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Schensted [C’anad. J. Math. 13 (1961)] constructed an algorithm giving a 
bijective correspondence between permutations and pairs of Young Tableaux. 
The author develops an analogous algorithm relating permutations and triples 
consisting of two Shifted Tableaux and a set. Various properties of this algorithm 
are also examined. 

1. DEFINITIONS AND MOTIVATION 

x = (A, ) A, )...) A,) is a partition of the integer n if h, > h, 3 .*. > h, > 0 
and xi hi = n. A generalized Young Tableau (abbreviated YT) of shape X is 
an array of n integers into r left-justified rows with hi integers in row i, such 
that the rows are non-decreasing and the columns are strictly increasing. 

For example “i” is a YT of shape (4, 3, 1). The YT is said to be standard 

(an SYT) if the integers in the tableau are 1, 2,..., n as in “. 

A partition p = (pl, p2 ,..., pt) is strict if p1 > t+ > ... > pt > 0. A 
generalized Shzyted Young Tableau (abbreviated ST) of shape p is an array of 
n-integers into t rows with row i containing pi integers and indented i - 1 
spaces, such that the rows are non-decreasing and the columns are strictly 
increasing. The ST is said to be standard (an SST) if the integers in the tableau 
are 1, 2,..., n. The diagonal of an ST is the set of first elements in each row. All 
other elements of the ST are off-diagonal. In the SST ‘2 the diagonal is { 1, 3). 

Schensted’s algorithm [3] establishes a one-to-one correspondence between 
permutations of the integers 1, 2,..., n and pairs of SYT of the same shape 
having n entries. For this bijection we write 7~ t) (P(r), Q(T)) where P(n) 
and Q(r) are called the P and Q shapes of r respectively. An immediate 
corollary of this correspondence is the formula 
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where the sum is over all partitions X of n, and fA is the number of SYT of 
shape A. It follows from the work of Schur [4] on projective representations 
of the symmetric group that 

x 2-y g,)’ = n ! (1.2) 

where the sum is over all strict partitions p of n, g, is the number of SST of 
shape CL, and t is the number of parts of p. Hence, there should be an algo- 
rithmic way to prove the following result. 

THEOREM. There exists a bijective correspondence between permutations of 
1, 2,..., n and triples denoted n t) (P*(V), Q*(r), S*(r)) where P*(r), Q*(V) 
are SST of the same shape having n entries, and where S*(rr) is a subset of the 
of-diagonal elements of Q *( 7~). 

The construction of this algorithm provides a combinatorial proof of 
Eq. (1.2). 

2. ALGORITHMIC PROOF OF THE THEOREM 

We first describe a procedure for inserting a positive integer, x, into an ST, 
Y*, ofshape (pl, p2 ,..., pJ. We emulate Knuth’s presentation of Schensted’s 
algorithm [2, Section 21 to facilitate comparison between the two processes. 
Imbed Y* in an infinite array 

where 

YllYl2Y13Y14 . . . 

Y22Y23Y24 . . ’ 

Y33Y34 ... 

Y44 ... 

yii = the corresponding element of Y* if i < t, j < pi + i - 1 

= coifi>torj>pi+i-1 

Thus, for all j > i > 1 we have 

and Yii < Y(i+l)j (2.1) 

with the convention that co < co. In the following insertion procedure 
parenthesized statements serve to verify that conditions (2.1) still hold before 
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each step; hence the tableau remains an ST. The occurrence of y,, where 
a > b in any parenthesized statement can be safely ignored. 

INSERT* (x): 

I*l. Set kc 1, xitx, dt0 

1*2. Set i +- 1, and set j to some value such that yij = co. 

1*3. (Now JJ~-~)~ < xk < yij and xI, # co). If yi(+r) is defined and 
xk -C yio-r) decrease j by 1 and repeat this step. Otherwise, continue. 

1*4. If i = j and d = 1, return to step 1*2. Otherwise, set xlcfl t yij . 

I*% (Now J’i(j-1) < xk < X k+l = Yij < Yi(j+l) , y(i-lb < xk < xk+l = 

yii < y(i+l)j and XI # 03) Set yij + xk 

I*6 (Now yi(j-1) d yij = xk < xk+l d y&+1) , y(i-l)i < yij =xk < 

xk+l < &i+l)j and xk f a> Ifxk+l s' co and i # j increase both i and k by 1 
and return to 1*3. If xk+l # co and i = j increase k by 1, set d + 1, and 
return to I*2. Otherwise, continue. 

