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Bijective Proofs of Proper Coloring Theorems

Bruce Sagan and Vincent Vatter

Abstract. The chromatic polynomial and its generalization, the chromatic symmetric function,
are two important graph invariants. Celebrated theorems of Birkhoff, Whitney, and Stanley
show how both objects can be expressed in three different ways: as sums over all spanning
subgraphs, as sums over spanning subgraphs with no broken circuits, and in terms of acyclic
orientations with compatible colorings. We establish all six of these expressions bijectively.
In fact, we do this with only two bijections, as the proofs in the symmetric function setting
are obtained using the same bijections as in the polynomial case, and the bijection for broken
circuits is just a restriction of the one for all spanning subgraphs.

1. INTRODUCTION. Birkhoff first defined the chromatic polynomial in 1912 for
planar graphs [4] with the (ultimately unsuccessful) intention of proving what is now
the four color theorem. Indeed, in a 1946 survey on the chromatic polynomial, Birkhoff
and Lewis divided attacks on this then-conjecture into two types, qualitative (Type 1)
and quantitive (Type 2), placing the study of chromatic polynomials at the center of
the efforts of Type 2. Even then, the outlook was not rosy, as they admitted [5, p. 357]
(emphasis in original):

These researches have not been as successful as the researches of Type 1 in yielding results
that are directly connected with the four-color problem. It is certain that the greater generality
of the problem here considered has introduced complications which have so far rendered the
solution of the classical four-color problem more remote by the methods characteristic of Type
2 than it is by the methods of Type 1.

Despite its failure in leading to a proof of the four color theorem, the chromatic
polynomial has nevertheless become a fundamental object in graph theory. We refer to
Read’s still-excellent 1968 survey [14] or the second part of Biggs’s Algebraic Graph
Theory [3] for more background on the chromatic polynomial and its importance. Our
aim here is to explain, via simple bijections, three classic expressions for the chromatic
polynomial—as a sum over spanning subgraphs, as a sum over spanning subgraphs
without broken circuits, and in terms of acyclic orientations together with compatible
colorings. In each case, we show how these bijections can also be used to prove anal-
ogous results for the chromatic symmetric function, a generalization of the chromatic
polynomial defined by Stanley [15] in 1995. First, though, we need definitions.

LetG = (V ,E) be a graph with vertices V and edges E. A coloring ofG is a func-
tion κ from V to a set of colors. Here our colors are exclusively the positive integers P
and initial segments thereof, for which we use the notation [t] = {1, 2, . . . , t}. Thus a
P-coloring of G is a function κ : V → P and a [t]-coloring is a function κ : V → [t].
An example of a graph is shown on the left of Figure 1 and two [4]-colorings of it are
shown in the center.

The edge e = uv ∈ E is monochromatic in the coloring κ if κ(u) = κ(v), and a
coloring is proper if none of its edges are monochromatic. Note that only the second
coloring shown in Figure 1 is proper. Indeed, every proper coloring of the graph shown
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Figure 1. A graph, two colorings, and a spanning subgraph.

on the left of Figure 1 must give distinct colors to the vertices u, v, and w, but x may
be given either its own distinct color or it may share a color with u or w. Thus the
number of [t]-colorings of this graph is

t (t − 1)2(t − 2),

because there are t (t − 1)(t − 2) ways to choose the colors of u, v, and w, and then
there are t − 1 choices for the color of x (it may have any color except that given to v).

The quantity above is a polynomial in t . It turns out that this is always the case.
In fact, this was the main result of Birkhoff’s seminal paper [4], and he established
it by proving the result we present as Theorem 2.1. Thus we define the chromatic
polynomial of the graph G by

χ(G; t) = the number of proper [t]-colorings of G

for all positive integers t .
A spanning subgraph of a graph G = (V ,E) is a graph on the same set of vertices,

but with a subset of the edges. For example, the graph on the right in Figure 1 is a
spanning subgraph of the graph on the left. We associate each subset S ⊆ E of edges
with the spanning subgraph of G with edge set S, so the spanning subgraph on the
right of Figure 1 is denoted by S = {uv, vw}. A connected component, or simply
component, K of a spanning subgraph S is a maximal subset of vertices such that one
can reach any vertex in K from any other by traveling vertex-to-vertex via the edges
of S. The components of any graph (or spanning subgraph) form a partition of its
vertices. Returning to the spanning subgraph on the right of Figure 1, we see that it has
two components, one with vertex set {u, v,w} and the other consisting of the single
vertex x. We let

c(S) = the number of components of S.

In our proofs we frequently consider certain improper colorings. Given a spanning
subgraph S ⊆ E and a coloring κ , we say that κ is monochromatic on the components
of S if κ(u) = κ(v) for all vertices u and v in the same component of S. These are
precisely the colorings such that κ(u) = κ(v) for all uv ∈ S. If κ is a proper coloring,
it follows that κ can only be monochromatic on the components of S if S = ∅. The
following lemma, while trivial to prove, is extremely useful in what follows.

Lemma 1.1. For every graphG = (V ,E) and spanning subgraph S ⊆ E, the number
of [t]-colorings of G that are monochromatic on the components of S is t c(S).

Proof. Every such coloring is obtained by independently choosing one of the t avail-
able colors for each component of S.
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Since some of our results involve signs, it is natural to use sign-reversing involu-
tions to prove them. Let S be a finite set with an associated sign function sgn : S →
{+1,−1}. A sign-reversing involution on S is an involution ι : S → S that satisfies
the following two conditions.

