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Bipartite projections have become a common way to measure spatial networks. They 
are now used in many subfields of geography, and are among the most common ways to 
measure the world city network, where intercity links are inferred from firm co- location 
patterns. Bipartite projections are attractive because a network can be indirectly inferred 
from readily available data. However, spatial bipartite projections are difficult to analyze 
because the links in these networks are weighted, and larger weights do not necessarily 
indicate stronger or more important connections. Methods for extracting the backbone of 
bipartite projections offer a solution by using statistical models for identifying the links 
that have statistically significant weights. In this article, we introduce the open- source 
backbone R package, which implements several backbone models, and demonstrate its 
key features by using it to measure a world city network.

Introduction

Spatial analysis and quantitative geography have a long history of using network analysis (e.g., 
Haggett and Chorley 1969; Neal 2013b; Smith and Timberlake 1995; Ter Wal and Boschma 
2009). Although there are many ways to measure spatial networks, bipartite projections have 
emerged as one of the most widely used approaches. A bipartite projection defines a network 
among a set of nodes (e.g., cities, countries) in which the strength of the connections between 
them is measured using their number of shared attributes (e.g., the number of firms located in 
two cities, the number of treaties signed by two counties). This approach has become a de facto 
method for not only measuring the world city networks (Taylor 2001; Taylor and Derudder 
2016), but is also used in other areas of geography at multiple geographic scales: at the mac-
roscale bipartite projections measure networks of international relations (e.g., Hafner- Burton, 
Kahler, and Montgomery 2009), at the microscale they measure neighborhood social networks 
(e.g., Browning et al. 2017), and at a meta- scale they have been used to study the structure of 
schools of thought in geography (e.g., Peris, Meijers, and van Ham, 2018). Despite their wide-
spread adoption, using bipartite projections to measure spatial networks is not always straight-
forward. In this article, we introduce and demonstrate the open- source backbone R package, 
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which is a general- purpose set of commands for constructing bipartite projections, focusing on 
its applications for spatial networks.

The article is organized into four sections. In the first section, we provide a brief introduc-
tion to bipartite projections, reviewing their use in spatial analysis, noting key methodological 
challenges, and describing backbones as a solution. In the second section, we introduce the 
backbone package, providing an overview of its syntax and functions. In the third section, we 
provide a replicable demonstration of the backbone package in the context of spatial analy-
sis, using it to examine the world city network and identify the most central cities. Finally, we 
conclude in the fourth section by providing recommendations for using bipartite projections to 
measure spatial networks.

Background

Introduction to bipartite networks and projections
A (unipartite) network is a collection of objects, called nodes, and connections, called edges, 
between pairs of nodes. It can be represented visually as a graph or sociogram, where shapes 
represent nodes, which are connected by lines representing edges. It can also be represented 
mathematically as a square matrix, where the rows and columns represent nodes, and the cells 
indicate whether (or how strong) the edge is connecting the respective row and column nodes.

A bipartite network is a type of network composed of two sets of nodes, which following 
Neal (2014a) we call agents and artifacts, in which an edge can only connect an agent to an arti-
fact. Bipartite networks are often also called two- mode networks because they contain two types 
of nodes, or affiliation networks because they describe how agents are affiliated with artifacts. 
They can be represented visually as a graph or mathematically as a rectangular matrix B, where 
the rows represent agents, the columns represent artifacts, and cell Bij = 1 if agent i is connected 
to artifact j, and otherwise is 0.

A bipartite network can be transformed into a unipartite network via projection. The projec-
tion of a bipartite network is computed as P = BB

�, where B ′ indicates the transpose of B. So P 
is a symmetric square matrix, where the rows and columns represent the agents in B and cell Pij 
contains the number of artifacts shared by agents i and j for i≠j. Cell Pii contains the number of 
artifacts associated with agent i, but in practice is ignored in analysis.1

Fig. 1 illustrates a simple bipartite network (left) and its projection (right), each rep-
resented as both a graph (top) and matrix (bottom). The bipartite graph shows five agents 
(squares) and their connections to four artifacts (circles), while the bipartite matrix shows the 
pattern of agent– artifact connections using 0s and 1s. The row and column sums of the bipar-
tite matrix capture the total number of connections of each agent and artifact, respectively. The 
bipartite projection graph shows these five agents connected to each other, to the extent that 
they share artifacts. For example, A and B are connected because they share artifact 1, while 
C and E are connected twice (i.e., with an edge of weight 2) because they share both artifact 
3 and artifact 4. Notably, the fact that C is associated with artifact 2 plays no role in the pro-
jection because no other agent is associated with this artifact. The bipartite projection matrix 
shows the number of shared artifacts for each pair of agents. Notably, the diagonal cells in the 
projection matrix indicate each agent’s total number of artifacts (e.g., C is associated with 4 
artifacts in total), but are not represented in the projection graph and are ignored in subsequent 
network analysis.
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Bipartite projection networks in spatial analysis
Bipartite projections appear in many contexts (Vasques Filho and O’Neale 2020), including 
spatial analysis, where they can take two distinct forms depending on whether the agents 
or artifacts are spatial entities (i.e., locations). In the locations- as- agents approach, a spatial  
bipartite projection is a network of locations, such that a pair of locations is connected to the 
extent that they share artifacts. Calling it the “interlocking world city network model,” this is 
the approach that Taylor (2001) proposed and which launched a wave of research on world city 
networks: major cities (the agents, which are locations) are connected to the extent that they 
house branch offices of the same advanced producer services firms (e.g., finance, accounting, 
consulting; the artifacts). It rests on the logic that offices of the same firm must communicate 
and interact with one another, and therefore that when two cities have an office of the same 
firm, there is likely interaction between them. Spatial networks adopting the locations- as- 
agents approach to measurement via bipartite projection are quite common at multiple spatial 
scales, and have been used to measure networks among urban locations connected by twitter 
users (Poorthuis 2018), bus routes (Liu and Duan 2020), networks among cities connected by 
patents (Balland and Rigby 2017), banking syndicates (Pažitka, Wójcik, and Knight 2021), 
networks among countries connected by treaties (Hafner- Burton et al. 2009), trade (Straka, 
Caldarelli, and Saracco 2017), and corporate executives (Heemskerk, Fennema, and Carroll 
2016).

