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Comparing alternatives 
to the fixed degree sequence 
model for extracting the backbone 
of bipartite projections
Zachary P. Neal1*, Rachel Domagalski2 & Bruce Sagan2

Projections of bipartite or two-mode networks capture co-occurrences, and are used in diverse fields 
(e.g., ecology, economics, bibliometrics, politics) to represent unipartite networks. A key challenge 
in analyzing such networks is determining whether an observed number of co-occurrences between 
two nodes is significant, and therefore whether an edge exists between them. One approach, the 
fixed degree sequence model (FDSM), evaluates the significance of an edge’s weight by comparison 
to a null model in which the degree sequences of the original bipartite network are fixed. Although 
the FDSM is an intuitive null model, it is computationally expensive because it requires Monte Carlo 
simulation to estimate each edge’s p value, and therefore is impractical for large projections. In this 
paper, we explore four potential alternatives to FDSM: fixed fill model, fixed row model, fixed column 
model, and stochastic degree sequence model (SDSM). We compare these models to FDSM in terms 
of accuracy, speed, statistical power, similarity, and ability to recover known communities. We find 
that the computationally-fast SDSM offers a statistically conservative but close approximation of the 
computationally-impractical FDSM under a wide range of conditions, and that it correctly recovers a 
known community structure even when the signal is weak. Therefore, although each backbone model 
may have particular applications, we recommend SDSM for extracting the backbone of bipartite 
projections when FDSM is impractical.

Bipartite or two-mode networks are composed of two types of nodes, which we call agents and artifacts, and edges 
between nodes of one type and nodes of the other type. These networks can be used to represent a wide range of 
phenomena and therefore are studied in a diverse range of disciplines. For example, natural selection unfolds as 
species (the agents) compete over sites (the artifacts), commerce is possible as traders exchange resources, sci-
entific advances are reported as scholars write papers, and laws are adopted as legislators sponsor bills. Although 
bipartite networks are useful in their own right, they can also be useful for inferring unipartite (i.e., one-mode) 
networks that are difficult to measure directly. For example, while it may be difficult to directly survey politicians 
about their political alliances because they are busy and may have reasons to misrepresent their true alliances, 
it may be possible to infer political alliances from politicians’ co-sponsorship of legislation, which is readily 
 observable1,2. A bipartite projection transforms a bipartite network into a unipartite co-occurrence network 
in which pairs of agents are connected by edges whose weights capture their number of shared  artifacts3–5. For 
example, competitive interaction networks can be inferred from species’ co-occurrence in  sites6, trade networks 
can be inferred from firm co-location7–9 or product co-exchange3, scholarly collaboration networks can be 
inferred from paper co-authorship10, and political alliance networks can be inferred from bill co-sponsorship1. 
Throughout the paper we use these applications to offer concrete examples, however the models we discuss are 
general and can be applied to extract unipartite backbones in such diverse contexts as  flavor11,  misinformation12, 
 text13, and  genetic14 networks. Indeed, in principle any unipartite network can be represented as the projection 
of some bipartite  network15–17.

Despite their promise, bipartite projections (i.e., co-occurrence networks) are challenging to analyse because 
they are typically dense and weighted, and because the edge weights do not necessarily capture the strength of 
the relationship between  nodes18. As a result, it is often useful to analyze the backbone of a bipartite projection, 
which is an unweighted and typically sparser network that retains only the most ‘important’ edges. Although 
well-known methods exist for extracting the backbone of weighted networks that are not bipartite  projections19,20, 
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methods designed specifically for bipartite projections have recently been  developed9,18,21,22. Among these meth-
ods, the fixed degree sequence model (FDSM) relies on an intuitive null model, but requires computationally 
expensive Monte Carlo simulations, making it impractical for extracting the backbone of large bipartite projec-
tions. Faster methods are available, however relatively little is known about whether they yield backbones that are 
similar to those that would be obtained from using  FDSM23, and therefore whether they offer computationally 
efficient alternatives. To offer guidance to researchers wishing to extract an FDSM-like backbone from a large 
bipartite projection, in this paper we consider four potential alternatives to FDSM: fixed fill model (FFM) fixed 
row model (FRM), fixed column model (FCM), and stochastic degree sequence model (SDSM).

The paper is organized in six sections. We begin by formally defining bipartite projections, backbones, and 
the five backbone models, presenting proofs of the probability mass functions for their respective edge weight 
distributions in the Supplementary Text S1. In study 1, we evaluate the accuracy and speed of different approaches 
for estimating cell-filling probabilities used by the SDSM. In study 2, we evaluate the statistical power of the 
SDSM relative to the FDSM. In study 3, we examine how degree distributions impact the similarity of backbones 
extracted using FDSM and each of the alternative models. In study 4, we examine the extent to which backbones 
extracted using different models accurately recover a known community structure. Finally, we conclude with 
recommendations for backbone model selection and opportunities for future model development.

Backbone extraction for bipartite projections
Preliminaries. A bipartite network captures connections between nodes of one type (agents) and nodes of 
a second type (artifacts). Throughout this section, we use the ecological case of Darwin’s Finches to provide a 
concrete  example24,25. On his voyage to the Galapagos Islands on the H.M.S. Beagle, Darwin observed that only 
some species of finches lived on each island. These patterns can be represented as a bipartite network in which 
finch species (the agent nodes) are connected to the islands (the artifact nodes) where they are  found26. A bipar-
tite network can be represented as a binary matrix in which the agents are arrayed as rows, and the artifacts are 
arrayed as columns. We use B to denote a bipartite network’s representation as a matrix, where Bik = 1 if agent i is 
connected to artifact k, and otherwise is 0. The sequence of row sums and the sequence of column sums of B are 
called the agent and artifact degrees sequences, respectively. These sequences are among the bipartite network’s 
most significant features and are known to have implications for bipartite projections and  backbones15,27,28. In 
the ecological case, the agent degree sequence captures the number of islands where each species is found, while 
the artifact degree sequence captures the number of species found on each island.