• If ι(s) = s, then sgn(s) = +1.
• If ι(s) = t and s �= t , then sgn(s) = − sgn(t).

Immediately from the definition we see that

∑
s∈S

sgn(s) = |Fix ι|,

where Fix ι = {s ∈ S | ι(s) = s} is the set of fixed points of ι, and the vertical bars
denote cardinality.

In order to generalize the chromatic polynomial to the chromatic symmetric func-
tion, let x = {x1, x2, . . . } be an infinite set of commuting variables indexed by the posi-
tive integers. To every P-coloring of the graphG = (V ,E) we associate the monomial
or weight

xκ =
∏
v∈V

xκ(v).

For example, both colorings in Figure 1 have monomial xκ = x1x3x3x4 = x1x
2
3x4. The

chromatic symmetric function of G is then

X(G; x) =
∑
κ

xκ ,

where the sum is over all proper P-colorings of G. That X(G; x) is a symmetric func-
tion follows from the observation that permuting the labels of the colors in a proper
coloring results in another proper coloring.

By making the substitution

xi =
{

1 if i ∈ [t],
0 if i /∈ [t],

all terms of X(G; x) vanish except those corresponding to proper [t]-colorings of G,
which become equal to 1. Thus X(G; x) reduces to χ(G; t) under this substitution, so
the chromatic symmetric function is indeed a generalization of the chromatic polyno-
mial.

To describe the analogue of Lemma 1.1 in this context, we must introduce a partic-
ular basis for the ring of symmetric functions, the power sum symmetric functions. All
bases of the ring of symmetric functions can be indexed by integer partitions, and these
are no exception. Suppose that λ = (λ1, . . . , λ�) is a partition of the positive integer n,
meaning that the λi are positive integers called parts satisfying λ1 + · · · + λ� = n and
λ1 ≥ · · · ≥ λ�. We define pλ = pλ(x) as the product

pλ = pλ1 pλ2 · · ·pλ�
where, for a positive integer k,

pk = xk1 + xk2 + xk3 + · · · .
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For example,

p(3,1) = p3p1 = (x3
1 + x3

2 + x3
3 + · · · )(x1 + x2 + x3 + · · · ).

Finally, for a spanning subgraph S ⊆ E of the graph G = (V ,E), we let λ(S)
denote the integer partition defined by listing the number of vertices in each component
of S in weakly decreasing order, so λ(S) is a partition of |V | into c(S) parts. For
example, the spanning subgraph shown on the right of Figure 1 has λ(S) = (3, 1). We
then have the following analogue of Lemma 1.1.

Lemma 1.2. For every graph G = (V ,E) and spanning subgraph S ⊆ E, we have

∑
κ

xκ = pλ(S),

where the sum is over all P-colorings ofG that are monochromatic on the components
of S.

Proof. The symmetric function for monochromatic colorings of a component with k
vertices is pk. Since each component of S may be colored independently, the product
of the pk for all parts k of λ accounts for every coloring that is monochromatic on the
components of S.

We could have established Lemma 1.2 first and then derived Lemma 1.1 from it by
substitution as previously described. Indeed, throughout this article we present results
in pairs like this where the first is a specialization of the second. However, instead
of establishing the first from the second by substitution, we establish the second by
adapting the bijection used to prove the first. These adaptations are quite minor. The
only differences in the symmetric function case are that the set of colorings is infinite,
and that we have a weight function that associates a monomial with each coloring. The
cancellation we desire, which results in the equality

∑
s∈S

sgn(s)wt(s) =
∑
s∈Fix ι

wt(s),

still holds so long as the number of elements in S of a given weight is finite and ι is
weight-preserving, meaning that wt(s) = wt(ι(s)) for all s ∈ S .

With this preparation complete, we are ready to construct our bijective proofs. In
Section 2, we show how χ(G; t) and X(G; x) can both be expressed as sums over all
spanning subgraphs ofG. Then in Section 3, we show (using a restriction of the bijec-
tion from Section 2) how they can both be expressed as sums over only those spanning
subgraphs without broken circuits. Finally, in Sections 4 and 5 we give bijective proofs
of Stanley’s results linking χ(G; t) and X(G; x) to acyclic orientations of graphs. It
should be noted that these two sections are inspired by the work of Blass and Sagan [6].
However, our approach differs from theirs in several respects. First, we treat both the
chromatic polynomial and the chromatic symmetric function while they only consid-
ered the former (the latter not having been defined when [6] was written). Second, we
give an explicit definition of the inverse of the bijection used in Section 4, while they
only described one direction and then showed it was one-to-one and onto. Finally, we
establish Stanley’s theorem on acyclic orientations and compatible colorings for all
negative values of t in Section 5, whereas Blass and Sagan only considered the case of
t = −1.
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2. ARBITRARY SPANNING SUBGRAPHS. Both χ(G; t) and X(G; x) can be
expressed as sums over the spanning subgraphs of G. In the case of χ(G; t), this
expression is given by the following result of Birkhoff, from which it follows immedi-
ately that the chromatic polynomial is indeed a polynomial.

Theorem 2.1 (Birkhoff [4]). For every graph G = (V ,E) and every positive integer
t , we have

χ(G; t) =
∑
S⊆E

(−1)|S|t c(S).