In the locations- as- artifacts approach, a spatial bipartite projection is a network of agents 
(often people or other social actors), such that a pair of agents is connected to the extent that they 
share locations. The locations- as- artifacts approach is less common in geography because the 
spatial units play only an instrumental role in the network, forging the links between agents, but 

Figure 1. Bipartite and bipartite projection networks
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do not appear in the bipartite projection network itself. However, it is common in sociological 
research, where the focus is on social networks emerging from spatial interactions. For exam-
ple, Browning et al. (2017) and Xi, Calder, and Browning (2020) use this approach to measure 
and study the social network among households in Los Angeles: households (the agents) are 
connected to the extent that they visit the same routine activity locations (e.g., school, work; the 
artifacts). This rests on the logic that places offer opportunities for casual encounters which lead 
to the formation of social bonds, and therefore when two households frequent the same places, 
they are more likely to interact with each other (Jacobs 1961). Hidalgo et al. (2007) adopted a 
similar locations- as- artifacts approach to derive a ‘product space’ in which export products were 
connected to the extent that they were exported by the same countries. This follows the logic that 
“if [the production of] two goods…require similar institutions, infrastructure, physical factors, 
technology, or some combination thereof, they will tend to be produced [in the same location],” 
and therefore, the spatial co- production of products indirectly captures their production technol-
ogy similarity (Hidalgo et al. 2007, p. 484).

There is an important link between these two approaches. When B is a bipartite network 
where the rows represent locations, then BB ′ will yield a locations- as- agents bipartite projection, 
while B ′

B will yield a locations- as- artifacts bipartite projection. Therefore, a single bipartite 
network can be studied from both perspectives. For example, although the world cities literature 
usually focuses on cities linked by sharing firms, some have simultaneously examined a network 
of firms linked by their co- location in cities (e.g., Neal 2008; Van Meeteren, Neal, and Derudder 
2016). Similarly, Straka et al. (2017) examined not only a network of countries linked by trading 
the same products, but also a network of products that are traded by the same countries.

The key advantage to measuring spatial networks using bipartite projections lies in the rel-
ative ease of data collection. For example, data about economic exchanges between cities may 
not be available from official government sources, and collecting such data directly is often 
impractical. However, data about where firms’ offices are located is readily available, usually on 
the firms’ own websites. Accordingly, bipartite projections offer a practical way for research-
ers to indirectly approximate a city- level economic network. Similarly, because social network 
analysis requires data from a population (not a sample) and is sensitive to missingness, it is often 
impractical to collect data on the social network among residents of a large city. However, data 
about the places residents visit or tweet about can be collected using routine surveys, remote 
sensing, and digital trace measures. Accordingly, bipartite projections also offer a practical way 
for researchers to indirectly approximate social networks in large geographic areas.

Challenges with bipartite projections
Although bipartite projections are promising for measuring spatial networks, they also pres-
ent some significant challenges. Some of these challenges are conceptual or theoretical. For  
example, bipartite projection allows any rectangular matrix of 0s and 1s to be transformed into a 
symmetric square matrix that resembles a network, but this does not necessarily mean it can be 
interpreted and analyzed as a network (Derudder 2020; Neal 2021; Nordlund 2004). The suit-
ability of a bipartite projection as an indirect approximation of a spatial network depends on the 
researcher’s ability to articulate a theory about why the sharing of artifacts suggests a connection 
between two locations, or about why the sharing of locations suggests a connection between two 
agents, and a description of the type of connection such a phenomenon represents. It is important 
to emphasize that in the absence of such a theory, bipartite projections are not appropriate for 
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measuring spatial networks. As a theoretical challenge, it is not resolvable through the use of 
open- source software or indeed by any methodological tools.

Determining whether or not using a bipartite projection is an appropriate way to measure a 
spatial network is rarely straightforward (Derudder 2020; Neal 2014b, 2021; Pažitka et al. 2021). 
However, for the sake of clarity, consider two contrasting cases. In the first case, a researcher 
collects data in the form of a binary rectangular matrix where the rows are countries, and the 
columns are colors. A cell in this matrix contains a 1 if the country’s flag contains the respective 
color (e.g., BUSA, red = 1 and BUSA, green = 0). The researcher then constructs a bipartite projec-
tion from these data and analyzes it as a network. Although this exercise is mathematically pos-
sible, it is unlikely that a network in which countries are connected by shared flag colors has any 
real meaning; this type of analysis should be avoided. In the second case, Taylor (2001) collects 
data on firm locations in cities, then constructs a bipartite projection and analyzes it as a network 
in which cities are connected to the extent that they share firms. To justify this measurement 
approach he explicitly articulates a theory, drawing on Sassen (1991), that multinational firms 
share information through their global office networks and therefore intra- firm office networks 
provide information about flows between cities. Although other researchers may disagree with 
this rationale (e.g., Pažitka et al. 2021), an explicit theory about the meaning of the network  
exists and can be evaluated; this type of analysis is the essence of science and should be  
pursued…with caution.