The projection of a bipartite network is a weighted unipartite co-occurrence network in which a pair of agents 
is connected by an edge with a weight equal to their number of shared artifacts. For example, the bipartite projec-
tion of Darwin’s finch network is a species co-occurrence network in which a pair of finch species is connected by 
an edge with a weight equal to the number of islands where they are both found. We use P to denote the matrix 
representation of a bipartite projection, which is computed as BBT , where BT indicates the transpose of B . In 
a projection P , Pij indicates the number of times agents i and j were connected to the same artifact k in B . The 
diagonal entries of P , Pii , are equal to the agent degrees, but in practice are ignored.

The backbone of a bipartite projection is a binary representation of P that contains only the most ‘important’ 
or ‘significant’ edges. For example, the backbone of a species co-occurrence network connects pairs of species if 
they are found on a significant number of the same islands, which might be interpreted as evidence that the two 
species do not compete for resources and perhaps are symbiotic. We use P′ to denote the matrix representation 
of the backbone of P . Because multiple methods exist for deciding when an edge is significant and thus should 
be preserved in the backbone, we use P′M denote a backbone extracted using method M. It is important to note 
that for a given bipartite projection, there is no ‘true’ backbone, but only backbones corresponding to specific 
backbone methods M. The backbone extracted using FDSM (i.e. P′

FDSM ) may be similar or different from a back-
bone extracted using another method such as SDSM (i.e. P′SDSM ), and these similarities and differences depend 
on the information that is considered by the respective methods when determining whether edges’ weights are 
significant. It is these similarities and differences that we explore in the four studies below.

Backbone extraction methods that were originally developed for non-projection weighted networks are often 
applied to weighted bipartite projections. One simple method preserves an edge in the backbone if its weight 
in the projection exceeds some global threshold T. However, when T = 0 , which is common, the backbone will 
be dense and have a high clustering coefficient because each artifact of degree d induces d(d − 1)/2 edges in 
the  backbone29. Using T > 0 can yield a sparser and less clustered  backbone30–32, but still yields highly clustered 
networks in which low-degree nodes are excluded while high-degree nodes are  preserved19. More sophisticated 
methods, including the disparity filter19 and likelihood filter20, aim to overcome these limitations of the global 
threshold method by using a different threshold for each edge based on a null model. However, all methods that 
were developed for non-projection weighted networks have the same shortcoming when applied to weighted 
bipartite projections: they ignore information about the artifacts, which is lost when generating the  projection18. 
In the ecological case, the global threshold, disparity filter, and likelihood filter methods all decide whether two 
species should be connected in the backbone only by examining how many islands these two species are both 
found on, but do not consider the characteristics of those islands, including how many other species are found 
there, or even how many islands there are. Therefore, although these methods are promising for extracting the 
backbone from non-projection weighted networks, different methods are required for extracting the backbone 
from a bipartite projection.

Bipartite ensemble backbone models. Bipartite ensemble backbone models decide whether an edge’s 
observed weight Pij is significantly large, and thus whether a corresponding edge should be included in the back-
bone by comparing it to an ensemble of random bipartite networks. Let B be the set of all bipartite networks B∗ 
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having the same number of agents and artifacts as B . In the ecological case, B∗ might be viewed as representing 
a possible world containing the same species and islands, but in which locations of species on islands is differ-
ent, and likewise B is the set of all such possible worlds. The bipartite ensembles used in backbone models take 
a subset BM of B , subject to certain constraints M, and impose a probability distribution on it. In all models 
except the SDSM, the uniform probability distribution is imposed on BM , that is, each element of the ensemble 
is equally likely. The backbone is then extracted from the projection of B by using the distribution of edge weights 
arising from projections of members of the ensemble to evaluate their statistical significance.

We use P∗ij to denote a random variable equal to (B∗
B
∗T )ij for B∗

∈ B
M . That is, P∗ij is the number of arti-

facts shared by i and j in a bipartite network randomly drawn from BM . In the ecological case, P∗ij represents the 
number of islands that are home to both species i and j in a possible world, while the distribution of P∗ij is the 
distribution of the number of islands shared by species i and j in all possible worlds.

Decisions about which edges should appear in a backbone extracted at the statistical significance level α are 
made by comparing Pij to P∗ij

This test includes edge P′ij in the backbone if its weight in the observed projection Pij is uncommonly large 
compared to its weight in projections of members of the ensemble P∗ij . We use a two-tailed significance test in the 
studies below because, in principle, an edge’s weight in the observed projection could be uncommonly larger or 
uncommonly smaller than its weight in projections of members of the ensemble, however a one-tailed test may 
also be used. In the ecological case, two species are connected in the backbone if their number of shared islands 
in the observed world is uncommonly large compared to their number of shared islands in all possible worlds.

There are many ways that B can be  constrained33, with each set of constraints describing a particular ensem-
ble BM , which is used in a particular ensemble backbone model M to yield a particular backbone P′M . In the 
case of ensembles used to extract the backbone of bipartite projections, our focus in this paper, two broad types 
of constraints are  common23. First, ensembles can be distinguished by what they constrain: only the number 
of edges, the degrees of the agent nodes, the degrees of the artifact nodes, or the degrees of both the agent and 
artifact nodes. Second, ensembles can be distinguished by how they impose these constraints: the constraints can 
be satisfied exactly, or only on average. In statistical physics, ensembles that impose exact or ‘hard’ constraints 
are known as microcanonical, while ensembles that satisfy constraints on average or impose ‘soft’ constraints 
are known as  canonical9.

Prior work on these ensembles generally adopts either a theoretical focus on the ensembles themselves, or 
an applied focus on the consequences of ensemble choice. In the theoretical literature, some (primarily math-
ematicians) have aimed to characterize the properties of ensembles, such as estimating the cardinality of the 
ensemble of matrices with fixed rows and columns (below, we call this ensemble BFDSM)34. Others (primarily 
physicists) have aimed to identify conditions under which ensembles are equivalent or non-equivalent, typically 
interpreting ensembles as representing thermodynamic  systems35–37. In the applied literature, the focus is not on 
identifying fundamental properties of ensembles, but instead on understanding the implications of choosing a 
particular ensemble when detecting a particular pattern, such as  nestedness38 or community  structure23,27. The 
present work falls into this latter group: we are not directly concerned with identifying fundamental properties 
of ensembles, but instead on identifying the consequences of ensemble choice, with the ultimate goal of offering 
practical guidance to applied researchers wishing to extract the backbone of a bipartite projection.