To give a bijective proof of this result, we start by giving a combinatorial interpre-
tation to the right-hand side. If S ⊆ E is a spanning subgraph of G, then Lemma 1.1
shows the number of [t]-colorings of V that are monochromatic on the components of
S is t c(S). Thus the right-hand side of Theorem 2.1 can be written as

∑
(S, κ)∈S

(−1)|S|,

where S is the set of pairs defined by

S = {(S, κ) : S ⊆ E and κ : V → [t] is monochromatic on the components of S}.

At this point the reader is welcome to derive Theorem 2.1 by inclusion–exclusion (it
won’t be difficult), but to practice for our later proofs, we employ a sign-reversing
involution ι.

For the rest of this proof—in fact, for the rest of the article—it is necessary to fix
a total ordering on the edges of G. With this order fixed, we describe the edges of G
as being first, last, earlier, or later, referring to their positions in this order. We also
define a sign function on the pairs in S by

sgn(S, κ) = (−1)|S|,

so

∑
S⊆E

(−1)|S|t c(S) =
∑

(S, κ)∈S
sgn(S, κ).

We may now define ι, which is the star of the rest of this section and the next. If κ is
a proper coloring, we define ι(S, κ) = (S, κ). As remarked earlier, this case can only
occur if S = ∅, because otherwise S must have at least one nontrivial component and
thus the proper coloring κ cannot be monochromatic on its components.

Now suppose that κ has at least one monochromatic edge. We take e to be the last
such edge (in the ordering on the edges of G fixed above) and define

ι(S, κ) = (S 	 e, κ),

where 	 is the symmetric difference operator, removing e from S if it is present and
adding it to S otherwise.
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Our proof of Theorem 2.1 is completed with the following proposition, which
implies that

∑
S⊆E

(−1)|S|t c(S) =
∑

(S, κ)∈S
sgn(S, κ) = |Fix ι| = χ(G; t).

Proposition 2.2. The mapping ι is a sign-reversing involution on S with

Fix ι = {(∅, κ) ∈ S | κ is a proper coloring of G}.

Proof. First we verify that ι maps S to S . This is clear if κ is a proper coloring, so
we must show that if (S, κ) ∈ S , where κ is not proper, then (S 	 e, κ) ∈ S , i.e.,
κ is still monochromatic on the components of S 	 e. If S 	 e = S − e, then this
holds because each component of S − e is contained in a component of S. If S 	 e =
S ∪ e, then either e connects two vertices of a component of S, or two components
of S were merged by the addition of the edge e. In the former case, κ is clearly still
monochromatic on components. In the latter case, since κ is monochromatic on e, κ
must have been the same color on both components that were merged. Thus in either
case, κ is monochromatic on the components of S 	 e, so ι(S, κ) ∈ S for all (S, κ) ∈
S .

The fixed points of ι are precisely the pairs (∅, κ), where κ is a proper [t]-coloring
of S. Moreover, these fixed points have positive sign, as desired. On the other elements
of S , ι is sign-reversing because |S 	 e| = |S| ± 1. Finally, ι is an involution because
κ , and thus the definition of the edge e, does not change when passing from (S, κ) to
ι(S, κ).

The proof of the symmetric function analogue requires only minor modifications.

Theorem 2.3 (Stanley [15, Theorem 2.5]). For every graph G = (V ,E), we have

X(G; x) =
∑
S⊆E

(−1)|S|pλ(S).

Proof. Let S denote the set of pairs (S, κ), where S ⊆ E and κ is a P-coloring of G
that is monochromatic on the components of S. Since ι does not depend on the range
of κ , its definition extends to pairs where κ has range P without modification, as do
both the statement and the proof of Proposition 2.2.

By defining the weight of a pair (S, κ) ∈ S as

wt(S, κ) = xκ

and appealing to Lemma 1.2, we see that

∑
S⊆E

(−1)|S|pλ(S) =
∑

(S, κ)∈S
sgn(S, κ)wt(S, κ).

Since wt(S, κ) depends only on κ , which does not change in passing from (S, κ) to
ι(S, κ), it follows that ι is weight-preserving. Because ι is (still) sign-reversing, every
term in the sum on the right-hand side of the equation above cancels except those terms
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Figure 2. A graph with ordered edges e1 < e2 < e3 < e4, a cycle in this graph, the corresponding broken
circuit, and an NBC spanning subgraph (with colors).

corresponding to pairs (∅, κ) ∈ S , where κ is a proper P-coloring of G, and thus

∑
S⊆E

(−1)|S|pλ(S) =
∑

(S, κ)∈S
sgn(S, κ)wt(S, κ) =

∑
(S, κ)∈Fix ι

wt(S, κ) = X(G; x),

proving the theorem.

3. NBC SPANNING SUBGRAPHS. In 1932, Whitney [21] showed that many of
the terms in Theorem 2.1 cancel with each other. The terms of the summation that
remain after this pruning are precisely those that correspond to spanning subgraphs
without broken circuits. In this section, we show how this cancellation can be seen
from our bijective proof of Theorem 2.1, and we also establish Stanley’s symmetric
function analogue of Whitney’s result.

First we must define broken circuits. A walk from the vertex v0 to the vertex vk
in the graph G = (V ,E) is an alternating sequence v0, e1, v1, e2, v2, . . . , ek, vk of
vertices and edges such that for all i ∈ [k] we have ei = vi−1vi ∈ E. This walk is a
path if it does not repeat any vertices or edges, except possibly the first and the last
vertices. Note that we allow both walks and paths to be edgeless. A walk or a path
is closed if v0 = vk, that is, if its first and last vertices are the same. A cycle, also
known as a circuit, is a closed path with more than one vertex. Just as we conflate
spanning subgraphs with their edge sets, we also conflate paths and cycles with their
edge sets. For example, the graph G in Figure 2 has a unique cycle which we denote
as C = {e1, e2, e3}. Graphs not containing cycles can be referred to as acyclic, but are
more commonly called forests.