When a bipartite projection is a theoretically sound approach to measuring a spatial net-
work, the researcher must then confront several methodological challenges. A bipartite projec-
tion “transforms the problem of analysing a bipartite structure into the problem of analysing 
a weighted one, which is not easier” (Latapy, Magnien, and Del Vecchio 2008, p. 34– 35). As 
Fig. 1 illustrates, all bipartite projections are weighted networks, where the weights capture 
the number of artifacts shared by two agents. Although the analysis of any weighted network 
can be complex (Newman 2004), the analysis of a weighted bipartite projection is particularly 
difficult because larger edge weights do not necessarily indicate stronger or more important 
connections.

A standard solution to the challenge of analyzing a weighted bipartite projection has been to 
transform it into an unweighted network by applying a universal threshold: edges with weights 
above the threshold are kept, while weaker edges are discarded. However, this solution can 
distort the structure of the network. First, it ensures that “nodes with small [degree centrality] 
are systematically overlooked,” yielding a network focused only on the agents that are most 
well connected in the original bipartite network (Serrano, Boguná\xAD, and Vespignani 2009,  
p. 6484). This helps explain why many studies of world city networks focus on cities with strong 
connections such as New York and London, while cities with weaker connections are “off the 
map” (Robinson 2002). Second, it ensures that “even a random bipartite network –  one that 
has no particular structure built into it at all –  will be highly clustered” (Watts 2008, p. 128). 
This helps explain why world city networks almost always contain clusters or ‘cliques’ of cities 
(Derudder and Taylor 2005). Finally, some network structures, such as open triads (e.g., a trade 
circuit) and stars (e.g., a hub- and- spoke transportation arrangement) are not observable. This 
helps explain why trade brokerage is rarely observed in city networks measured using bipartite 
projection (Neal 2012), but is readily observable in city networks measured using other methods 
(Martinus et al. 2021).
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Backbones of bipartite projections
To overcome these challenges, it is necessary to extract the backbone of the weighted bipartite 
projection by using a statistical test to identify the most important (i.e., statistically significant) 
edges, which are preserved in an unweighted backbone network. The statistical tests used by dif-
ferent backbone models all aim to answer the same question: “Is the weight of the edge between 
two agents stronger than would be expected at random?” Answering this question involves com-
paring an edge’s observed weight to the distribution of weights it would have if some features of 
the original network were preserved, but the network was otherwise random.

A large class of such backbone models already exist for extracting the backbone of weighted 
networks that are not the product of a bipartite projection (e.g., Dianati 2016; Serrano et al. 2009). 
Such natively unipartite weighted networks arise frequently in spatial analysis, for example, in 
the form of transportation networks where the weights of edges directly capture flows from one 
location to another, and not (as they would in a bipartite projection) the number of shared arti-
facts. However, these models should not be used for extracting the backbone of bipartite projec-
tions because stronger edges in a bipartite projection are not necessarily more important. Instead, 
it is necessary to use backbone extraction models developed specifically for bipartite projections.

Three models for extracting the backbone of bipartite projections are implemented in the 
backbone package we introduce below: the hypergeometric model (HM), the fixed degree 
sequence model (FDSM), and the stochastic degree sequence model (SDSM). The mathematical 
details of these models are described by Domagalski, Neal, and Sagan (2021), however they 
differ solely in how they define “at random” when asking “Is the weight of the edge between two 
agents stronger than would be expected at random?” Here, we briefly sketch their definition of 
random and its implications for their scope of application.

The statistical test used by the HM to determine when an edge weight is statistically signifi-
cant controls for the row sums of B (i.e., the number of artifacts associated with each agent), but 
not for the column sums of B (i.e., the number of agents associated with each artifact). It is most 
suitable for application to cases where the column sums are (nearly) equal, or are unimportant, 
and therefore do not need to be controlled. In practice, this is likely to be rare in spatial data. For 
example, there is substantial variation in the number of cities (agents) in which different firms 
(artifacts) are located; some firms are big and maintain locations in many cities, while other firms 
and small and maintain locations in just a few cities. This variation likely matters for making 
inferences about which cities have economic interactions.

The statistical test used by the FDSM is more restrictive, controlling for both the row and 
column sums of B (Zweig and Kaufmann 2011). The FDSM is more appropriate than the HM 
for most spatial data because it is able to control for variation in both these features of the data. 
However, this additional control comes at a high computational cost; the FDSM relies on a nu-
merical simulation that can require a significant and sometimes impractical amount of time to 
extract the backbone of a large bipartite projection.

Finally, the statistical test used by the SDSM it approximately controls for both the row 
and column sums of B (Neal 2014a). By approximately controlling for both features of the data, 
the SDSM yield backbones that are similar to those generated by FDSM, but does so more effi-
ciently. Therefore, the SDSM is often a reasonable choice for the extraction of backbones from 
most bipartite projections, particularly when the FDSM is computationally impractical.