In the remaining subsections below, we first describe the FDSM in terms of its ensemble. We then present 
four potential alternative backbone models whose ensembles differ only slightly from FDSM, in terms of either 
what they constrain or how they impose constraints. We then turn to exploring the consequences of choosing 
one of these alternatives over FDSM when extracting a backbone.

Fixed degree sequence model (FDSM). In the fixed degree sequence model (FDSM), B∗
∈ B

FDSM are con-
strained to have the same agent and artifact degree sequences as B . That is, FDSM constrains the degrees of both 
the agent and artifact nodes, and requires that these constraints are satisfied exactly, making it a tightly-con-
strained microcanonical ensemble. Adopting the FDSM implies, for example, that in all possible worlds a given 
species is found on exactly the same number of islands, and a given island is home to exactly the same number 
of species. The distribution of P∗ij arising from BFDSM is unknown, but can be approximated by uniformly sam-
pling B∗ from BFDSM , constructing P∗ , and saving the values P∗ij . In the studies below, we use 1000 samples of 
B
∗ generated using the ‘curveball’ algorithm, which is among the fastest methods to sample BFDSM uniformly at 

 random39,40. The FDSM has been used to extract the backbone of bipartite projections of, for example, movies 
co-liked by  viewers21 and conference panel co-participation by  scholars41,42.

The FDSM offers an intuitively appealing approach to extracting the backbone of bipartite projections because 
it fully controls for both bipartite degree sequences, which are known to be responsible for many of the projec-
tion’s structural  characteristics15,16. However, because the distribution of P∗ij must be computed via Monte Carlo 
sampling, it is computationally costly, making it impractical for all but relatively small bipartite projections. There 
are at least three distinct computational challenges. First, although the curveball algorithm is the fastest among 
existing methods for randomly sampling a bipartite graph with fixed degree sequences (i.e. for sampling B∗ from 
B

FDSM ), it still can require several seconds per sample for large graphs. Second, once a B∗ has been sampled, 
constructing each P∗ requires matrix multiplication, which must be performed repeatedly and has complexity of 
at least O (n2.37)43. Finally, computing an edge’s p value (i.e. Pr(P∗ij ≥ Pij) ) with sufficient precision to achieve a 
specified familywise error rate that controls for Type-I error inflation due to multiple  testing22 can require these 
sampling and multiplication steps to be performed a very large number of times (see Supplementary Text S2).

P′ij =

{

1 if Pr(P∗ij ≥ Pij) <
α
2
,

0 otherwise.
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These computational challenges have led researchers to develop other backbone  models3,9,18. Many such 
models exist, however here we are focused on identifying methods that yield backbones similar to what would 
be obtained using FDSM, and thus which may serve as computationally-feasible alternatives to FDSM. Therefore, 
we consider only those models whose ensembles involve at least one of the two types of constraints imposed by 
FDSM. That is, we consider models that either (1) impose exact constraints, or (2) impose constraints on both 
the agent and artifact degrees.

Fixed fill model (FFM). In the fixed fill model (FFM), B∗
∈ B

FFM are simply constrained to contain the same 
number of 1s as B . That is, the FFM constrains only the number of edges, but requires that this constraint is 
satisfied exactly. Adopting the FFM implies, for example, that in all possible worlds only the total number of 
species-island pairs is fixed, but any given species may be found on a different number of islands and any given 
island may be home to a different number of species. The distribution of P∗ij arising from BFFM has not been 
described before, but is derived in Supplementary Text S1.1. We call it a Jacobi distribution because it is related 
to Jacobi polynomials.

Fixed row model (FRM). In the fixed row model (FRM), B∗
∈ B

FRM are constrained to have the same agent 
degree sequence as B , but have unconstrained artifact degree sequences. That is, the FRM constrains the degrees 
of the agent nodes, and requires that this constraint is satisfied exactly. A canonical variant of the FRM, the 
BiPCMr , also constrains the degrees of the agent nodes, but only requires this constraint to be satisfied on 
average; we do not consider it here because it involves neither of FDSM’s  constraints9. Adopting the FRM for 
backbone extraction implies, for example, that in all possible worlds a given species is found on the same num-
ber of islands, but a given island may be home to a different number of species. The distribution of P∗ij arising 
from BFRM is hypergeometric (see Supplementary Text S1.2), and for this reason it is sometimes referred to as 
the hypergeometric  model22,23,44. The FRM has been used to extract the backbone of bipartite projections of, for 
example, movies co-starring  actors22, papers co-written by  authors22, parties co-attended by  women44, majority 
opinions joined by Supreme Court  justices44, and microRNAs co-associated with  diseases45.

Fixed column model (FCM). In the fixed column model (FCM), B∗
∈ B

FCM are constrained to have the same 
artifact degree sequence as B , but have unconstrained agent degree sequences. That is, the FCM constrains the 
degrees of the artifact nodes, and requires that this constraint is satisfied exactly. A canonical variant of the FCM, 
the BiPCMc , also constrains the degrees of the artifact nodes, but only requires this constraint to be satisfied on 
average; we do not consider it here because it involves neither of FDSM’s  constraints9. Adopting the FCM for 
backbone extraction implies, for example, that in all possible worlds a given species may be found on a different 
number of islands, but a given island is home to the same number of species. The distribution of P∗ij arising from 
B

FCM has not been described before, but is derived in Supplementary Text S1.3, where we show it is Poisson-
binomial.

Stochastic degree sequence model (SDSM). Finally, the stochastic degree sequence model (SDSM) takes BSDSM to 
be all binary m× n matrices, but also gives a process for generating these matrices with different probabilities. 
Each B∗ is generated by filling the cells B∗ik with a 0 or 1 depending on the outcome of an independent Bernoulli 
trial with probability p∗ik . The distribution of the random variable P∗ij arising from BSDSM is Poisson-binomial 
with parameters which can be computed using the p∗ik (see Supplementary Text S1.4)27,46. There are many ways 
to choose p∗ik , but in the studies below we choose p∗ik so that it approximates Pr(B∗ik = 1) for B∗

∈ B
FDSM . This 

choice of p∗ik ensures that the SDSM constrains the degrees of both the agent and artifact nodes, but only requires 
these constraints to be satisfied on average. Adopting such a version of SDSM implies, for example, that in each 
possible world a given species may be found on many or few islands and a given island may be home to many or 
few species, but the average number of islands on which a given species lives in all possible worlds and the aver-
age number of species that live on an given island in all possible worlds matches these values the observed world. 
The SDSM has been used to extract the backbone of bipartite projections of, for example, legislators co-sponsor-
ing  bills1,18,47–49, zebrafish (Danio rerio) sharing operational taxonomic  units50, countries sharing  exports3, and 
genes expressed in  genesets51.

