. C. Lyndon and P. E. Schuff, "Combinatorial Group Theory," Springer, Berlin/ New York, 1977.
4. W. Magnus, A. Karrass, and D. Solitar, "Combinatorial Group Theory," Interscience, New York, 1966.
5. M. P. Schützenberger, Solution non-commutative d'une équation différentielle classique, in "New Concepts and Technologies in Parallel Information Processing" (E. R. Caianiello Ed.), pp. 381-401, Nordhoff Gröningen, 1975.
6. H. W. Turnbull, On differentiating a matrix, Proc. Edinburgh Math. Soc. (2) 1 (1927), 111-128.
7. H. W. Turnbull, A matrix form of Taylor's theorem, Proc. Edinburgh Math. Soc. (2) 2 (1929), 33-54.

[^0]: * Partially supported by NSF Contract MCS 78-02743.
 ${ }^{+}$Work supported by the U.S. Department of Energy, April 1979.

