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Abstract

The generalized Euler number FE,; counts the number of permutations of
{1,2,...,n} which have a descent in position m if and only if m is divisible by k.
The classical Euler numbers are the special case when k£ = 2. In this paper, we
study divisibility properties of a g-analog of £, ;. In particular, we generalize two
theorems of Andrews and Gessel [3] about factors of the ¢-tangent numbers.



1 Introduction

Let &,, denote the symmetric group of all permutations of the set n = {1,2,...,n}.
The nth Fuler number, E,, can be defined as the number of permutations = =
aias ...a, in G, that alternate, i.e.,

ar < ag >az < ...

These numbers have a long and venerable history going back at least to André [1,2].
Comtet’s book [4, p. 48] lists some of the classical properties of the E,,. In partic-
ular, the Euler numbers have exponential generating function

Z E,x"/n! = tanx + sec x.
n>0

For this reason the Ey, 1 are called tangent numbers and the Fs, secant numbers.
The descent set of any m = ajas . ..a, is the set of indices

Des(m) ={i : 1 <i<nanda; > a1}

Furthermore, the generalized Euler, E,;, counts the number of 7 € &,, such that
Des(m) = {k,2k,3k,...}. We will also use Ey; to denote the set of all such
permutations. Clearly, E,, = E,. As an example, we have

Esjs = {12435, 13425, 23415, 12534, 13524, 14523, 23514, 24513, 34512},

We will be concerned with a certain g-analog of the generalized Euler numbers
defined as follows. An inversion of ™ = aqas . ..a, is an out-of-order pair, namely
(a;,a;) with ¢ < j and a; > a;. We let inv 7 denote the number of inversions of 7.
Following Stanley [7, pp. 147-9], define

Enr(q) =Y ¢™™. (1)

Continuing our example from the previous paragraph,
Ess(q) = ¢+ P+ @+ +EP+d+ "+ +¢°
= q+2¢°+2¢° +2¢" + ¢° + ¢,

It is well-known that the tangent numbers are divisible by high powers of 2.
In [3], Andrews and Gessel show that both (1+¢)(1+¢?)---(1+¢") and (1 +q)"
divide the g-tangent number FEy,.;(¢). Our main theorem is a generalization of
this result to E,x(q). Let

== 1+t bt g
So [k]qz :1—|—qi—|—q2i+...+q(k—l)i'



Theorem 1.1 Let k be prime and 1 <i < k —1. Then
2[k5]q3 T [k]q" | EnkJriIk:(Q);'
2. [K]™ | EnkJri\k(q)'

The next section is devoted to proving a recursion and two lemmas that we will
need for the proof of the previous theorem. Section 3 is devoted to the demonstra-
tion of the theorem itself. Finally, we close with a section of comments and open
questions.

2 Lemmas

It will be useful to have a recursion relation for the E,x(q). To state it we will
need the Gaussian polynomials or q-binomial coefficients

n [n]!
) =

where [n]! = [n][n — 1] [1]. We assume [}] = 0if k > n. It is well-known that
these polynomials can be written as

[Z} _ Z ¢

ﬂEGn,k

where G, is the set of all permutations of & zeros and n — k ones. Finally, let
X(P) be the characteristic function which is 1 if the statement P is true and 0 if
it is false.

Proposition 2.1 Forn > 0 the E,;(q) satisfies the following recursion

[n/k]
n n—m,
Einie(q) = Z [mk _ J 7" Ek—1)(@) Enmmi+ 1) (@) + X (5 A 1) Epyi(q)

m=1

with boundary condition Ey(q) = 1.

Proof. The initial condition is trivial. For the recurrence relation, consider all
the indices ¢ where one could have a; = n + 1 in some ™ = ajas ... a1 € Spyq.
Clearly, i = n+1 can occur iff £ /n and in this case all 7 ending in n+1 contribute
Enk(q) to the sum (1) for B, q).

The other possible positions for n+1 are at i = mk for some m, 1 < m < [n/k].
In this case, the inversions caused by n + 1 are accounted for by ¢" *™*1. The
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inversions of the elements a; ...a,r—1 and appyq ... a,+1 among themselves are
counted by Epur—1)k(q) and Eg_pmri1)k(q), respectively. Finally, [mlll] takes
care of inversions between these two sets of integers. [

Given the form of the recursion in the previous proposition, it should come as
no surprise that we will need two lemmas about divisibility properties of g-binomial

coefficients .

Lemma 2.2 Let k be a prime and suppose 0 < i < k — 2. Then for any non-
negative integers n and m, we have the divisibility relation

] | {nk+z]

mk — 1

Proof. For all non-negative integers n and m, we have

nk + i [nk +i][nk +i—1]--- [nk — mk +i+ 2]
[mkz— 1] - [mk — 1]! ' (2)

Since k is prime, all roots of [k] are primitive kth roots of unity. If ¢ is such a
root then ( is a root of [I] iff k|l and in that case it has multiplicity one. Thus the
multiplicity of ¢ as a root of the numerator of (2) is n — (n — m) = m while in the
denominator it is m — 1. Thus [k] divides the g-binomial coefficient as claimed. m

Lemma 2.3 Let k be prime and suppose 0 < i < k—2. Then for any non-negative
integers n and m, the expression

[ nk+1 ] U{f]qul[kf]qm72 s [k‘]
mk — 1] [k]gn[k]gn-1 - [k]gn-m+

s a polynomial in q.

