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1. Introduction

Let (H, m, u, Δ, ε) be a bialgebra over a field F. Call H graded if it can be written as 
H = ⊕n≥0Hn so that

1. HiHj ⊆ Hi+j for all i, j ≥ 0,
2. ΔHn ⊆ ⊕i+j=nHi ⊗Hj for all n ≥ 0, and
3. εHn = 0 for all n ≥ 1.

If H0 ∼= F, then we say that H is connected. Takeuchi [23] showed that if a bialgebra 
is graded and connected, then it is a Hopf algebra and gave an explicit formula for its 
antipode. To state his result, define a projection map π : H → H by linearly extending

π|Hn
=

{
0 if n = 0,
I if n ≥ 1,

(1)

where 0 and I are the zero and identity maps, respectively.

Theorem 1.1 ([23]). Let H be a connected graded bialgebra. Then H is a Hopf algebra 
with antipode

S =
∑
k≥0

(−1)kmk−1π⊗kΔk−1, (2)

where we let m−1 = u and Δ−1 = ε. �
Equation (2) has the advantage of giving an explicit formula for the antipode. But 

it is usually not the most efficient way to calculate S as there is massive cancellation 
in the alternating sum. One of the standard combinatorial techniques for eliminating 
cancellations is the use of sign-reversing involutions. Let A be a set and ι : A → A be an 
involution on A so that ι is composed of fixed points and two-cycles. Suppose that A is 
equipped with a sign function sgn : A → {+1, −1}. The involution ι is sign reversing if, 
for each two-cycle (a, b), we have sgn a = − sgn b. It follows that

∑
a∈A

sgn a =
∑
a∈F

sgn a,

where F is the set of fixed points of ι. Furthermore, if all elements of F have the same 
sign, then

∑
a∈A

sgn a = ±|F |,

where the bars denote cardinality.
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The purpose of the current work is to show how sign-reversing involutions can be 
used to give cancellation-free formulas for graded connected Hopf algebras. We give nine 
different examples of this technique. The first, in Section 2, is an application to the Hopf 
algebra of polynomials. Of course, it is easy to derive the formula for S in this case by 
other means. But the ideas of splitting and merging which will appear over and over 
again can be seen here in their simplest form. Next, we consider the shuffle Hopf algebra 
where, again, splitting and merging provide a simple proof. One also sees why applying 
S yields the reversed word as it appears naturally as the unique fixed point of our in-
volution. More complicated applications appear in Sections 4 and 5 where we consider 
the Hopf algebra of quasisymmetric functions in the monomial and fundamental bases. 
Motivated by ideas from K-theory, Lam and Pylyavskyy [15] defined multi-analogues 
of several Hopf algebras. Very recently, Patrias [20] derived cancellation-free expressions 
for their antipodes and we show how our method can be used to obtain one of them in 
Section 6. Next we give an involution proof of a formula of Humpert and Martin [14]
for the antipode in the incidence Hopf algebra on graphs. Again, the acyclic orientations 
which are counted by the coefficients appear naturally when finding the fixed points 
of the involution. We end with three examples involving the immaculate basis of the 
Hopf algebra of noncommutative symmetric functions defined by Berg et al. [5], the 
Malvenuto–Reutenauer Hopf algebra of permutations [17] and the Poirier–Reutenauer 
Hopf algebra of Young tableaux [21]. Some of these expressions are the first cancellation-
free ones in the literature. Aguiar and Mahajan [1] provided a cancellation-free antipode 
formula for the Malvenuto–Reutenauer Hopf algebra using Hopf monoids. We recover 
some of their results using certain involutions, and appealing only to the Hopf algebra 
structure. We end with a section about future research and open problems, as well as 
noting other recent work where our technique has been applied.

We should mention that various other researchers have been studying cancellation-free 
formulae of antipodes. For example, Méndez and Liendo [18] have constructed a Hopf al-
gebra associated with any symmetric set operad. They then give a combinatorial formula 
for its antipode using Schröder trees. In another direction, Menous and Patras [19] gen-
eralize the forest formula for computing the antipode of the Hopf algebras of Feynman 
diagrams in perturbative quantum field theory, showing that it can be used in arbitrary 
right-handed polynomial Hopf algebras.