I*7 Set s t i, t + j and terminate (Now yst # CL), xk+l = Ys(t+l) = 
Y(s+1)j = a>. 

This algorithm computes 

(i) a sequence of positive integers 

where xk “bumps” xk+r into the next lower row or, in certain cases described 
below, into the first row. 

(ii) the coordinates (s, t) of x1 

(iii) a number d = 0 or 1 which counts the number of times a non- 
infinite diagonal element is displaced by an xk . Note that in the case d = 0, 
this algorithm is exactIy like Knuth’s INSERT(x) in [2]. However, once an x, 
displaces some yii # co, then xk+l(= yii) is inserted into the first row of Y*, 
bumping x~+~ into the second row, etc. But now we have the restriction in 
step I*4 that no Xk+m(m > 0) can ever displace another diagonal element, 
infinite or non-infinite. If for some m, xk+m. is less than every element in row 

m then it is inserted in row 1. As an example, inserting x = 2 into ‘ii gives 
the array ‘“8” and the sequence x1 = 2, x, = 3, xB = 4, xq = 5, x5 = 6. 

The deletion algorithm with s, t, d given; d = 0 or 1; and where s = t 
forces d = 0 is 
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DELETE* (s, t, d): 

D*l. Set it~,jtt, k-+0, z,,+ 00 

D*2. (Now Yij < zk < Y(i+~j andY,, f  a) IfYi(j+l, -=C zk andm+,) # 

cc increasej by 1 and repeat this step. Otherwise set zkfl +-- yij and continue. 

D*3 (NOW Yi(j-1) < J’ij = zk+l < zk G Yi(i+l) 9 Y(i-l)i < Yij = Zkcf~ < 

zk < Y(i+lh and zk+l # cc~)Sety,~+--z,andifi=jsetd+-0 

D*4. (Now yi(j-I) d Zk+l <: zk = J’ij d Y&+1) 9 Y(i-l)j < Zk+l < zk = 

yij < yci+ni and zkfl # 00) If i # 1 decrease i by 1, increase k by 1, and 
return to D*2. Otherwise continue. 

D*5. (Now i = 1) If d = 0 go to D*8. Otherwise continue. 

D*6. (Now d = 1) Increase k by 1, set r to some value such that 
Y(r+1)(r+1) = co- 

D*7. If yr,. > zk reduce r by 1 and repeat this step. Otherwise set 
icr,jcrandgotoD*2. 

D*S. Set x +- zk+l and terminate (now x # co). 

The parenthesized statements again show that at each step the tableau 
remains an ST. Note that the deletion process computes a sequence of 
positive integers 

co > z1 > z2 > .*- > zz = x (2.3) 

where at most one of the zk is a diagonal element. In fact (2.3) is just (2.2) 
written backwards as can be verified by applying DELETE*(l, 4, 1) to the 
example above. 

To prove this in general, the case where d = 0 is trivial since then DELETE* 
reduces to Knuth’s inverse DELETE. If d = 1, the same reasoning holds 
until some zk(= X&k+1) is displaced from the top row. Now zk is inserted in 
the lowest row containing elements <zk . Indeed, xz-k+l must have come 
from this row, since an element of the x sequence is only inserted in row 1 
when it is less than every element in the row below it. Hence, we must have 
X&k = zk+l . Finally, the last time a zk returns to a lower row is when it 
displaces the diagonal element of that row which corresponds to the diagonal 
element displaced by the x sequence. Similar considerations show that if we 
compute the sequence (2.3) first and then perform INSERT*(x) with x = zz 
then we have xk = zz-k+l for 1 < k < 1. This demonstrates that INSERT* 
and DELETE* are inverses of each other. 

We are at last in a position to prove the theorem stated in section 1. Given 
a permutation of n rr = (a,, a2 ,..., a,) construct P*(r), Q*(m) and S*(r) as 
follows. 
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(i) Let PC(n) = Q,*(n) = the empty tableau yij = co for allj >, i > 0, 
and let S,*(r) = + 

(ii) For i = 1, 2,..., n perform INSERT* (ai) on Pi*_,(r) to determine 
P?(r), si, ti, and di . Let Q:(r) be QEl(7r) with i placed in position 
(Si 9 tz>. 

Let 

S&T) = SC, if di=o 

= SE, u {i). if di=l. 