Each of these backbone models has previously been used to study spatial networks. Neal 
(2013a) used the HM to study linkages formed in the world city network by a process through 
which firms are sorted into cities. In contrast to a conventional world city network dominated 
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by global financial capitals, he described a network structured by national institutions such as 
the US Federal Reserve banking system. Van Meeteren et al. (2016) used the SDSM to study  
agglomeration patterns, finding that advanced producer service firms agglomerate intranation-
ally and pursue sector- specific global location strategies. Finally, Poorthuis (2018) used the 
FDSM to identify neighborhoods as clusters of locations tagged by twitter users. Although back-
bone models are increasingly widely used to approximate spatial networks from bipartite pro-
jections, progress and transparency have been limited by the lack of software that implements 
these models.

The backbone package

The backbone package is an open- source collection of commands for R that facilitates the 
analysis of bipartite projections (Domagalski et al. 2021; R Core Team 2018). It is freely avail-
able from the Comprehensive R Archive Network (CRAN). To install, load, and verify the ver-
sion of the package, type:

This article describes backbone v1.2.2 running in R v4.0.2, and the example is in-
tended for use with these or newer versions. We present only the package’s primary functions, 
with a focus on their application for spatial networks. Details about these functions’ formal 
mathematical specification are described by Domagalski et al. (2021) and complete documenta-
tion of all commands available in the package is available by typing:

The backbone package is composed of three types of functions. First, the universal() 
function constructs conventional weighted bipartite projections, as well as simple backbones 
using a universal threshold. Second, the hyperg(), sdsm(), and fdsm() functions derive 
probability distributions that can be used to test the statistical significance of edges in a weighted 
bipartite projection using the hypergeometric, SDSM, and FDSM models, respectively. Finally, 
the backbone.extract() function constructs a backbone network that contains only the 
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statistically significant edges. Each of these functions offers several optional parameters to cus-
tomize their output; we illustrate the most commonly used options in the next section.

Using backbone to examine the World City Network

The backbone package is a general- purpose set of commands designed to facilitate the analy-
sis of bipartite projections. In the context of spatial analysis, it can be used for research adopting 
a locations- as- agents approach, to infer the spatial network among a set of locations from data 
on their shared characteristics. However, it can also be used for research adopting a locations- 
as- artifacts approach, to infer a social network among a set of actors from data on their shared 
locations. To illustrate backbone’s application in one specific spatial analytic context, in this 
section, we demonstrate its use to examine the world city network and identify the most central 
cities in it. We selected this context for illustration for two reasons. First, the topic of world city 
networks has been the subject of many recent Geographical Analysis articles (e.g., Derudder 
2020; Liu and Derudder 2012; Neal 2012, 2020; Taylor 2001), some of which are among the 
journal’s most highly cited (Franklin 2021). Second, the analyses can be easily replicated by 
readers because one widely studied bipartite data set concerning world cities is publicly avail-
able. We intend the example analyses presented below to serve as an illustration of the back-
bone package, and not necessarily to make novel contributions to the substantive literature on 
world city networks. These analyses can be replicated by pasting the code below into R, however 
the complete replication R script and data are also available at https://osf.io/r2evn/.

Data
The Globalization and World Cities (GaWC) “Data Set 11” was originally collected in 2000, 
and records the extent of 100 advanced producer services firms’ presence in each of 315 large 
cities (Taylor, Catalano, and Walker 2002). These data served as the foundation for one of the 
earliest and most comprehensive empirical studies of the world city network (Taylor 2004), and 
as a template for a substantial body of empirical research conducted by those associated with the 
GaWC research network.

Formally, the data set takes the form of a rectangular 315 × 100 bipartite matrix B, in which 
Bij contains the “service value” of firm j’s presence in city i. The service values are an ordinal 
scale intended to capture the importance or extent of a firm’s presence in a city, and ranged 
from 0 (no presence) to 5 (global headquarters), with a value of 2 representing an presence that 
provides “the ‘normal’ or ‘typical’ service level of the given firm in a city” (Taylor et al. 2002,  
p. 2370). These publicly available data can be loaded into R directly from the GaWC website (as 
of 5 November 2020) and converted to matrix form:

https://osf.io/r2evn/
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The backbone package is designed for use with binary bipartite data, so for this illustra-
tion we transform the original ordinal B into a binary B ′ such that 

This transformation can be achieved, and the cities that contain no firms with a larger-  than- 
typical presence can be excluded, by typing:

This transformation allows us to focus only on firms that maintain a larger- than- typical pres-
ence in a given city, and only on the 196 cities that contain at least one such firm.2 For conve-
nience, we use B to refer to this binary matrix in the remainder of this section.

Once the bipartite data has been loaded and transformed, it is possible to examine some of its 
features. For example, it is possible to look at the pattern of firms’ presence in cities.

This command shows the portion of B that includes the 114th to 117th cities, and 8th to 11th 
firms. The output shows that while the accounting firms of KPMG and RSM maintained offices 
in several of these cities, Horwath and Summit International+Baker Tilley did not.

Two key characteristics of any bipartite data are the row sums and column sums. In these 
data, the row sums indicate the number of firms located in a city, while the column sums indicate 
the number of cities in which a firm maintains a presence.

B �

ij
=

{

1 if Bij≥3

0 if Bij≤2
.
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For example, there are 74 firms that maintain a larger- than- typical presence in New York, 
but only 29 firms that maintain a larger- than- typical presence in Amsterdam. Likewise, KPMG 
maintains a larger- than- typical presence in 76 cities, while HSBC maintains a larger- than- typical 
presence in only 43 cities. Fig. 2 illustrates these values for all cities and firms in these data. 
Specifically, Fig. 2A shows that while most cities contain fewer than 20 firms, some cities con-
tain many more firms. Similarly, Fig. 2B shows that while most firms maintain a presence fewer 
than 40 cities, some firms maintain a presence of many more cities.