Study 1: Choosing cell-filling probabilities for the SDSM
The SDSM requires choosing p∗ik , which we want to approximate Pr(B∗ik = 1) for B∗

∈ B
FDSM . There are three 

types of methods that might be used for doing so: arithmetic, general linear models, and entropy maximization. 
First, we can choose p∗ik = (ri × ck)/f  , where ri is the sum of entries in row i of B , ck is the sum of entries in 
column k of B , and f is the sum of all entries in B . When p∗ik falls outside the [0, 1] range, it is simply truncated 
toward 0 or 1, respectively. This method has a long history in  ecology25; we call it RCF because the value is cho-
sen based on a row sum, a column sum, and the number of entries of B that are filled with a one, but elsewhere 
it has been called the ‘Chung-Lu method’52,53. Second, an estimate can be obtained by fitting a general linear 
model of the form:

where the β ’s are estimated coefficients and ǫ is an error term. If the model is treated as a linear regression and 
the coefficients are estimated using ordinary least squares, then the predicted value of Bik is chosen for p∗ik , either 
truncating values outside the required [0, 1] range (linear probability model; LPM) or transforming them into 

Bik = β0 + β1ri + β2ck + ǫ, or

Bik = β0 + β1ri + β2ck + β3rick + ǫ,
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the required range using a linear discriminant model (LDM)54. If the model is treated as a logistic regression and 
the coefficients are estimated using maximum likelihood, then the predicted probability that Bik = 1 is chosen 
for p∗ik . In prior work, the logistic regression approach has used a scobit or logit link function, with or without an 
interaction term ( β3)1,18,47. Finally, an estimate can be obtained by entropy maximization methods, including the 
polytope method (Poly)27,55 or bipartite configuration model (BiCM)3,9,56. In this study, we evaluate the accuracy 
and speed of these methods for choosing p∗ik that approximate Pr(B∗ik = 1) for B∗

∈ B
FDSM.

Methods. To evaluate accuracy, we begin by enumerating all the members of a small BFDSM . For exam-
ple, given an agent degree sequence of [1, 1, 2] and an artifact degree sequence of [1, 1, 2], BFDSM contains 5 
members (see Table 1A). Second, from this complete enumeration, we compute the probabilities we wish p∗ik to 
approximate (i.e., Pr(B∗ik = 1) for B∗

∈ B
FDSM , see Table 1B). Third, we compute p∗ik using each of nine meth-

ods (see Table 1C for values obtained using the BiCM method). Finally, we quantify the accuracy with which 
p∗ik approximates the desired probabilities using the mean absolute difference for all i, k. In the example shown 
in Table 1, BiCM’s accuracy for these degree sequences is 0.028. That is, on average p∗ik chosen using BiCM 
deviates from the desired probabilities by ± 0.028 on average. Because evaluating accuracy in this way requires 
enumerating all members of BFDSM , it is possible only for short degree sequences that define BFDSM with small 
cardinality. We focus on degree sequences ranging in length from 2 to 5, which define 384 unique BFDSM rang-
ing in cardinality from 4 to 2040.

After identifying each method’s accuracy, we evaluate the computational running time of the four most 
accurate methods by using them to choose p∗ik for bipartite graphs defined by up to 1000 agents and up to 1000 
artifacts, and thus requiring choosing up to 1,000,000 probabilities.

Results. Figure 1A shows the accuracy of each method’s computation of p∗ik . Each gray line plots the accuracy 
of each method for a single BFDSM , while the red line and shaded region plots the mean and 95% confidence 
interval of the accuracy of each method over all 384 BFDSM . We find that choosing p∗ik using a logistic regression 
with an interaction term (i.e., Scobit-I and Logit-I) is on average least  accurate1,18, while choosing p∗ik using the 
two entropy maximization method (BiCM and Poly) yield numerically equivalent results, which were on average 
most  accurate3,27.

Table 1.  SDSM probabilities given agent and artifact degree sequences [1,1,2].

(A) Members of BFDSM

1 0 0 0 0 1 0 0 1 0 0 1 0 1 0

0 0 1 1 0 0 0 0 1 0 1 0 0 0 1

0 1 1 0 1 1 1 1 0 1 0 1 1 0 1

(B) Desired 
probabilities (C) p∗

ik
 computed using BiCM

0.2 0.2 0.6 0.216 0.216 0.568

0.2 0.2 0.6 0.216 0.216 0.568

0.6 0.6 0.8 0.568 0.568 0.863

One BFDSM

Mean & 95% CI for all 384 BFDSM
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Figure 1.  (A) Accuracy and (B) speed computing p∗ik using different methods. Lines show means, while shaded 
regions show 95% confidence intervals.
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Figure 1B shows the number of seconds required to compute p∗ik using a 2.3 GhZ Intel i7 processor; lines 
illustrate the mean running time, while the shaded regions show the 95% confidence interval. Among the two 
most accurate methods, BiCM is several orders of magnitude faster than Polytope. When computing more than 
104 probabilities, BiCM is also faster than the two slightly less accurate Logit and LDM methods. In the largest 
case we evaluated, computing 106 probabilities, BiCM took only about 0.026 seconds. Therefore, we use BiCM 
for choosing p∗ik when extracting SDSM backbones in the remaining studies because it is both the most accurate 
and fastest.

Study 2: Statistical power of SDSM
Ensemble backbone models require the specification of a statistical significance level α , which determines how 
uncommonly large an observed edge weight Pij must be when compared to edge weights P∗ij arising from an 
ensemble in order for a corresponding edge to be included in the backbone. For a given model, smaller values of 
α represent more stringent criteria for retaining edges, and therefore yield sparser backbones. Although FDSM 
and SDSM define their respective ensembles by constraining both agent and artifact degree sequences, and thus 
aim to yield similar backbones, a given α does not necessarily represent the same level of stringency in these two 
models. Because the SDSM allows variation in the degree sequences of B∗

∈ B
SDSM , the distribution of P∗ij is 

 wider23,28. These wider distributions mean that the SDSM provides a more conservative test of edge weight sig-
nificance than FDSM, or alternatively the SDSM has less statistical power to detect significant edges than FDSM.