Proof. As with the previous lemma, we need only show that each root of unity
which is a zero of the denominator appears with at least as large multiplicity in
the numerator. We write the Gaussian polynomial as

|: nk + i :| _ (1 _ an—H)(l o an—l-i—l) L. (1 o an—mk+i+2)
mk — 1 (1 —qgm—1)(1 —gm=2)... (1 —¢2)(1 —q)

=PP (3)

where
(1 . an)(l . q(n—l)k) . (1 . q(nferl)k)

P =
P (1= IR (1= gmR) (1= )




and P, contains all the other factors of 1 —¢/. Substituting [k], = (1—¢*)/(1—¢7)
into the expression in the statement of the lemma and doing some cancelation shows

that
[ nk +1 ] [k’]qul[k‘]qu2 cee [k‘]
mk —1 [k]qn k‘]qn—l L [k]qn—7n,+1

= PP, (4)

where
(1 _ qn>(1 _ qn—1> . (1 _ qn—m-i-l)
(I=gm (L —gm2)(1-q)

Let ¢ be a primitive [th root of unity. Then since k is prime, either ged(k, 1) = 1
or k|l. In the former case, the multiplicities of ¢ in the denominators of P;P;
and P3P, are equal. Since the same is true of the numerators, P3P, has no pole
at ¢ since PP, doesn’t. If k|l then ( is neither a root nor a pole of P,. Also
Py =(1-4¢") [”_1] is a polynomial in ¢ and so does not have { as a pole. Thus

m—1
no primitive root of unity is a pole of P, P; forcing it to be a polynomial. [

P3:

3 Divisibility of the generalized g-Euler numbers

Now we are in the position to prove our main results.

Theorem 3.1 Let k be prime and 1 <i < k — 1, then Eqiri(q) is divisible by
[K]".

Proof. We will induct on n. For n = 0, the result is trivial. Suppose the result is
true up to but not including n. First consider ¢ = 1. According to Proposition 2.1

. nk—m nk
Eprin(g) = Y g™ ™! [mk _ J Emk—1)16(@) Bk —mik+1)1£(q)- (5)
m=1

By induction [k]™! and [k]"™ divide Eqng—1)k(¢q) and Eg—mr+1)k(q), respec-
tively. But by Lemma 2.2, [k] is a factor of the corresponding ¢-binomial coeffi-
cient in (5). So Eguik(q) is divisible by [k]™~17=m+ = [k]" as desired. The
case when 2 < ¢ < k — 1 is similar, with the extra term from the recursion in
Proposition 2.1 being taken care of by the case for ¢ — 1. n

Theorem 3.2 Let k be prime and 1 <@ < k — 1, then Eqpiik(q) is divisible by
(K] [kl g2 [K]gs - - - [K]gn-

Proof. As before, we will induct on n with n = 0 being trivial. Suppose the result
is true up to but not including n. When ¢ = 1 we have (5) again and examine each
of its terms. By the induction hypothesis

Emk-1)k(q) = [F][Klg2 [K]gs - - - [Klgm-1Qn
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and
B ye(@) = W] K - - (K] n-n Qs

where )1 and ()2 are polynomials in g. Then

nk
[ ] Emk—1)1k(@) Etnk—mi+1)6(9)

mk —1
[m;? ' 1] [kqu[z]qf_’i]?f".2[,;];1’11 (K] [k 2 (K] -« (K] Q1 Qo

By Lemma 2.3, the g-binomial coefficient times the fraction is a polynomial in q.
So [k][k]g2[k]gs - - - [klgn is a factor of every term in (5) and thus of E(,x41)x(q). The
case 2 < i < k — 1 is handled as in the proof of Theorem 3.1. ]

4 Comments and open questions

By setting ¢ = 1 in either Theorem 3.1 or Theorem 3.2 we get the following
corollary.

Corollary 4.1 Let k be prime and 1 <1 < k—1, then Epq)k 95 divisible by k™.

It is well known that for £ = 2 (the tangent numbers)
22" | (n+ 1) Eznpa (6)

and that the corresponding quotient, called a Genocchi number, is odd. Thus it
is not surprising that better divisibility results can be obtained when ¢ = 1 for
general primes k. In particular, Gessel and Viennot [6] have shown that

kel (njk> Enk—j)k- (7)

Note that this reduces to (6) when k¥ = 2 and j = 1. This raises a couple of
questions. Is it true that the associated quotient in (7) is relatively prime to k?
Can these results be extended to the case of arbitrary ¢? With regards to the
second query, the reader should consult Foata’s article [5] which provides some
answers in the case k = 2.
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