Weighted bipartite projections
The conventional “specification of the world city network” used in GaWC research involves 
computing a weighted bipartite projection P from the original bipartite data B Taylor (2001). 

Following this specification, the cities are treated as agents and the firms are treated as artifacts. 
The resulting square matrix P is treated as a weighted world city network in which the strength 
of the connection between a pair of cities is measured by their number of co- located firms. For 
example, examining the matrix cell corresponding to the connection between Amsterdam and 
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New York  indicates that 26 firms maintain a presence in both cities, and might be interpreted as 
evidence that they interact economically.

Many analyses of the world city network focus on cities’ degree centrality, or what is some-
times called a city’s “global network centrality” (GNC). This value measures a city’s total num-
ber or strength of connections in the network, and is interpreted as an indicator of a city’s status 
or importance in the network.

In these data, London and New York have the greatest centrality, occupying the top tier of the 
urban hierarchy as what GaWC research calls Alpha++ cities (Beaverstock, Smith, and Taylor 
1999). They are followed by a second tier of Alpha+ cities that include Paris, Hong Kong, and 
Singapore. This approach appears to successfully identify what nearly any scholar of globaliza-
tion would regard as the cities “used by global capital as basing points in the spatial organization 
and articulation of production and markets” (Friedmann 1986, p. 71).

However, these values and this weighted spatial network are less informative than they 
might seem. The centrality values derived from this network are almost perfectly correlated with 
the number of firms located in each city (i.e. the row sums of B).

Figure 2. The distribution of (A) row sums and (B) column sums in the GaWC Data set 11.
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The high correlation indicates that this approach to identifying central cities in a world city 
network is actually just identifying cities that contain many firms. This occurs because measur-
ing a world city network using a weighted bipartite projection of firm locations guarantees that 
cities with many firms will have stronger connections and larger centrality values (Neal 2012). If 
world city researchers were simply interested in finding cities with many firms, there are much 
simpler ways achieve this (e.g., counting a city’s number of firms).

The backbone of the world city network
In practice, world city researchers are interested in something more nuanced: studying cities that 
are central in a network of economic interactions. The challenge is that although firm co- location 
may provide information about which cities interact economically, firm co- location is not the 
same as economic interaction. The backbone package can be used to make inferences about 
which cities are engaged in economic interaction based on firm co- location patterns. Specifically, 
it can be used to estimate whether the number of firms co- located in two cities is large enough 
to warrant concluding that the two cities are engaged in meaningful economic interaction. The 
backbone of the world city network is a binary network in which pairs of cities are connected 
only if their number of co- located firms suggests they are engaged in meaningful economic in-
teraction, and therefore provides a simplified and potentially more focused depiction of the world 
city network. The backbone package offers four ways to make such inferences and extract this 
backbone.

Using universal thresholds
The universal() function offers the simplest approach to extracting the backbone of the 
world city network by applying a single researcher- specified threshold value to all city pairs. 
Given a threshold T, any pair of cities with more than T co- located firms is defined as connected 
in the network. For example, choosing T = 0 implies that any number of firm co- locations is 
interpreted as evidence of economic interaction between a pair of cities. Extracting the backbone 
using a threshold of 0 is achieved by typing: 

This command extracts the backbone from an input data set B, which is a bipartite matrix (i.e., 
bipartite = TRUE), by applying an upper threshold of 0 (i.e., upper = 0), and stores 
it in a new matrix universal0. Once extracted, it is possible to examine the features of this 
universal threshold backbone:
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Unlike the weighted bipartite projection, the backbone is a binary network; pairs of cities ei-
ther are (N = 16910) or are not (N = 21506) connected. A backbone extracted using T = 0 is quite 
dense (44% of possible intercity connections are present) because it treats even small numbers 
of firm co- locations as evidence of economic interaction between cities. As a result, the most 
central cities are still obviously large cities that contain many firms, and indeed, cities’ centrality 
in this network remains highly correlated (r = 0.74) with their total number of firms.

A sparser network containing fewer intercity connections can be obtained using a higher 
(i.e., more stringent) threshold that retains only particularly strong connections (e.g., Derudder 
and Taylor 2005). For example, the universal() function can be used to extract a back-
bone where T = 25 and therefore only cities with more than 25 co- located firms are counted as 
connected: 
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This more stringent universal threshold is indeed much less dense (only 0.16% of possible 
edges are present). However, it still remains focused on the largest cities, whose centrality is 
highly correlated (r = 0.84) with the total number of firms.

Both of these approaches involve an arbitrarily selected threshold; however, the univer-
sal() function can also be used to apply a universal threshold that is based on characteristics 
of the weighted bipartite projection P. For example, it is possible to extract a backbone in which 
cities are connected if they have more than two standard deviations above the average number 
of co- located firms.

This backbone is also lower density (3% of possible edges are present), but once again it focuses 
only on large cities, whose centrality is nearly identical to their total number of firms (r = 0.97).