A concrete example serves to illustrate this difference. In economic geography, it is common to study the world 
city network using a bipartite projection where two cities are linked to the extent that firms maintain locations in 
both cities. The Globalization and World Cities (GaWC) dataset has been widely-used in this context, and takes 
the form of a bipartite network recording the presence or absence of 100 firms (artifacts) in 196 cities (agents) 
in the year  20007,28. In this bipartite network, the agent degrees are right-tailed because most cities contain only 
a few firms, while a few cities such as New York contain many. Likewise, the artifact degrees are also right tailed 
because most firms maintain locations in only a few cities, while a few firms such as the accounting firm KPMG 
maintain locations in many.

Figure 2A illustrates the distribution of the Milan-Paris edge weight in projections arising from BFDSM and 
B

SDSM of which the observed bipartite network is a member (i.e., the random variable P∗ij) . These distributions 
allow a researcher to decide whether Milan and Paris’s observed number of co-located firms is significantly 
large, and therefore whether Milan and Paris should be connected in a world city network backbone. The SDSM 
distribution is wider than the FDSM  distribution23,28, which has implications for whether the Milan-Paris edge 
will be included in a backbone extracted at a given significance level using each model. In the observed data, 
there are 26 firms co-located in Milan and Paris (i.e., Pij = 26 ). The probability of observing the same or larger 
edge weight in projections from the FDSM ensemble is 0.0033, which is less than 0.05

2
 , and therefore a Milan-

Paris edge is deemed significant by the FDSM and is included in the FDSM backbone extracted at α = 0.05 . In 
contrast, the probability of observing the same or larger edge weight in projections from the SDSM ensemble is 
0.0275, which is not less than 0.05

2
 , and therefore a Milan-Paris edge is not deemed significant by the SDSM and 

is not included in the SDSM backbone extracted at α = 0.05 . For a given level of significance α , this difference in 
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statistical power leads the SDSM backbone to be sparser than the FDSM backbone (density = 0.004 vs. 0.012), 
and means that these two backbones are dissimilar (Jaccard = 0.36).

In this study, we investigate SDSM’s statistical power relative to FDSM, and specifically whether extracting 
an SDSM backbone using a more liberal (i.e., larger) α makes it more similar to an FDSM backbone extracted 
at α = 0.05.

Methods. To evaluate SDSM’s statistical power and the effect of significance levels on the similarity of SDSM 
and FDSM backbones, we first extracted the FDSM backbone from the GaWC bipartite network at α = 0.05 . 
We then extracted SDSM backbones from the GaWC bipartite network at 0.01 ≤ α ≤ 0.3 in 0.001 increments, 
each time computing the Jaccard index (J) to measure the similarity between the SDSM and FDSM backbones. 
After comparing SDSM and FDSM backbones extracted from the empirical GaWC bipartite network, we repeat 
this process using 100 synthetic bipartite networks with the same dimensions ( 196× 100 ), density (0.08) and 
right-tailed agent and artifact degree distributions.

Results. The green line in Fig. 2B shows the Jaccard similarity between an FDSM backbone extracted from 
the empirical GaWC network at α = 0.05 and SDSM backbones extracted at the significance levels shown on 
the x-axis. We find that an SDSM backbone achieves its maximum similarity to the FDSM backbone ( J = 0.81 ) 
when it is extracted using the more liberal significance level of α = 0.12 . Returning to the example in Fig. 2A, 
using this more liberal significance level would result in the Milan-Paris edge being deemed significant and 
included in the SDSM backbone because its SDSM p value 0.0275 < 0.12

2
 . Because this more liberal significance 

level results in the inclusion of additional edges, the new SDSM backbone extracted at α = 0.12 has a density 
(0.01), which is closer to that of the FDSM backbone extracted at α = 0.05 (0.012).

The purple line in Fig. 2B shows the mean Jaccard similarity between an FDSM backbone extracted using 
α = 0.05 and SDSM backbones extracted using 0.01 ≤ α ≤ 0.3 from 100 bipartite networks generated to resemble 
the empirical GaWC network. The shaded purple region shows the 10th and 90th percentile of Jaccard similarities 
of these backbones. We find that these synthetic networks behave similarly to the empirical network. Specifically, 
SDSM and FDSM backbones extracted from a low-density 196× 100 bipartite network with right-tailed degree 
distributions achieve a maximum similarity of 0.49 < J < 0.76 when the FDSM backbone is extracted using 
α = 0.05 and the SDSM backbone is extracted using α = 0.14 . This is promising because it suggests that, given 
the characteristics of an empirical bipartite network, it may be possible to select a significance level for extracting 
a computationally-efficient SDSM backbone that closely resembles a computationally-infeasible FDSM backbone.

Study 3: Backbone similarity under varying degree distributions
Agent and artifact degree distributions are a key feature of a bipartite network, and are known to have implica-
tions for bipartite  projections15,27,28. The FDSM is particularly appealing because it allows decisions about the 
significance of edges in a projection to be conditioned on both bipartite degree sequences, thereby taking into 
account these important features. However, because the computational requirements of the FDSM make it 
impractical for extracting the backbone from most bipartite projections, it is often necessary to use a different 
backbone model. In this study, we evaluate the similarity of an FDSM backbone and backbones extracted using 
more computationally efficient models. We perform this comparison for backbones extracted from bipartite net-
works characterized by five types of degree distributions: right-tailed, left-tailed, normal, constant, and uniform.

For the sake of concreteness, in this section we use the example of a bipartite network in which authors 
(agents) are linked to the papers they have written (artifacts). The projection of such a network yields a co-
authorship network in which the edge weight between a pair of authors indicates their number of co-authored 
 papers10. These edge weight values will depend heavily on the distribution of papers written by authors (i.e., the 
agent degree sequence), and on the distribution of authors on each paper (i.e., the artifact degree sequence). 
Different degree distributions describe different kinds of scholarly environments as shown in Table 2. The choice 
of a backbone model affects whether these distributions are considered, and in this example affects whether 
decisions about the significance of two authors’ number of co-authored papers consider the scholarly environ-
ment. The FDSM compares their observed number of co-authored papers to the number that might be observed 
in alternative realizations of the same environment, while other backbone models relax the extent to which the 
environment is held constant.