2. The polynomial Hopf algebra

In this section we will use a sign-reversing involution to derive the well-known formula 
for the antipode in the polynomial Hopf algebra F[x]. We need some combinatorial 
preliminaries. If n is a nonnegative integer, then let [n] = {1, 2, . . . , n}. An ordered set 
partition of [n] is a sequence of nonempty disjoint subsets π = (B1, B2, . . . , Bk) such that 
�iBi = [n] where � is disjoint union. We denote this relation by π |= [n]. The Bi are 
called blocks and since they are sets we are free to always list their elements in a canonical 
order which will be increasing. We will also usually leave out the curly brackets and the 
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commas within each block, although we will retain the commas separating the blocks. 
So, for example (13, 2) has blocks B1 = {1, 3} and B2 = {2}; the partition (2, 3, 1) has 
blocks B1 = {2}, B2 = {3}, B3 = {1}; and (123) has a single block {1, 2, 3}. Finally, it 
will sometimes be convenient to allow some of the Bi to be empty, in which case we will 
write π |=0 [n].

Since the antipode is linear, it suffices to know its action on a basis. Here we use the 
standard basis for F[x].

Theorem 2.1. In F[x] we have

S(xn) = (−1)nxn.

Proof. To apply Takeuchi’s formula, we first need to describe Δk−1(xn). By definition

Δ(x) = 1 ⊗ x + x⊗ 1 =
∑

(B1,B2)|=0[1]

x|B1| ⊗ x|B2|.

It follows from coassociativity that

Δk−1(x) =
∑

(B1,...,Bk)|=0[1]

x|B1| ⊗ · · · ⊗ x|Bk|,

and since Δ is an algebra map

Δk−1(xn) = (Δk−1x)n =
∑

(B1,...,Bk)|=0[n]

x|B1| ⊗ · · · ⊗ x|Bk|.

Plugging this into equation (2) and remembering that π kills anything in H0 gives

S(xn) =
∑
k≥0

(−1)k
∑

(B1,...,Bk)|=[n]

x|B1| . . . x|Bk|. (3)

Since |B1| + · · ·+ |Bk| = n whenever (B1, . . . , Bk) |= [n], the previous equation simplifies 
to

S(xn) = xn
∑
k≥0

∑
(B1,...,Bk)|=[n]

(−1)k.

The last displayed equation shows that we will be done if we can find a sign-reversing 
involution ι on the set

A =
⋃
k≥0

{π = (B1, . . . , Bk) : π |= [n]},

where
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sgn(B1, . . . , Bk) = (−1)k,

and ι has a single fixed point which is

φ = (n, n− 1, . . . , 1). (4)

This involution will be built out of two other maps. If π = (B1, . . . , Bk), then the result 
of merging blocks Bi and Bi+1 is the ordered partition μi(π) obtained by replacing 
these two blocks by Bi ∪ Bi+1. For example, if π = (5, 3, 249, 16, 78), then μ3(π) =
(5, 3, 12469, 78). If |Bi| ≥ 2, then the result of splitting Bi = a1 . . . aj (where, as usual, 
the elements of the block are listed in increasing order) is the ordered partition σi(π)
obtained by replacing Bi by the ordered pair a1, a2 . . . aj . Returning to our example, we 
have σ3(π) = (5, 3, 2, 49, 16, 78).

To define ι(π) where π = (B1, . . . , Bk) we find the least index l, if any, such that 
either |Bl| ≥ 2 or Bl = {a} with a < minBl+1. If there is such an index, then we let

ι(π) =
{

σl(π) if |Bl| ≥ 2,
μl(π) else.

Otherwise ι(π) = π. Continuing with π = (5, 3, 249, 16, 78) from the previous paragraph, 
we can not have l = 1 or 2 since 5 > 3 and 3 > 2. But |B3| ≥ 2 which results in 
ι(π) = σ3(π) = (5, 3, 2, 49, 16, 78).

It is clear from the definition that ι is a sign-reversing map. To show that ι2(π) = π, it 
suffices to consider the case where π is not a fixed point. Given the definition of the index 
l, we must have π = (a1, a2, . . . , al−1, Bl, . . . , Bk) where a1 > a2 > · · · > al−1 > minBl. 
Suppose first that |Bl| ≥ 2 and let Bl = alal+1 . . . am as well as B′

l = al+1 . . . am. Then 
we have

ι(π) = σl(π) = (a1, . . . , al, B
′
l, Bl+1, . . . , Bk).