Given a fixed total ordering on the edges E ofG, a broken circuit is a subset B ⊆ E
of the form

B = C −maxC

where C is a cycle and maxC is the last edge of C. For example, if the edges of
the graph in Figure 2 are ordered e1 < e2 < e3 < e4, then the cycle C = {e1, e2, e3}
corresponds to the broken circuit B = {e1, e2}. A spanning subgraph S ⊆ E is NBC
(short for no broken circuits) if it does not contain any broken circuits. It is frequently
helpful to note that NBC spanning subgraphs are necessarily forests; since they don’t
contain broken circuits, they certainly don’t contain cycles (as every cycle contains its
own broken circuit). The rightmost picture in Figure 2 represents an NBC spanning
subgraph (together with colors that the reader may ignore for now).

Consider a particular pair (S, κ) from the set S in the proof of Theorem 2.1, so S is
an arbitrary spanning subgraph ofG and κ is monochromatic on the components of S.
Suppose that S contains a broken circuit, say B = C −maxC. Since the vertices of C
lie in the same component of S (because B ⊆ S), it follows that κ is monochromatic
on the vertices of C, and thus in particular on the edge maxC. Therefore, if S contains

June–July 2021] BIJECTIVE PROOFS OF PROPER COLORING THEOREMS 489



the broken circuit B, then we have ι(S, κ) = (S 	 e, κ) for an edge e that is either
equal to maxC or occurs after it in the total ordering on edges of G. It follows that if
the broken circuit B is contained in S, then it is also contained in S 	 e. We record this
fact below.

Proposition 3.1. The mapping ι restricts to a fixed-point-free sign-reversing involution
on the set of pairs (S, κ), where S is a spanning subgraph containing a broken circuit
and κ is monochromatic on the components of S.

This result shows that the contributions of all such pairs cancel in the summation
in Theorem 2.1, leaving us with only the NBC spanning subgraphs. This establishes
Whitney’s no broken circuits theorem.

Theorem 3.2 (Whitney [21, Section 7]). For every graph G = (V ,E), every total
ordering of its edges, and every positive integer t , we have

χ(G; t) =
∑
S⊆E,
S is NBC

(−1)|S|t c(S).

The symmetric function analogue of the no broken circuit theorem follows imme-
diately from the observation, made in the proof of Lemma 2.3, that the quantity
wt(S, κ) = xκ is preserved by ι because κ does not change.

Theorem 3.3 (Stanley [15, Theorem 2.9]). For every graph G = (V ,E) and every
total ordering of its edges, we have

X(G; x) =
∑
S⊆E,
S is NBC

(−1)|S|pλ(S).

4. ACYCLIC ORIENTATIONS. Thus far we have only defined χ(G; t) for positive
integers t , where Theorem 2.1 shows that it is equal to a polynomial. For the rest of
the article, we take this polynomial as the definition of χ(G; t). With this change, we
may evaluate χ(G; t) at negative values of t . Our first such evaluation, below, is a
consequence of Whitney’s no broken circuits theorem.

Corollary 4.1. For every graph G = (V ,E), every total ordering of its edges, and
every positive integer t , we have

χ(G;−t) = (−1)|V |
∑
S⊆E,
S is NBC

t c(S).

Proof. Theorem 3.2 shows us that

χ(G;−t) =
∑
S⊆E,
S is NBC

(−1)|S|+c(S)t c(S).

If S is an NBC spanning subgraph of G, then since it must be a forest, it has |V | − |S|
components. The result follows immediately.

490 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 128



Figure 3. A graph, an acyclic orientation, and a compatible coloring (which can be ignored until Section 5).

Stanley has established a beautiful interpretation of the value of χ(G; t) for neg-
ative integers t . Indeed, this relationship is one of the most striking examples of the
phenomenon he later termed combinatorial reciprocity [17]. In this section, we give a
bijective proof of this result in the special case of t = −1, following in the footsteps of
Blass and Sagan [6]. In the next section, we demonstrate how this special case implies
the theorem for all negative values of t , and also establish the analogous theorem for
the chromatic symmetric function.

Stanley’s interpretation of χ(G; t) for negative t involves orientations of G, and so
we must introduce oriented (or directed) edges, which we call arcs. Given a pair of
distinct vertices u and v, there are two possible arcs between them, which we denote
by −→uv = ←−vu and ←−uv = −→vu. An orientation of the (undirected) graph G = (V ,E) is
obtained by replacing each edge uv ∈ E by one of the arcs −→uv or −→vu. Each such orien-
tation is then an oriented graph, which we denote by O = (V ,A), where A is the set
of arcs. Figure 3 shows a graph on the left and one of its orientations in the center.

The bijection employed in this section proceeds edge-by-edge, so in the interme-
diate stages our graphs have both edges and arcs. It is therefore convenient to set our
proof in the context of mixed graphs, whose study dates to a 1966 paper of Harary and
Palmer [9]. A mixed graph is a triple M = (V ,E,A), where V is a set of vertices, E
is a set of edges, and A is a set of arcs. To eliminate the possibility of confusion, we
briefly adapt our definitions of walks, paths, and cycles to this context.