Table 2.  Bipartite degree distributions, with examples in the context of a scholarly authorship bipartite 
network.

Degree distribution Authors (agents) Papers (artifacts)

Right-tailed ∼ β(1, 10) Most write some papers, but a few are prolific (most departments) Most papers are sole-authored, but some are written by large teams (e.g., 
sociology)

Left-tailed ∼ β(10, 1) Most are prolific, but some are inactive (elite departments) Most papers are written by large teams, but some are sole-authored (e.g., 
physics)

Uniform ∼ β(1, 1) There is substantial diversity in scholarly output (e.g., interdisciplinary 
departments)

There is substantial diversity in the size of authorship teams (e.g., an 
entire university)

Constant ∼ β(10, 000, 10,000) There are strong norms about how many papers an author should have 
(e.g., for performance evaluations)

There are strong norms about how many authors a paper should have 
(e.g., two: a senior author & a junior author)

Normal ∼ β(10, 10) Scholarly output varies around some typical level Authorship teams vary around some typical size
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Methods. We evaluate similarities among the backbones extracted using different models by comparing 
backbones extracted from synthetic 100× 100 bipartite networks with a density of 0.1, and with a combination 
of agent and artifact degree distributions shown in Table 2. Following our example, these synthetic bipartite 
networks might represent a college of 100 faculty who collectively wrote 100 papers, in a particular type of 
scholarly environment where each individual had a 10% chance of being an author on each paper. After generat-
ing a bipartite network with a given size, density, and degree distributions, we extract five different backbones 
from the generated bipartite network, using the fixed fill model, fixed row model, fixed column model, stochastic 
degree sequence model, and fixed degree sequence model; in all cases we use α = 0.05 . We compute the similar-
ity of the first four backbones to the FDSM backbone using a Jaccard index, repeating this process 100 times for 
each of the 25 possible combinations of agent and artifact degree distributions.

Results. The heatmaps in Fig. 3 illustrate the similarity between an FDSM backbone and a backbone extracted 
using an alternative model. The rows of each heat map correspond to different agent degree distributions, and 
the columns correspond to different artifact degree distributions, in the synthetic bipartite networks from which 
the backbones were extracted. The lightest patches identify conditions under which a given backbone model 
yields a backbone that is similar to what would be obtained using the computationally costly FDSM, while darker 
patches identify conditions under which these two backbones differ. We find that when agent degrees are con-
stant (i.e., every agent has the same degree) and artifact degrees are constant or left-tailed, all backbone models 
yield the same backbone as FDSM (Mean J = 1 ). However, beyond this special case, which is likely to be rare in 
empirical data, similarity to FDSM-extracted backbones varies.

As expected, the similarity of backbones extracted using FRM and FDSM depends primarily on the distribu-
tion of artifact degrees, not agent degrees (see Fig. 3B). For example, for any agent degree distribution, these two 
models yield very different backbones when artifact degrees follow a right-tailed distribution (Mean J = 0.186 ), 
but very similar backbones when artifact degrees follow a normal distribution (Mean J = 0.863 ). This occurs 
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because both models exactly control for agent degrees, however FDSM also controls for artifact degrees, while 
FRM does not.

A similar but rotated pattern emerges when considering the FCM: the similarity of backbones extracted using 
FCM and FDSM depends primarily on the distribution of agent degrees, not artifact degrees (see Fig. 3C). For 
any artifact degree distribution, these two models yield very different backbones when agent degrees follow a 
right-tailed or uniform (Mean J = 0.084 ) distribution , but more similar backbones when agent degrees follow 
a left-tailed distribution or are constant (Mean J = 0.617 ). This occurs because both models exactly control for 
artifact degrees, however FDSM also controls for agent degrees, while FRM does not. However, there is a notable 
exception to this general pattern: when artifact degrees follow a uniform distribution, FCM and FDSM always 
yield different backbones (Mean J = 0.151).

The conditions under which the FFM yields FDSM-similar backbones occur at the intersection of the condi-
tions under which the FRM and FCM both yield FDSM-like backbones (see Fig. 3A). When artifact degrees 
follow a right-tailed distribution or the agent degrees follow a right-tailed or uniform distribution, then FFM 
and FDSM backbones differ (Mean J = 0.1 ). In contrast, for other combinations of degree distributions, FFM 
and FDSM backbones are more similar (Mean J = 0.724).

Finally, as expected based on the findings from study 2, we observe that the SDSM generally yields different 
backbones than FDSM when both are extracted at α = 0.05 (see Fig. 3D). Specifically, except in the narrow case 
where agent degrees are constant and artifact degrees are constant or left-tailed (Mean J = 1 ), SDSM and FDSM 
backbones exhibit only modest similarity (Mean J = 0.314 ). This lack of similarity occurs because SDSM offers 
a less statistically powerful (or more conservative) test of edges statistical significance than FDSM, and therefore 
retains fewer edges in the backbone. However, findings from study 2 also suggested that careful selection of the 
significance level used for extracting an SDSM backbone can yield results more similar to FDSM.

To explore this possibility, we expanded the analysis reported in Fig. 3D by extracting SDSM backbones at 
different significance levels α . We find that when a suitably more liberal (i.e., larger) significance level α is used 
to extract an SDSM backbone, the resulting SDSM backbone is very similar to an FDSM backbone extracted at 
α = 0.05 (see Fig. 4A). Specifically, for backbones extracted from bipartite networks with any agent or artifact 
degree distributions, these two backbones tend to be very similar (Mean J = 0.865 ). This suggests that in princi-
ple the fast SDSM can be used to obtain a close approximation of a computationally-infeasible FDSM backbone 
from any bipartite network.