These examples illustrate that backbones extracted using a universal threshold and the uni-
versal() function will tend to focus on cities that contain many firms, which is not particularly 
illuminating. This occurs because the universal threshold approach to backbone extraction does 
not take into account variations in the number of firms located in each city. By not controlling 
for these variations (which are substantial in these data; see Fig. 2A) when deciding whether two 
cities are connected, it privileges cities that contain many firms. In these data, because there are 
large variations in the number of firms located in each city that must be controlled for, a univer-
sal threshold backbone is not appropriate. More generally, universal threshold backbones and the 
universal() function are appropriate only when there is limited variation in the row sums of B.

Using the HM
In contrast to the universal threshold approach, the hypergeometric model does control for vari-
ations in the number of firms located in each city (i.e., the row sums of B). It does so by using 
a unique threshold for each pair of cities in the network, rather than simply applying the same 
threshold to every pair. Extracting a backbone using the hypergeometric model involves two steps.
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The hyperg() function estimates an HM probability distribution like the one shown in 
Fig. 3, for each pair of cities in the network, storing the results in a backbone- class object called 
hyper3. The backbone.extract() function uses these distributions to identify statisti-
cally significant edges, storing the resulting backbone network in a matrix called hyperbb. The 
signed = FALSE option indicates that the backbone should only contain edges that are statis-
tically significantly stronger than would be expected at random. The significance tests used by 
the backbone package are two- tailed, so for the backbones which focus only on strong edges 
(i.e., those in the upper tail of the distribution), the alpha = 0.1 option ensures that the tests 
use the conventional α = 0.05 (i.e., 0.1/2) as the threshold for statistical significance.

Before examining the entire HM backbone, consider how the HM works for a single city- 
pair: Amsterdam and New York. We know that Amsterdam and New York have 26 co- located 
firms. The HM is designed to test whether this value is statistically significant controlling for the 
number of firms in each city. The green curve in Fig. 3 shows the number of firms that would be 
co- located in Amsterdam and New York if all firms located in cities randomly, but the number 
of firms in each city did not change. The 26 co- located firms actually observed in Amsterdam 
and New York is in the upper tail of this distribution, which indicates that it is much larger than 
would be expected at random (i.e., it is statistically significant). Therefore, the HM backbone 
includes a link between Amsterdam and New York.

Examining the backbone extracted using HM highlights how it differs from the weighted 
projection and universal threshold backbones in several ways. 

First, it is less dense than the T = 0 backbone, but denser than the 25- threshold or mean- 
threshold backbones, containing 9.2% of possible edges. That is, this model does reduce the 
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complexity of the original network, but still preserves many intercity connections. Second, 
and perhaps more notably, because the HM controls for the number of firms in each city when 
 deciding which intercity connections to keep, it does not simply focus on cities that are large and 
contain many firms. Indeed, while the most central cities are major financial centers, they are 
not the obvious ones typically highlighted in world cities research. Moreover, cities’ centrality 
and total firm count are only modestly correlated (r = 0.30), indicating that cities’ centrality in 
this network provides information that is unique from what could have been learned from simply 
counting their number of firms.

Although the HM does control for the number of firms in each city (i.e., the row sums of B), 
it does not control for the number of cities where each firm maintains a presence (i.e., the column 
sums of B). However, there is substantial variation in the number of cities where each firm main-
tains a presence (see Fig. 2B), and not controlling for this variation can distort decisions about 
whether a particular city pair’s number of co- located firms is significant. For example, if Firm 
X maintains a presence in every city, then observing that it is co- located in Amsterdam and New 
York is trivial. In contrast, if Firm Y maintains a presence in only two cities then observing that 
it is co- located in Amsterdam and New York is quite noteworthy. Because these data contain not 
only large variations in the number of firms in each city (see Fig. 2A) but also large variations 
in the number of cities where each firm maintains a presence (see Fig. 2B), the HM is not appro-
priate. More generally, a HM backbone and the hyperg() function are appropriate only when 
there is variation in the row sums of B, but limited variation in the column sums of B.

Using the FDSM
In contrast to the hypergeometric model, the fixed degree sequence model controls for variations 
in both the number of firms located in each city (i.e., the row sums of B) and the number of cities 
where each firm maintains a presence (i.e., the column sums of B). Extracting a backbone using 
the fixed degree sequence model also involves two steps.

The first line is not required, but will ensure that readers’ FDSM results, which are generated 
via simulation, will match what is reported below. The fdsm() function estimates a FDSM 
probability distribution for each edge in the network, but unlike the hyperg() function above, 
allows some options. FDSM distributions cannot be computed exactly, and therefore must be 
derived via numerical simulation. The trials = 10 000 option specifies the number of sim-
ulations to perform; more simulations will yield more precisely estimated distributions, but will 
also take longer. The progress = TRUE option displays a progress bar while the simulations 
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run. The backbone.extract() function works similarly: it takes the resulting fdsm object 
and creates a backbone network called fdsmbb in which connections between cities are present 
if they are statistically significantly strong using a two- tailed α = 0.1 test.

Again, before examining the entire FDSM backbone, consider how the FDSM determines 
whether the number of co- located firms is statistically significant for a single city- pair. The red 
curve in Fig. 3 shows the number of firms that would be co- located in Amsterdam and New York 
if all firms located in cities randomly, but the number of firms in each city did not change and 
the number of cities where each firm maintains a presence did not change. Notably the FDSM 
distribution is both narrower than, and to the right of, the HM distribution. These differences 
arise because HM and FDSM control for different characteristics of the data. The 26 co- located 
firms actually observed in Amsterdam and New York is in the middle of the FDSM distribu-
tion, which indicates that this value is about what might be expected even under random condi-
tions (i.e., not statistically significant). Therefore, the FDSM backbone does not include a link  
between Amsterdam and New York.