Furthermore,

ι2(π) = μl(a1, . . . , al, B
′
l, Bl+1, . . . , Bk)) = π

because a1 > · · · > al < al+1 = minB′
l. The demonstration that ι2(π) = π when |Bl| = 1

is similar.
There remains to show that the only fixed point of ι is φ as defined by equation (4). 

But if π is a fixed point, then the index l does not exist which implies π = (a1, a2, . . . , an)
with a1 > a2 > · · · > an. Clearly the only ordered partition of this type is π = φ. �
3. The shuffle Hopf algebra

We next use the split-merge technique to derive the antipode of the shuffle Hopf 
algebra. Let A be a finite alphabet and consider the Kleene closure A∗ of all words 
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w = a1 . . . an over A. We let l(w) = n denote the length of w. The underlying vector 
space of the shuffle Hopf algebra is the set of formal sums FA∗. The product is given by 
shuffling

v · w =
∑

u∈v

∃

w

u,

where v ∃ w indicates all 
(
l(v)+l(w)

l(v)
)

interleavings of v and w. Note that if different in-
terleavings result in the same final word, then they are considered distinct and so such 
words are counted with multiplicity, for example, ab · a = 2aab + aba. The coproduct is

Δw =
∑
uv=w

u⊗ v,

where uv denotes concatenation, not product, and we permit u or v to be empty. To 
state the formula for the antipode we will need, for w = a1a2 . . . an, the reversal operator
revw = anan−1 . . . a1.

Theorem 3.1. The antipode in FA∗ is given by

S(w) = (−1)l(w) revw.

Proof. Applying Takeuchi, we see that

S(w) =
∑
k≥1

(−1)k
∑

w1...wk=w

w1 · . . . · wk, (5)

where none of the wi are empty. Assume that w = a1a2 . . . an where the ai are considered 
distinct variables. Once we have proved the result for such w, the general case will 
follow by specialization of the ai. We will use similar reasoning in future proofs without 
comment. Because of the distinctness condition, revw only occurs in the term w1 · . . . ·wn

and does so with sign (−1)n. So it suffices to give a sign-reversing involution on the rest 
of the words in the sum.

Let v �= revw be a word resulting as a shuffle in the term w1 · . . . · wk of (5). Find 
the largest index j ≥ 0 such that

1. l(w1) = · · · = l(wj) = 1 (which implies wi = ai for i ≤ j), and
2. ajaj−1 . . . a1 is a subword of v.

Now aj+1 is the first letter of wj+1. If aj is to the left of aj+1 in v, then v will also be a 
shuffle of opposite sign in the merged product

a1 · a2 · . . . · aj−1 · ajwj+1 · wj+2 · . . . · wk.
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Our involution will pair these two copies of v. If aj is to the right of aj+1 in v, then we 
must have l(wj+1) > 1 because, if not, then either j would not have been maximum or 
v = revw. Thus v will also be a shuffle of opposite sign in the split product

a1 · a2 · . . . · aj · aj+1 · w′
j+1 · wj+2 · · · · · wk,

where w′
j+1 is wj+1 with aj+1 removed. It is easy to see that these two operations are 

inverses and so we are done. �
4. The monomial basis of QSym

Quasisymmetric functions were introduced by Gessel [11] to study properties of 
P -partitions where P is a poset. Malvenuto and Reutenauer [16] then showed that the 
vector space, QSym, of quasisymmetric functions can be given a Hopf algebra structure 
and that its dual is related to Solomon’s decent algebra. We wish to use involutions 
to rederive known formulas for the antipode acting on two bases for QSym. We start 
with the monomial basis. The formula for S in this basis was derived independently by 
Ehrenborg [9], and by Malvenuto and Reutenauer [16]. Here there will turn out to be 
more than one term in the final sum even though it is cancellation free. But the split-
merge method will show how these summands appear naturally as fixed points of the 
involution.

Let x = {x1, x2, . . . } be a countably infinite set of variables. Vector space bases for 
QSym are indexed by compositions α = (α1, α2, . . . , αl) which are sequences of positive 
integers called parts. The number of parts of α is called its length and denoted l(α). The 
monomial quasisymmetric function corresponding to α is defined by

Mα = Mα(x) =
∑

i1<i2<···<il

xα1
i1
xα2
i2

. . . xαl
il
.