In practice, using SDSM to obtain an FDSM-like backbone requires selecting an α value for the SDSM that 
corresponds to α = 0.05 in the FDSM. We observe that there are three distinct values of such an ‘optimal’ α that 
depend on agent and artifact degree distributions (see Fig. 4B). First, when agent degrees are constant, a value 
only slightly higher than 0.05 (Mean = 0.062 , SD = 0.021 ) achieves the best approximation of an FDSM back-
bone. Second, when artifact degrees are constant, a value roughly double (Mean = 0.09 , SD = 0.022 ) achieves the 
best approximation of an FDSM backbone. Finally, when neither agent nor artifact degrees are constant, which is 
likely in most empirical bipartite networks, a value roughly 2.5 times larger (Mean = 0.13 , SD = 0.014 ) achieves 
the best approximation of an FDSM backbone. Although further work is needed to facilitate the a priori selection 
of an α that allows an SDSM backbone to closely approximate an FDSMα=0.05 backbone, these results suggest that 
under the most common circumstances (i.e., when there is variation in degrees) α ≈ 0.13 may be appropriate.

Study 4: Recovery of community structure
Studies 1–3 examine the backbones extracted from random bipartite networks; however, empirical bipartite net-
works are not random. Frequently they contain a block structure that implies a particular community structure 
in the bipartite projection. In this study, we evaluate the extent to which backbones extracted using different 
models reflect a known community structure that is encoded in the bipartite data from which they are  extracted57. 

1

0.908

0.855

0.688

0.755

0.999

0.912

0.86

0.827

0.86

1

0.93

0.857

0.818

0.854

0.91

0.875

0.856

0.777

0.838

0.926

0.815

0.865

0.801

0.843

R
ig

ht
U

ni
f

C
on

s
Le

ft
N

or
m

Right Unif Cons Left Norm
Artifact degree distribution

Ag
en

t d
eg

re
e 

di
st

rib
ut

io
n

0.00

0.25

0.50

0.75

1.00
Jaccard

Similarity of SDSM (α = optimal) and FDSM (α = 0.05)A

0.05

0.092

0.102

0.102

0.104

0.05

0.115

0.125

0.138

0.132

0.05

0.113

0.123

0.139

0.136

0.059

0.119

0.127

0.143

0.142

0.102

0.119

0.126

0.14

0.138

R
ig

ht
U

ni
f

C
on

s
Le

ft
N

or
m

Right Unif Cons Left Norm
Artifact degree distribution

Ag
en

t d
eg

re
e 

di
st

rib
ut

io
n

0.050

0.075

0.100

0.125

0.150
Optimal α

SDSM α to maximize simlarity with FDSM (α = 0.05)B

Figure 4.  (A) Given agent and artifact degree distributions, there exists a statistical significance level α that 
maximizes the similarity between an SDSM backbone extracted at this level and an FDSM backbone extracted 
at α = 0.05 , and (B) when used yields an SDSM backbone that is very similar to the corresponding FDSM 
backbone.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23929  | https://doi.org/10.1038/s41598-021-03238-3

www.nature.com/scientificreports/

Recent work has shown that FDSM, FRM, SDSM, and BiPCM (a canonical variant of FRM) yield backbones 
with similar communities  structures23. Other work has shown that SDSM and FDSM backbones extracted from 
a bipartite network representing bill co-sponsorship in the 114th session of the US Senate more clearly captured 
the hypothesized partisan community structure than an FRM  backbone27. We build on this prior work using 
synthetic data that is constructed to contain a ground truth communities, which allows us to evaluate backbone 
models’ ability to recover true communities, and not simply similar or hypothesized ones.

Methods. We investigate the ability for backbones to recover a known community structure in three steps. 
First, we simulate a 200× 1000 bipartite network with a density of 0.1 and right-tailed agent and artifact degree 
distributions. We focus on a bipartite network with more artifacts than agents to ensure that these data contain 
sufficient information to encode potential community memberships. We focus on a bipartite network with right-
tailed degree distributions because they are common in many empirical  unipartite58 and bipartite  networks1,11,28. 
This synthetic bipartite network could represent a legislative body composed of 200 legislators casting votes on 
1000 bills, where any given legislator had a 10% chance of voting in favor of any given bill. The right-tailed degree 
distributions capture the fact that most legislators vote in favor of only a few bills, and that most bills receive the 
support of only a few legislators, which is typical of legislative bodies. The backbone of a projection of such a 
bipartite network would represent a network of collaboration or ideological alignment among  legislators1.

Second, we incorporate evidence of communities in this bipartite network by randomly assigning each agent 
and each artifact to one of two groups. We then perform checkerboard swaps, which preserve the degree dis-
tributions, until a given fraction of edges W are within-group, connecting an agent and artifact from the same 
 group59. Figure 5A provides graphical depictions of the matrices describing synthetic bipartite networks at two 
values of W. In each plot, the rows represent agents assigned to group A or B, the columns represent artifacts 
assigned to group A or B, and a cell is shaded black if the row agent is connected to the column artifact. When 
W = 0.5 , agents in a given group are equally likely to associate with artifacts in either group, placing ≈ 0.5 of 
the edges (i.e., shaded cells) in the diagonal blocks and ≈ 0.5 of the edges in the off-diagonal blocks. In contrast, 
when W = 0.8 , agents in a given group are much more likely to associate with artifacts from their own group 
than artifacts in the other group, placing ≈ 0.8 of the edges in the diagonal blocks and ≈ 0.2 of the edges in the 
off-diagonal blocks. Returning to our example, the groups could represent political parties: each legislator belongs 
to one of two parties (i.e., there are conservative and liberal legislators), and each bill advances the agenda of one 
of these parties (i.e., there are conservative and liberal bills). When W = 0.5 , a conservative legislator is equally 
likely to vote for conservative and liberal bills, while when W = 0.8 , a conservative legislator is four-times more 
likely to vote for a conservative bill than a liberal bill.

Finally, we extract a backbone from the bipartite network using a given model and compute the backbone’s 
modularity Q with respect to the agents’ group  assignments60. If a backbone model is able to recover the com-
munity structure from evidence in the bipartite network, then we expect a positive association between W and 
Q. In the legislative example, if legislators are bipartisan in their voting patterns (i.e., W = 0.5 ), then legislators 
should not be clustered by party in the backbone (i.e., Q ≈ 0 ). In contrast, if legislators are strongly partisan in 
their voting patterns (i.e., W = 0.8 ), then legislators should be clustered by party in the backbone (i.e., Q ≫ 0).
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We repeat these three steps 10 times for 0.5 ≤ W ≤ 0.8 in 0.05 increments. When evaluating the SDSM 
backbone, we consider both a backbone extracted using the conventional significance level of α = 0.05 and one 
extracted at the more liberal α = 0.13 , which study 3 suggests yields a backbone similar to FDSM.