Figure 3. Null weight distributions generated using the backbone package on from the GaWC 
Data set 11.
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The backbone extracted using FDSM is noticeably different from all the other networks. 

First, it has a very low density, containing only 2.2% of possible edges. Second, the cities 
with the highest centrality are medium- sized regional centers. Moreover, cities’ centrality and 
total firm count are uncorrelated (r = −0.03), indicating that the FDSM backbone is detecting 
interaction patterns unrelated to a city’s number of firms.

The original bipartite firm location data are known to contain substantial variation in both 
number of firms in each city (see Fig. 2A) but also large variations in the number of cities where 
each firm maintains a presence (see Fig. 2B). Because the FDSM controls for variation in these 
two characteristics, it is an appropriate model to use for backbone extraction in this case. Using it 
yields a world city network backbone that contains only those intercity links that are not simply 
the product of these characteristics. That is, the FDSM backbone allows world city researchers 
to look beyond these characteristics to identify pairs of cities with unexpectedly large numbers of 
firm co- locations, which are potentially indicative of unexpectedly strong economic interaction. 
More generally, the FDSM and fdsm() function are appropriate when there is variation in both 
the row sums of B and the column sums of B, which is likely to occur in most empirical bipartite 
data. However, although FDSM may often be the most suitable model for many empirical data, 
its simulation- based approach can be impractically slow when applied to bipartite data contain-
ing many agents and artifacts.

Using the SDSM
The stochastic degree sequence model offers a fast approximation of the FDSM by approxi-
mately controlling for variations in both the number of firms located in each city (i.e., the row 
sums of B) and the number of cities where each firm maintains a presence (i.e., the column sums 
of B). Extracting a backbone using the stochastic degree sequence model involves two steps.
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The sdsm() function estimates the SDSM probability distribution for each edge in the net-
work. The backbone.extract() function is supplied the resulting sdsm object. In this 
example, we use α = 0.2 rather than α = 0.1 for reasons that we illustrate below. Finally, we also 
include the narrative = TRUE option, which can be used when extracting HM and FDSM 
backbones also. This option generates sample narrative text to be used in a manuscript’s methods 
section: 

Again, before examining the entire SDSM backbone, consider how it determines whether the 
number of co- located firms is statistically significant for a single city pair. The blue curve in Fig. 3  
shows the number of firms that would be co- located in Amsterdam and New York if all firms 
located in cities randomly, but on average the number of firms in each city did not change and on 
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average the number of cities where each firm maintains a presence did not change. The SDSM 
distribution is wider and flatter than the FDSM distribution, but has nearly the same midpoint. 
These differences arise because the SDSM distribution is an approximation of the more targeted 
FDSM distribution. As an approximation with a wider distribution, the SDSM is less statistically 
powerful, therefore we use a more liberal threshold of statistical significance so that it will more 
closely mirror the FDSM. The 26 co- located firms actually observed in Amsterdam and New 
York is in the middle of the SDSM distribution, which indicates that this value is about what 
might be expected even under random conditions (i.e., not statistically significant). Therefore, 
the SDSM backbone does not include a link between Amsterdam and New York.

Because the SDSM backbone is an approximation of the FDSM backbone, the two share 
many features in common. 

Like the FDSM, the SDSM backbone is a sparse network, in which medium- sized regional 
centers are the most central cities, and cities’ centrality and total firm count are uncorrelated 
(r = −0.11). Importantly, the pattern of intercity links in the SDSM and FDSM backbones are 
highly correlated (r = 0.93).

These results highlight that the SDSM offers a close approximation of the FDSM. In differ-
ent ways, both control for the number of firms located in each city (i.e., the row sums of B) and 
the number of cities where each firm maintains a presence (i.e., the column sums of B), however, 
as an approximation the SDSM does so more quickly. For example, extracting a FDSM back-
bone from these data on a 2.3 GhZ processor requires approximately 4 minutes, while extract-
ing an SDSM backbone requires less than one second. Therefore, the factors guiding a choice 
between SDSM and FDSM backbones are not methodological, but practical (how large is the 
data?) and theoretical (how strict should the controls be?). When the data are small and/or strict 
control is desired, FDSM is more appropriate, while when the data are large and/or less strict 
control is suitable, SDSM is more appropriate.
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Discussion

Bipartite projections offer a way to indirectly measure spatial networks using data that is often 
relatively easy to obtain. For this reason, bipartite projections are now among the most common 
ways to measure the world city network (Taylor and Derudder 2016), and are frequently used to 
measure other spatial networks at the global (e.g., Hafner- Burton et al. 2009; Heemskerk et al. 
2016; Straka et al. 2017) and local (Browning et al. 2017; Xi et al. 2020) scales, as well as to 
study the structure of geography as a discipline (Peris et al. 2018). It is often helpful to focus 
on the backbone of bipartite projections, which preserve only the most important connections 
between nodes. Multiple backbone models have already been used for spatial analysis (e.g., Neal 
2013a; Poorthuis 2018; Van Meeteren et al. 2016); however, a lack of software implementing 
these models has limited their use. In this article, we have introduced the backbone package 
for R, which is an open- source set of commands for extracting the backbone of bipartite projec-
tions, and have demonstrated its use for spatial analysis by applying it to data on firms’ locations 
in cities to understand the world city network. We conclude by offering some recommendations 
for using backbone for spatial analysis, commenting on its limitations, and identifying future 
directions for similar software development.