A walk from v0 to vk in the mixed graph M = (V ,E,A) is an alternating sequence
v0, c1, v1, c2, v2, . . . , ck, vk of vertices and edges/arcs such that for all i ∈ [k], either
ci = vi−1vi ∈ E or ci = −−−→vi−1vi ∈ A. We say that this walk traverses each of these
edges and arcs. We further call this walk a path if it does not repeat any vertices, edges,
or arcs, except possibly the first and last vertices. For an example of this definition, the
sequence u, uv, v, vu, u is not considered to be a path because it repeats the edge uv,
while the sequence u, −→uv, v, vu, u is considered to be a path.

We say that a walk is closed if its first and last vertices are the same, and we call
a closed path a cycle if it has more than one vertex. For example, the sequence u, −→uv,
v, vu, u of the previous paragraph is a cycle. Finally, a mixed graph is acyclic if it
does not contain a cycle. For example, the mixed graph (which also happens to be an
oriented graph) in the center of Figure 3 is acyclic.

One of the basic lemmas of graph theory is that if a graph contains a walk between
two vertices, then it also contains a path between them (to prove this, simply shorten
the walk each time it repeats a vertex). For mixed graphs, we have the following result
whose proof is similar in spirit.

Proposition 4.2. If a mixed graph contains a closed walk that traverses at least one
arc, then it also contains a cycle.

Proof. Suppose that the proposition is not true, so there is an acyclic mixed graph M
that contains a closed walk traversing at least one arc. Let W denote the shortest such
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walk inM , and label its vertices and edges/arcs as v0, c1, v1, c2, v2, . . . , ck, vk. SinceW
is closed, we have v0 = vk, and sinceW is not a cycle itself, we must also have vi = vj
for indices i < j satisfying {i, j} �= {0, k}. ThusW contains two shorter closed walks:

vi, ci+1, vi+1, . . . , cj , vj

and

vj , cj+1, vj+1, . . . , ck, vk, c1, v1, . . . , ci, vi .

These walks together traverse all edges and arcs traversed byW , so at least one of them
must traverse an arc. This, however, contradicts the minimality of W , completing the
proof.

Stanley presented the following result as a corollary of Theorem 5.1. However, we
appeal to Proposition 4.3 in our proof of Theorem 5.1.

Proposition 4.3 (Stanley [16, Corollary 1.3]). For every graph G = (V ,E),
(−1)|V |χ(G;−1) = the number of acyclic orientations of G.

Proof. Fix a total ordering e1 < e2 < · · · < em of the edges of G. Corollary 4.1 then
shows that

χ(G;−1) = (−1)|V |
∑
S⊆E,
S is NBC

1,

or in words, that (−1)|V |χ(G;−1) is equal to the number of NBC spanning subgraphs
of G.

It therefore suffices to exhibit a bijection between the NBC spanning subgraphs
of G and its acyclic orientations. Define Mi to be the set of acyclic mixed graphs
comprised of

• an NBC subset of the edges {e1, . . . , ei} and
• an orientation of the edges {ei+1, . . . , em}.

Recall that an NBC subset of edges is automatically acyclic. Thus M0 and Mm con-
sist of the acyclic orientations and NBC spanning subgraphs of G, respectively. We
establish the proposition by constructing bijections φi : Mi−1 →Mi for all indices
1 ≤ i ≤ m.

To define these bijections, we need to distinguish between the two orientations of
each edge of G. How we make this distinction is immaterial, so we simply fix one
orientation of each edge ei as normal, denoted by −→ei , and call the opposite orientation←−
ei abnormal. We may now define φi : Mi−1 →Mi . Take M ∈Mi−1 and suppose
that the edge ei of G appears as the arc ai in M . The mixed graph φi(M) is obtained
by either unorienting ai (replacing the arc ai with the edge ei) or removing it (deleting
the arc ai). The rules by which we make this choice are as follows. We unorient ai if
both

(A) ai is the normal orientation of ei and
(B) unorienting ai does not create a cycle.
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Figure 4. Applying the mappings φ1, φ2, φ3, and φ4 to an acyclic orientation of the graph shown in the top
left, where the normal orientations of the edges are as shown in the top right.

Otherwise, we remove ai . An example of applying the mappings φi is shown in Fig-
ure 4, where the label above each arrow indicates which of (A) or (B) was violated if
the arc was removed (there is no such label if the arc satisfied both (A) and (B) and
thus was unoriented instead).

We must check that φi produces members of Mi . It follows immediately thatM ′ =
φi(M) is acyclic because rule (B) prevents the creation of a cycle. However, how does
φi avoid creating broken circuits? The answer is that, were M ′ to contain a broken
circuit, then—since M ∈Mi−1 and thus does not itself contain a broken circuit—the
last two edges in the corresponding cycle of G must be ei and ej for some j > i.
However,M contains some orientation of ej , so unorienting ai would result in a cycle.
Therefore rule (B) ensures that ai is removed, and thus M ′ cannot contain a broken
circuit. This verifies that M ′ ∈Mi .

Our proof is completed by constructing the inverse of φi , which we denote by
ψi : Mi →Mi−1. Given a mixed graph M ′ ∈Mi , the mixed graph M = ψi(M ′)
is obtained by adding one of the orientations of edge ei to M ′ (and removing ei if it is
present in M ′). We give ei the abnormal orientation if both

(A′) ei is not an edge of M ′ and

(B′) adding←−ei to M ′ does not create a cycle.