(iii) Let P*(r) = PC(r), Q*(V) = Q:(r), S*(n) = S%(n) 

Clearly P*(r) is an SST. Q*(n) is also an SST because at every step we are 
placing i, which is larger than any element in Qtl(n), at the end of a row 
and column. Finally S*(r) is a subset of the off-diagonal elements of Q*(n) 
because i E S*(r) if and only if a non-infinite diagonal element is displaced 
during INSERT*(&. But after this displacement, no other diagonal elements 
(including co) can be displaced. Hence si # ti . 

Now given SST’s P* and Q* of the same shape having n entries and given 
S* a subset of the off-diagonal elements of Q* we construct a permutation rr 
ofnby 

(i) Let P,* = P”, Qz = Q*, Sz = S* 

(ii) For i = n, n - l,..., 1 find i in QT with coordinates (si , tJ and let 

d< = 0 if i$S,T 

=l if iES:. 

Perform DELETE* (si , ti , di) on PF to determine PEl and ai (the last 
member of sequence (2.3)). Let QF-, be Qr with i removed, let 

$ = $ if d<=O 

= Si* - {j) if di=l. 

(iii) Let 7r = (a, , a2 ,..., a,) 

This is a step by step reversal of the algorithm for building P*(T), Q*(n) 
and S*(n) hence the proof of the theorem is complete. The reader may find it 
instructive to try an example e.g. show that 

(6, 7, 1,4, 3, 5, 2) ++ (1246 1237 (3, 5,7}). 
35 45 

7 6 
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3. PROPERTIES AND CHARACTERIZATIONS 

In general the properties of Schensted’s correspondence do not seem to 
carry over to this new setting. However, it seems reasonable to expect the 
class of permutations such that S*(r) = 4 to behave in a “Schensted-like” 
manner. To make this precise we consider shiftable tableau. 

DEFINITION. A YT of shape A, P, is shiftable if the tableau, P*, gotten by 
indenting row i by i - 1 spaces is an ST. In other words, P is shiftable if h is 
strict and each element of P is greater than its neighbor diagonally upward 
and to the right. In this case P* is called the shift of P. 

We also need a lemma. 

LEMMA. Let rr = (a,, a2 ,..., a,) be a permutation, then the following are 
equivalent 

(i) S*(r) = 4 

(ii) The tableaux P(n) and Q(V) of Schensted’s algorithm are shiftable 
and their shifts are P*(r) and Q*(m) respectively 

(iii) The tableaux P(n) and Q(n) are shftable 

ProoJ: (i) + (ii). We will show that in fact the tableaux P,(r), QJz-) at 
the ith stage of Schensted’s algorithm are shiftable with shifts P?(V), Q:(r) 
respectively. Induct on i. The case where i = 1 is trivial. Assume that P&(n), 
Q::_,(r) are the shifts of PieI( Qi-,(?r). But inserting ai into PiV1(r) 
causes the same elements to be moved to the same relative positions as in the 
insertion of ai into Pi*_,(r) (since d, = 0). Hence, the statement holds after 
the ith insertion. 

(ii) + (iii). Obvious 

(iii) -+ (i). Let P* and Q* be the shifts of P(n) and Q(r) respectively. 
Then, by the theorem of section 1 there exists a unique permutation u such 
that P*(U) = P*, Q*(o) = Q*, and S*(u) = 4. Using the proof that (i) -(ii) 
we have P(a) = P(n) and Q(a) = Q(r). H ence, u = 7r by the injectivity of 
Schensted’s algorithm. 

Many of the known results concerning Schensted’s algorithm can now be 
seen to have analogs in the case where S*(r) = I#. A sampling of these is 
given in Proposition 1. The number following each assertion is the reference 
where the original statement and definitions can be found. 

PROPOSITION 1. Ifs*(r) = rj then 

(i) The number of elements in the first k rows of P*(n) is the maximum 
length of a k-increasing subsequence of T. [I] 

582/a/27/1-2 
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(ii) The elements of the ith row of P*(r) areprecisely the 2nd coordinates 
of the set of source verticies in the ith inversion digraph of rr. Similarly for 
Q*(n) and the 1st coordinates. [2] 

(iii) S*(n-l) = 4 and P*(n-l) = Q*(n), Q*(cl) = P*(r). [2] 

All these properties follow directly from our lemma and the corresponding 
statements for Schensted’s correspondence. It would also be nice to charac- 
terize those 7r with S*(r) = $ in terms of the elements of i-r itself. To this 
end we define 

DEFINITION. Permutations r and u d&r by an adjacent transpo- 
sition if n :z (a,, a2 ... a,, akil ... a,) and u = (al, a2 ... a,<,, , aB ... a,). 
Let p be any property of permutations. We say that rr and u are p-equivalent, 
written 7~ = u ( p), if there exists a sequence of permutations r = ni , mTT2 ,..., 
7-r n = u such that for all i 

(i) rri has propertyp 

(ii) ~2 and ni+l differ by an adjacent transposition. 