When using bipartite projections to measure spatial networks, whether with the backbone 
package or with other tools, the most important requirement is to have a theory. The backbone 
package will transform almost any data into something that resembles a network, so it is essential 
that this transformation be grounded in a theory about why sharing artifacts (e.g., firms, treaties, 
activity spaces) provides information about interaction and specifically what kind of interaction 
it provides information about. The theory may be contested or may turn out to be wrong (after 
all, the purpose of science is to identify wrong theories), but it should at least be explicitly stated.

Even after offering an explicit theory about the suitability of a bipartite projection for net-
work measurement, researchers have many degrees of freedom when using backbone to mea-
sure spatial networks with bipartite projections. Although methodological research on these 
topics is ongoing, Fig. 4 offers a preliminary guide to selecting among multiple backbone ex-
traction models. Universal threshold backbones are appropriate when the bipartite data lacks any 
meaningful variation in the row and column sums, for example, if different cities did not contain 
different numbers of firms and different firms did not maintain a presence in different numbers of 
cities. When a universal threshold backbone is used, it is still necessary to choose the particular 
threshold value based on theory: how many shared artifacts (e.g., co- located firms) does theory 
suggest matters when it comes to agents (e.g., cities) interacting? Hypergeometric model (HM) 
backbones are suitable when there is variation in the row sums, but no meaningful variation in 
the column sums. Finally, fixed and stochastic degree sequence model (FDSM and SDSM) back-
bones are suitable when there is meaningful variation in both the row and column sums, with 
the SDSM offering a practical approximation when the data is large and computational time is 
a consideration.

There are a number of future directions for research on the extraction of backbones from  
bipartite projections. First, to date there have been limited attempts to formally validate these 
backbone models, that is, to determine which backbone model (if any) yields the “correct” net-
work. Formal validation is challenging because it requires both spatial bipartite data to which 
backbone can be applied, and an independently measured “true” spatial network against 
which the resulting backbone can be compared. Preliminary work has attempted to validate 
bipartite projections as a measurement of world city networks by comparing them to airline 
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traffic networks (Taylor, Derudder, and Witlox 2007), banking networks (Pažitka et al. 2021), 
and alternative backbone models (Neal 2014b), but a more general validation of spatial bipartite 
projections is needed. Second, models for the extraction of backbones from bipartite projections 
exist only for binary bipartite data, and for projections generated via matrix multiplication (i.e., 
P = BB

�). However, binary data are sometimes valued; for example, the original GaWC Data 
set 11 contains information not only about the presence or absence of firms in cities, but also 
the size of their presence on a 0– 5 scale. Likewise, bipartite projections can be generated using 
mathematical functions including pairwise conditional probabilities (Hidalgo et al. 2007) and 
measures of interestingness (Zweig and Kaufmann 2011). The development of new backbone 
extraction models that can accommodate these cases is necessary (see Neal 2017). The back-
bone package offers a useful methodological tool for pursuing both lines of inquiry.

There are also a number of future directions for software development for the extraction of 
weighted network backbones. First, the backbone package currently only allows the extraction 
of backbones from weighted bipartite projections, but not from other types of weighted net-
works. However, geographers and spatial analysts often study weighted networks that are not bi-
partite projections, for example, transportation networks where edge weights convey capacity or 
volume. Therefore, future versions of backbone would benefit from implementing some of the 
already existing methods for extracting the spatial backbone from such non- projection weighted 

Figure 4. Decision tree for measuring spatial networks using backbones of bipartite projections.
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networks (e.g., Dai, Derudder, and Liu 2018; Dianati 2016; Serrano et al. 2009). Second,  
although the backbone package implements several different backbone models, the selection 
of a particular model is left to the user. However, as Fig. 4 illustrates, model selection is driven 
by several features of the data itself. Therefore, future versions of backbone could automate 
the model selection process, thereby simplifying its use.

The measurement and analysis of spatial networks have become a core part of the spatial 
analysts’ toolbox, alongside such other techniques as gravity models and GIS. Measuring spatial 
networks using bipartite projections has become increasingly common at both local and global 
spatial scales, and is a de facto approach for measuring the world city network. However, the 
analysis of bipartite projections requires special care because stronger links in these networks 
do not necessarily indicate more important connections. The backbone package for R is an 
open- source set of commands that facilitates the analysis of any bipartite projection. Although 
it is a general- purpose package that can be applied to any bipartite data, in this article, we have 
demonstrated its particular utility in the context of spatial networks, using the world city network 
as an illustrative example.

Notes
1There are other ways to transform a data set into a matrix capturing the similarity among rows, includ-

ing a Pearson correlation coefficient, pairwise conditional probabilities (e.g., Hidalgo et al. 2007), and 
measures of interestingness (e.g., Zweig and Kaufmann 2011). However, bipartite projection typically 
refers to the transformation described by P = BB

� (Breiger 1974). We restrict our focus to this bipartite 
projection function, which is the most common approach and the only one implemented in the back-
bone package.

2The transformation of the original valued bipartite data into binary bipartite data means that the analyses 
reported below may differ from those reported by researchers who do not apply such a transformation 
(e.g., Taylor 2004). Our goal in this section is to illustrate the functionality of the backbone package, 
and not necessarily to replicate any particular analysis. Neal (2017) described an extension of one of the 
models in the backbone package for ordinal bipartite data.

3These probability distributions are generated by backbone in the background as mathematical objects, 
but are not displayed in graphical form.
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