Otherwise, we give ei the normal orientation.
Again we must check thatM ∈Mi−1. Orienting an edge cannot causeM to contain

an NBC set, so we need only check that M is acyclic. This follows from (B′) if ei was
oriented abnormally. If ei was oriented normally, then either (A′) or (B′) was violated.
If it was (A′) that was violated, then ei ∈ M ′, and M is acyclic because orienting an
edge that is already present cannot create a cycle.

This leaves us to consider the case where ei was oriented normally because condi-
tion (B′) was violated. Suppose←−ei = ←−uv, so the fact that condition (B′) was violated
means that M ′ contains a path from u to v, which we denote by P . If P were to con-
sist entirely of edges, then P ⊆ {e1, e2, . . . , ei−1} because M ′ ∈Mi . However, in this
case ei is the greatest edge of the cycle P ∪ ei of G, so P is a broken circuit. As this
contradicts our assumption that M ′ ∈Mi , it follows that P must traverse at least one
arc. Therefore, if M ′ were to also contain a path from v to u, then this path together
with P would be a closed walk that traversed at least one arc. Proposition 4.2 would
then imply that M ′ contains a cycle, a contradiction. We may therefore conclude that
M ′ does not contain a path from v to u. Thus orienting ei as −→ei = −→uv, as it is oriented
in M = ψi(M ′), does not create a cycle.
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It remains only to check that ψi ◦ φi and φi ◦ψi are the identity mappings on Mi−1

and Mi , respectively. We show only one of these, as the other is similar. Consider
ψi(φi(M)), where M ∈Mi−1, and let M ′ = φi(M). There are two cases, depending
on whether M ′ is obtained from M by unorienting ei or by removing it. In the first
case ei was oriented normally in M and ei is an edge of M ′. Thus (A′) is violated and
ψ(M ′) is obtained by orienting ei normally, as desired.

For the second case, suppose that ei was removed, so either (A) or (B) was violated.
If (A) was violated, then ei was abnormally oriented in M and we must show that
ψi(M

′) adds the arc back in that orientation, or in other words, that both (A′) and (B′)
are satisfied. We know that (A′) is satisfied because ei was removed from M due to its
abnormal orientation. We also see that (B′) holds because orienting ei as←−ei results in
the mixed graph M which was assumed to be acyclic. For the final subcase, assume
that (A) holds but (B) does not. This means that ei was oriented normally inM but was
removed because (B) was violated. Thus the cycle that violates (B) must be created by
the possibility of traversing ei in its abnormal orientation since, by assumption, the
normal orientation of ei is part of M which is acyclic. In this case (B′) is violated, and
ei is added back to M ′ in its normal orientation, as desired.

5. MULTI-COLORED ACYCLIC ORIENTATIONS. Proposition 4.3 is a conse-
quence of a more general result in Stanley’s 1973 paper [16]. Here, by adapting an idea
essentially due to Vo [20, Section 3], we show how this more general result follows
bijectively from Proposition 4.3, and then establish the chromatic symmetric function
analogue. Observe that it is not at all clear algebraically that Proposition 4.3 implies
the more general Theorem 5.1, but viewing the results combinatorially makes this
implication possible.

Suppose that O = (V ,A) is an orientation of the graph G = (V ,E) and that κ is a
coloring of G (by [t] or by P). We say that O and κ are compatible if

−→
uv ∈ A implies κ(u) ≤ κ(v),

that is, if all the arcs of O point in the direction of weakly increasing values of κ . It is
convenient to display such pairs by labeling the vertices of O with their values under
κ . Using this convention, we see a compatible pair on the right in Figure 3. We can
now state the generalization of Proposition 4.3 to all negative values of t .

Theorem 5.1 (Stanley [16, Theorem 1.2]). For every graph G = (V ,E) and every
positive integer t we have

(−1)|V |χ(G;−t) =
|{(O, κ) | O is an acyclic orientation of G and κ a compatible [t]-coloring}|.

Proof. Fix a total ordering of the edges of G so, by Corollary 4.1, we have

(−1)|V |χ(G;−t) =
∑
S⊆E,
S is NBC

t c(S).

Lemma 1.1 shows that this sum counts pairs (S, κ), where S is an NBC spanning
subgraph of G and κ is a [t]-coloring that is monochromatic on the components of S.
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We would like to construct a bijection between such pairs and pairs of the form (O, κ),
whereO is an acyclic orientation ofG and κ is a compatible [t]-coloring. To prove the
theorem, we construct, for every [t]-coloring κ of G, a bijection 	 between the sets

Oκ = {O : O is an acyclic orientation of G compatible with κ}, and

Sκ = {S : S ⊆ E is NBC and κ is monochromatic on the components of S}.
Note that when t = 1, there is only one coloring of G (the constant coloring), and

every acyclic orientation is compatible with this coloring. Thus in this case 	 must
restrict to a bijection from acyclic orientations of G to its NBC spanning subgraphs.
Indeed, we constructed just such a bijection in the previous section, although any such
bijection will do for our purposes here.