Note that s(p) is an equivalence relation. 

PROPOSITION 2. Let p1 be the property “S*(V) = +” then S*(n) = 
S*(a) = 4 implies 7~ = o(pJ. 

Proof. It suffices to prove that n = (1, 2,..., n)(pJ for any r = (al, 
a2 ,..., a,) with S*(r) = 4. If a, = n we are done by induction, so assume 
a, # IZ. But if S*(r) = 4 then a, # 1 (for n > 1). 
Now for all j # 1 

(1, 2,..., n) = (1, 2 ... j - 1, j + 1,j .** n)(pl) 

z (1, 2 . ..j + 1,j + 2, j ... n)(pl) 

where j indicates that j is deleted. Hence, by induction on n 

(4, a2 ,..., a,) = (1, 2 a*. ci, ..* n, a,)(pJ 

= (1, L., n)(pJ 

As an example of what has been discussed so far, consider rr = (1,3, 5,2,4) 
Then P(n) = i”,” and Q(T) = i’,” are both shiftable so P*(V) = ‘$, Q*(r) = 
‘ti and S*(r) = 4. Also (1, 3, 5, 2, 4) = (1, 3, 2, 5, 4) = (1, 3, 2, 4, 5) = 
(1, 2, 3, 4, 5)(P,). 
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Another problem is to characterize all permutations having a fixed P* and 
Q* shape. 

PROPOSITION 3. Zf n = (a,, u2,..., a,) then the following are equivalent 

(i) P*(T) = Q*(T) = 12 ... n 

(ii) For all i, cli = min(a, , a2 ,..., ai) or ai = max(a, , a2 ,...: ai: 

Proof: Call (ii) property pZ . A moments reflection will show that if rr 
satisfies pZ then we must have P*(T) = Q*(r) = 12 +‘. n. To show that 
these are the only ones it suffices to prove that there are exactly 2+l such 
permutations, since the correspondence r cf (12 ... n, 12 ... n, S*(T)) is 
bijective and S*(r) C (2, 3,..., n>. Now there are exactly 2 choices for a, i.e. 
1 or n, 2 choices for a,-, , etc. but only one element left over for a, so we are 
done. 

COROLLARY. P*(n) = P*(u) = 12 ... n ifand oniy $7 = g(pJ. 

ProoJ The “if” direction follows immediately from Proposition 3. The 
other implication is an easy induction based on the fact that the last element 
of 7~ must be 1 or n. It is left to the reader. 

We might hope that if p3 was the property “P*(T) = P*, Q*(T) = Q* 
with P*, Q* fixed” then we would have rr -= a (p3) for any n and u with 
P*(T) = P* = P*(u) and Q*(n) = Q* = Q*(u). This is not true, however, 
as can be seen by taking z = (I, 3, 2, 4) and u = (I, 4, 3, 2). 

4. PROBLEMS AND CONJECTURE 

There are still many unanswered questions in relation to this new algorithm 
and its properties. Some of these are listed here in the hope that the reader 
may ponder them. 

(i) Schensted’s algorithm can be generalized to give a bijective corre- 
spondence between matrices, A, with non-negative integer entries and pairs 
of generalized YT. Such a matrix is viewed as a lexicographically ordered 
two-row array where column j appears Aij times. Then the elements of the 
bottom line are inserted into the P shape and those of the top line fill up the 
Q shape. The algorithm in section 2 can also be applied to such two-row 
arrays, the elements of S* becoming coordinates of off-diagonal positions in 
Q*. But the tableau Q* may not turn out to be a generalized ST, as two equal 
integers may appear in the same column. The problem is to find a suitable 
extension of this algorithm to matrices. 
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(ii) Give a characterization of all permutations giving a fixed P* and 
Q* shape. Or characterize all permutations giving a fixed P* shape. 

CONJECTURE. If p4 is the property “P*(T) = P*$xed” then P*(T) = 
P*(o) = P* implies rr = u (pa). (This is the analog of a theorem of Knuth [2] 
but his proof does not work.) 

(iii) What if we consider “shifted” tableaux where the rows are indented 
2 spaces each? Is there still an algorithmic bijective correspondence? What 
about the theory of n-indented tableaux, or ones with arbitrary left-hand 
boundary ? 
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