The Mα form a basis for QSym. The product in QSym is the normal product of power 
series. The coproduct is given by

ΔMα =
∑
βγ=α

Mβ ⊗Mγ ,

where βγ is concatenation with the same conventions as in the shuffle algebra. Applying 
Takeuchi’s formula, we obtain

S(Mα) =
∑
k≥1

(−1)k
∑

α1...αk=α

Mα1 ·Mα2 · . . . ·Mαk
, (6)

where all the αi are nonempty. We refer to the terms corresponding to a given index k
in the inner sum as the kth summand of S(Mα). We will use the notation
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Mα1 ·Mα2 · . . . ·Mαk
= α1 · α2 · . . . · αk. (7)

Note that, again, “·” is being used to distinguish multiplication from concatenation.
Suppose that α has length l(α) = l. Our strategy will be to cancel all terms in the 

kth summand of (6) into terms from either the (k − 1)st or (k + 1)st summand for 
k < l. A term from the lth summand will either cancel with one from the (l − 1)st 
summand or be a fixed point. We first need to characterize the terms which can occur 
in the product (7). To do this, we need to recall the notion of a quasishuffle. Let A be 
a set of variables and let v be a vector whose components are sums of the variables. 
Given B ⊆ A then the restriction of v to B is the vector v|B obtained by setting the 
variables not in B equal to zero and eliminating any components which are completely 
zeroed out in this way. For example, if v = (c + d + e, b + f, a + c) and B = {c, d}, then 
v|B = (c + d, c). Now consider compositions α and β as two sets of distinct variables. 
In this context, their quasishuffle is a vector v containing only these variables such that 
v|α = α and v|β = β. We let

α ∃ β = {v : v is a quasishuffle of α and β}.

For example

(a, b) ∃ (c) = {(a, b, c), (a, b + c), (a, c, b), (a + c, b), (c, a, b)}.

It is well known that

α1 · α2 · . . . · αk =
∑

v∈α1

∃

α2

∃

...

∃

αk

v.

To state the formula for the antipode, we need two more notions. If α = (a1, a2, . . . , al)
is a composition, then its reversal is the composition

revα = (al, al−1 . . . , a1),

just as for words. We will also use the refinement partial order on compositions. Define 
β ≥ α to mean β is a coarsening of α, that is, the parts of β are obtained by adding 
together adjacent parts of α.

Theorem 4.1 ([9,16]). The antipode in the monomial basis of QSym is given by

S(Mα) = (−1)l(α)
∑

β≥rev(α)

Mβ .

Proof. Let l = l(α). We first define the action of the splitting operator. It will be 
convenient to define σ on pairs (π, v) where v is a term in the product π = α1 · . . . · αk

and k < l. Since k < l, there must be an index j with l(αj) ≥ 2. Let j be the smallest 
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such index, so that l(α1) = · · · = l(αj−1) = 1. The splitting operator is then defined to 
be σ(π, v) = (π′, v) where

π′ = α1 · . . . · αj−1 · (d) · α′
j · αj+1 · . . . · αk, (8)

d is the first element of αj , and α′
j is αj with d removed. Note that this is well defined 

since if v is a term in π, then it must also be a term in π′ because the variables in α′
j are a 

subset of the ones in αj . For example, suppose π = (a) ·(b) ·(c, d, e) ·(f, g) which contains 
the term v = (c +f, d, a +b +e +g). In this case, j = 3 and π′ = (a) · (b) · (c) · (d, e) · (f, g). 
Note that σ can be applied to any pair (π, v) in a product with k < l.

The set of pairs to which we can apply the merge map μ is more restricted. For the 
rest of the proof, we assume that α has its component variables listed in lexicographic 
order. Consider a pair (π, v) where π has the form (7). In order for μ to be the inverse 
of σ, we can only merge αj and αj+1 if l(α1) = · · · = l(αj) = 1. Given a quasishuffle v
in the product π, find the smallest index j, if any, satisfying

(i) l(α1) = · · · = l(αj) = 1, and
(ii) if B = αjαj+1, then v|B = (d, . . . , e) where the elements d, . . . , e are listed in 

increasing lexicographic order (as are the elements of α).