For each i ∈ [t], define

Vi = {v ∈ V | κ(v) = i},
and let Ei denote the set of (monochromatic) edges of G between vertices in Vi . Note
that E1 ∪ E2 ∪ · · · ∪ Et needn’t contain all of the edges of G, but for every S ∈ Sκ we
have

S ⊆ E1 ∪ E2 ∪ · · · ∪ Et
because κ is monochromatic on the components of S. Similarly, for each orientation
O ∈ Oκ , we know how the edges outside E1 ∪ E2 ∪ · · · ∪ Et are oriented because O
and κ are compatible. Indeed, any edge uv, where u ∈ Vi , v ∈ Vj , and i < j , must be
oriented as −→uv. Let C denote the set of these arcs.

We may now define 	. Take some orientation O ∈ Oκ , and for each i ∈ [t], let Oi

denote the sub-orientation consisting of all arcs of O between vertices of color i, so
Oi is an orientation of the spanning subgraph Ei . Because we are assuming Proposi-
tion 4.3, we know that for each Ei , there is a bijection from the acyclic orientations of
Ei to its NBC spanning subgraphs. Let this bijection be denoted by φ(i). Thus φ(i)(Oi)

is an NBC spanning subgraph ofEi for every i ∈ [t]. We may now define	(O) simply
by

	(O) = φ(1)(O1) ∪ φ(2)(O2) ∪ · · · ∪ φ(t)(Ot).

Note that the components of φ(i)(Oi) are subsets of Ei . This implies that κ is
monochromatic on the components of	(O). This fact also allows us to see that	(O)
is an NBC spanning subgraph—if 	(O) were to contain a broken circuit, then that
broken circuit would lie in a single component, and thus it would be contained in
φ(i)(Oi) for some i, but this is a contradiction. It follows that 	(O) ∈ Sκ .

Next we construct the inverse of	, which we call
. To define it, consider an NBC
spanning subgraph S ∈ Sκ . Because κ is monochromatic on the components of S, we
know that S ⊆ E1 ∪ E2 ∪ · · · ∪ Et . For each i ∈ [t], let Si = S ∩ Ei , so Si is an NBC
spanning subgraph of Ei . For each i ∈ [t], let ψ(i) denote the inverse of the bijection
φ(i). We then define 
(S) by


(S) = C ∪ ψ(1)(S1) ∪ ψ(2)(S2) ∪ · · · ∪ ψ(t)(St )

where C is the set of arcs defined earlier (whose orientations are determined by com-
patibility).
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We need to make sure that 
(S) is acyclic. Suppose, toward a contradiction, that
this orientation contains a cycle. The vertices visited by this cycle cannot all have the
same color since each ψ(i)(Si) is acyclic. Thus we may label the vertices visited by
the cycle as v0, v1, v2, . . . , vk = v0, where κ(v0) < κ(v1). However, the fact that κ is
compatible with this orientation implies that

κ(v0) < κ(v1) ≤ κ(v2) ≤ · · · ≤ κ(vk) = κ(v0).

This contradiction—that κ(v0) < κ(v0)—establishes that the orientation is acyclic,
showing that 
(S) ∈ Oκ . It follows that 	 is a bijection with inverse 
 since the
analogous statement is true of the φ(i) and ψ(i). This completes the proof.

To state the symmetric function analogue of Theorem 5.1, we first need to introduce
a well-known involution ω on the ring of symmetric functions. When λ = (λ1, . . . , λ�)

is a partition of n into � parts, we define

ω(pλ) = (−1)n−�pλ.

We then extend ω to the entire ring linearly.

Theorem 5.2 (Stanley [15, Theorem 4.2]). For every graph G, we have

ω(X(G; x)) =
∑
(O, κ)

xκ ,

where the sum is over all pairs (O, κ), where O is an acyclic orientation of G that is
compatible with the P-coloring κ .

Proof. From Theorem 3.3 we have that

X(G; x) =
∑
S⊆E,
S is NBC

(−1)|S|pλ(S).

All spanning subgraphs S appearing in this sum are forests (because they are NBC), so
λ(S) is a partition of |V | into |V | − |S| parts. Thus, applying ω to the equation above
yields

ω(X(G; x)) =
∑
S⊆E,
S is NBC

(−1)|S|(−1)|V |−(|V |−|S|)pλ(S) =
∑
S⊆E,
S is NBC

pλ(S).

By Lemma 1.2, the right-hand side of this equation is the weight generating function
for pairs (S, κ), where S is an NBC set and κ is monochromatic on the components
of S. Since the bijection 
 of the previous proof preserves colorings, it also preserves
the quantity xκ , so this bijection shows that

∑
S⊆E,
S is NBC

pλ(S) =
∑
(O, κ)

xκ ,

finishing the proof of the theorem.
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Figure 5. From left to right, the butterfly (or bowtie), the kite, the net, and X169.

6. CONCLUDING REMARKS. Even after more than a century of study, several
questions about the chromatic polynomial remain open. To name a particularly natu-
ral and tantalizing one, which was raised by Read in his 1968 survey [14, Section 9]
and then again (independently, it seems) by Wilf [22] eight years later: which poly-
nomials are chromatic polynomials? Of course, the analogous question for chromatic
symmetric functions is just as natural.

Although the problem of characterizing the chromatic polynomials remains
unsolved, we at least have a description of their coefficients via Theorem 3.2. In par-
ticular, since every NBC set S is a forest, if |V | = n and |S| = k, then c(S) = n− k.
Thus Whitney’s theorem shows that

χ(G; t) =
∑
k≥0

(−1)kakt
n−k

where ak is the number of NBC spanning subgraphs of G with k edges. One can now
ask if the coefficient sequence a0, a1, . . . , an has any interesting properties. Call such
a sequence of real numbers log-concave if

a2
k ≥ ak−1ak+1

for all 0 < k < n. Log-concave sequences abound in combinatorics, algebra, and
geometry, as can be seen from the survey articles of Stanley [19], Brenti [8], and
Brändén [7]. In 2012, Huh [11] stunned the combinatorial community by using deep
results from algebraic geometry to prove that the coefficient sequence of χ(G; t) is
always log-concave. A weaker property had been conjectured by Read [14] in 1968.