Results. Figure 5B shows the modularity (y-axis; with respect to known community memberships) of back-
bones extracted using different models from bipartite networks containing different fractions of within-commu-
nity edges (x-axis). Solid lines illustrate the mean modularity across 10 replications, while the shaded regions 
illustrate 95% confidence intervals. All six lines increase monotonically, confirming that all backbone models 
yield backbones that can recover a known community structure; however, there is notable variation among 
the models. As evidence of community structure grows stronger in the bipartite network, the modularity of 
backbones extracted using the FFM and FCM slowly increase, but even when the evidence of such a structure is 
quite strong (i.e., when W = 0.8 ) they only achieve average values of Q = 0.15 and 0.18, respectively. Backbones 
extracted using the FRM display a similar pattern, but achieve a statistically significantly higher average modu-
larity ( Q = 0.39 ) value when W is large.

Backbones extracted using FDSM and SDSM yield modularity values that are statistically significantly larger 
than those obtained from FFM, FRM, or FCM backbones, but that are not statistically significantly different from 
each other. That is, these backbone models are indistinguishable in their ability to recover the known community 
structure, and do so very well. As evidence of a community structure grows stronger in the bipartite network, 
the modularity of backbones extracted using these models rapidly increases. When the evidence of community 
structure is strong (i.e., when W = 0.8) , these backbones have very high modularity (mean Q = 0.49 ). However, 
even when there is only modest evidence of community structure in the bipartite network (e.g., when W = 0.65 ), 
these backbones are still able to identify the community structure and have a distinctively high modularity 
(mean Q = 0.37).

These findings suggest that although all backbone models can yield backbones that recover a known com-
munity structure, SDSM and FDSM backbones are able to detect this structure more clearly and from a weaker 
signal.

Discussion
Bipartite networks can be used to represent a wide range of phenomena in the social and natural worlds including 
interspecies competition, global trade, scientific advances, and legislative deliberation. Likewise, projections of 
bipartite networks, which take the form of co-occurrence networks, can be useful for inferring unipartite net-
works whose edges would otherwise be difficult to measure directly. The fixed degree sequence model (FDSM) 
offers an appealing null model for making such inferences, but its computational complexity often makes it 
impractical. Several computationally simpler alternatives to FDSM have been proposed, including the fixed 
fill model (FFM) fixed row model (FRM), fixed column model (FCM), and stochastic degree sequence model 
(SDSM). In this paper we have systematically compared FDSM to each of these alternatives to evaluate their 
aspects of their accuracy, speed, statistical power, backbone similarity, and ability to recover a known community 
structure.

In study 1, we examined several methods for choosing the probabilities used by the stochastic degree sequence 
model (SDSM), finding that the bipartite configuration model (BiCM) is both the fastest and most accurate. In 
study 2, we examined the statistical power of the SDSM relative to the fixed degree sequence model (FDSM), 
finding that the SDSM can be viewed as a statistically less powerful (or more conservative) variant of the FDSM. 
In study 3, we examined the similarity of an FDSM-extracted backbone to backbones extracted using other 
models, finding that the SDSM and FDSM extract very similar backbones from bipartite networks with a wide 
range of possible degree distributions when an appropriate significance level α is chosen. Finally, in study 4, we 
examined the ability for backbones extracted using different models to recover a known community structure, 
finding that although all models yield a backbone that recovers the structure, SDSM and FDSM can detect a 
community structure more clearly and from a weaker signal.

Based on these findings, and with the goal of offering researchers some guidance in extracting the backbones 
of bipartite projections, we offer three recommendations. First, we recommend the stochastic degree sequence 
model (SDSM) for extracting the backbones of bipartite projections because it is fast, controls for both agent and 
artifact degree sequences, and yields modular backbones when the bipartite data contains even modest evidence 
of within-community clustering. Second, when the SDSM is used, we recommend that the cell-filling probabilities 
p∗ik be chosen using the Bipartite Configuration Model (BiCM) because it is faster and more accurate than any other 
currently available method. Third, when an FDSM backbone extracted at the α = 0.05 significance level is desired 
but computationally infeasible, we recommend extracting an SDSM backbone at the α = 0.13 significance level, 
which we observe is very similar when there is variation in the agent and artifact degree sequences. The models 
and options necessary to adopt these recommendations are implemented in the backbone package for R27.

These findings and recommendations must be viewed in light of the fact that, due to the computational 
requirements of the FDSM and of extracting a large number of backbones across the four studies, these studies 
have relied on small synthetic bipartite networks ranging in size from 3× 3 (study 1) to 200× 1000 (study 4). 
However, in practice bipartite networks may be several orders of magnitude larger. For example, a bipartite net-
work used to infer collaborations in the US House of Representatives includes 435 agents (representatives) and 
over 6000 artifacts (bills)1,55, while a bipartite network used to infer movie recommendations includes 17,770 
agents (films) and nearly 500,000 artifacts (viewers)21. Future research should explore whether these findings 
extend to backbones extracted from such large bipartite networks. Limitations of existing backbone models also 
point to directions for future research. First, using the FDSM will generally be computationally infeasible in prac-
tice because the distribution of P∗ij arising from BFDSM must be estimated via numerical simulation. Identifying 
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this distribution’s probability mass function, which is known for the other ensembles (see Supplementary Text S1), 
would facilitate the use of this otherwise attractive model. Second, all the ensemble models we have considered 
impose constraints on the degree sequences, but other types of constraints may also be useful. For example, in 
some contexts it may be necessary to constrain all members of an ensemble to contain a 0 in a particular cell 
(e.g., to represent that an author was not alive to co-author a paper, or a legislator was not present to co-sponsor 
a bill)61 These limitations and future directions notwithstanding, the results presented above provide a starting 
point for further development of backbone models, and provide applied researchers with some practical guid-
ance on model selection.

Code availability
All code necessary to replicate these analyses is available at https:// osf. io/ m4yfd/. The backbone package used to 
perform the analyses is available for R from CRAN, and can be installed by typing install.packages(“backbone”) 
in the R console.
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