As we have seen, mixed graphs arise naturally in the study of the chromatic poly-
nomial. Beck, Bogart, and Pham [2] have extended the definition of chromatic polyno-
mials to this context. Specifically, they define the strong chromatic polynomial of the
mixed graph G = (V ,E,A) to be the number of [t]-colorings κ satisfying

(a) κ(u) �= κ(v) if uv ∈ E and
(b) κ(u) < κ(v) if −→uv ∈ A.

They show that this is a polynomial in t . They also prove an analogue of Proposi-
tion 4.3 for these polynomials, phrased in the language of hyperplane arrangements.
(Given any graph G with vertex set [n], one associates a set of hyperplanes where
ij ∈ E corresponds to the hyperplane xi = xj . It is then easy to see that the acyclic
orientations of G correspond to the regions obtained by removing the hyperplanes
from R

n.) Beck et al. [1] later introduced the weak chromatic polynomial of a mixed
graph, which counts colorings satisfying the weak version of the inequality in (b).
They establish a mixed graph analogue of Theorem 5.1 for these polynomials.
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Finally, we would be remiss if we did not mention a question of Stanley’s that
remains open despite significant interest. First, in terms of the definitions we have
established, a tree is a forest with a single connected component. For any tree T on
n vertices, it is easy to see that χ(T ; t) = t (t − 1)n−1, so we say that the chromatic
polynomial does not distinguish trees. However, Stanley [15, p. 170] asked whether
the opposite is true for the chromatic symmetric function. Specifically, if T1 and T2

are nonisomorphic trees, is it true that X(T1; x) �= X(T2; x)? Stanley repeated this
question as Exercise 7.47.b in Volume 2 of Enumerative Combinatorics [18]. It has
since become known as the tree conjecture. A series of researchers have verified the
tree conjecture by computer for small trees; at present the record belongs to Heil and
Ji [10], who have shown that the conjecture holds for all trees on 29 or fewer vertices.
If true, the tree conjecture would imply that the chromatic symmetric function is a
complete tree invariant.

Note that the chromatic symmetric function does not distinguish all graphs. The
example Stanley [15] gives is that the chromatic symmetric functions of the butterfly
and the kite are equal (see Figure 5). Orellana and Scott [13] have observed that the
chromatic symmetric function also does not distinguish unicyclic graphs (those with
a single cycle). The example they present is the net and the graph that we refer to—
following the Information System on Graph Classes and their Inclusions [12] for lack
of a better name—as X169 (also shown in Figure 5).

REFERENCES

[1] Beck, M., Blado, D., Crawford, J., Jean-Louis, T., Young, M. (2015). On weak chromatic polynomials
of mixed graphs. Graphs Combin. 31(1): 91–98. doi.org/10.1007/s00373-013-1381-1

[2] Beck, M., Bogart, T., Pham, T. (2012) Enumeration of Golomb rulers and acyclic orientations of mixed
graphs. Electron. J. Combin. 19(3): Paper 42, 13pp. doi.org/10.37236/2741

[3] Biggs, N. (1993). Algebraic Graph Theory, 2nd ed. Cambridge: Cambridge Univ. Press. doi.org/
10.1017/CBO9780511608704

[4] Birkhoff, G. (1912/13). A determinant formula for the number of ways of coloring a map. Ann. Math.
(2). 14(1–4): 42–46. doi.org/10.2307/1967597

[5] Birkhoff, G., Lewis, D. (1946). Chromatic polynomials. Trans. Amer. Math. Soc. 60(3): 355–451.
doi.org/10.2307/1990348

[6] Blass, A., Sagan, B. (1986). Bijective proofs of two broken circuit theorems. J. Graph Theory. 10(1):
15–21. doi.org/10.1002/jgt.3190100104
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100 Years Ago This Month in The American Mathematical Monthly
Edited by Vadim Ponomarenko

Of the five thousand dollars [$75K in 2021 dollars —Eds.] set aside for dis-
tribution in 1921 by the Committee on Grants of the American Association for the
Advancement of Science, the following amounts were assigned for work in the fields
of mathematics and astronomy: one hundred and fifty dollars to Professor Solomon
Lefschetz, of the University of Kansas, in support of his work in algebraic geom-
etry; two hundred dollars to Dr. Sebastian Albrecht, of Dudley Observatory,
Albany, N. Y., in support of his investigation of the variation of wave-length of lines
in different types of stellar spectra; and two hundred dollars to Miss Caroline E.
Furness, of Vassar College Observatory, for assistance in the measurement and
reduction of photographic plates.

Professor Albert Einstein arrived in the United States on April 2. Although he
came primarily in the interests of the Zionist movement, he has been giving scientific
lectures, in German, at various universities. On April 15 he lectured at Columbia
University; on April 18, 19, 20, and 21 at the College of the City of New York; on
May 3, 4, and 5 at the University of Chicago, and on May 9, 10, 11, 12, and 13 at
Princeton University.

—Excerpted from “Notes and News” (1921). 28(6/7): 285–292.
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