Finally, we define μ(π, v) = (π′, v) where

π′ = α1 · . . . · αj−1 · αjαj+1 · αj+2 · . . . · αk.

Note that condition (ii) and the fact that v is a term in π imply v is also a term in 
π′ and so the map is well defined. To illustrate, suppose that we have (π, v) where 
π = (a) · (b) · (c) · (d, e) · (f, g) and v = (c + f, d, a + b + e + g). We can not have 
j = 1 because then B = {a, b} and v|B = (a + b) with a and b in the same component. 
Similarly j = 2 will not work since then B = {b, c} and v|B = (c, b) which is not in 
lexicographic order. But j = 3 satisfies both conditions, giving μ(π, v) = (π′, v) where 
π′ = (a) · (b) · (c, d, e) · (f, g). So μ inverts the action of σ in the previous example.

To define the involution ι, take a pair (π, v) and define ι(π, v) = μ(π, v) if an index 
satisfying (i) and (ii) above can be found. If there is no index, then there are two possi-
bilities. One is that there is an index j such that (i) is true, but l(αj+1) ≥ 2 and d, the 
sole element of αj is in the same component as or to the right of the leftmost element 
of αj+1. In this case we define ι(π, v) = σ(π, v). The minimality of j implies that ι as 
defined thus far is an involution, and it is clearly sign reversing.

The only other possibility is that there is no index j satisfying (i) and (ii) because 
l(αi) = 1 for all i and (ii) is never true. In this case we must have k = l, so that v is a 
quasishuffle from the last summand with sign (−1)l. We claim that in this case we have 
that (ii) is not satisfied if and only if v ≥ rev(α). Indeed v � rev(α) is equivalent to 
the existence of a pair of consecutive letters B = {d, e} appearing in lexicographic order 
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in v. Thus v|B = (d, e) which is the same as saying that (ii) will be satisfied for some 
index. So the fixed points of the involution give us exactly the quasishuffles we need for 
the Mβ with β ≥ rev(α). �
5. The fundamental basis for QSym

The fundamental quasisymmetric function corresponding to a partition α can be de-
fined as

Fα =
∑
β≤α

Mβ .

The formula for S in the fundamental basis first occurs in [16]. Our proof for the formula 
for the antipode of QSym in the fundamental basis will be very similar to the one for 
the monomial basis. We will arrange the notation and exposition to emphasize this fact.

Associated with any composition α = (a1, . . . , al) is its rim-hook diagram which has 
ai cells in the ith row from the bottom and the last cell of row ai is in the same column as 
the first cell of row ai+1. We make no distinction between a composition and its diagram. 
For example

α = (3, 1, 3, 2) = .

A cut-edge of α is an edge which is the first vertical edge of α1, the last vertical edge of 
αl, or an edge bounding two cells of α. Separating α into pieces along a cut-edge results 
in two diagrams β to the southwest and γ to the northeast. In this case we write α = β|γ. 
The coproduct applied to a fundamental quasisymmetric function is then

ΔFα =
∑

β|γ=α

Fβ ⊗ Fγ .

To illustrate, if α = (3, 1) then the various pairs for β and γ are, as the cut-edge travels 
from southwest to northeast,

∅ , , , , ∅.

Thus

Δ(F(3,1)) = 1 ⊗ F(3,1) + F(1) ⊗ F(2,1) + F(2) ⊗ F(1,1) + F(3) ⊗ F(1) + F(3,1) ⊗ 1.
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T = 2 7

1 3 9

4

5 6 8

Fig. 1. An example for computing the row word.

To describe the product of fundamental quasisymmetric functions we associate com-
positions with permutations. Write α = (α1, . . . , αl) |= n or |α| = n if 

∑
i αi = n. There 

is a canonical bijection between α |= n and subsets of [n − 1] given by sending α to

D(α) = {α1, α1 + α2, . . . , α1 + α2 + · · · + αl−1}. (9)

Given a sequence of integers w = c1c2 . . . cn we denote its descent set by

Desw = {i : ci > ci+1}. (10)

So every such w has an associated set Desw ⊆ [n − 1] which corresponds to a compo-
sition α. In this case we define Fw = Fα and say that w models α. Note that one can 
tell by context whether the subscript is a word w or a composition α since the latter 
will have parentheses and commas while the former will not. Now suppose α |= m and 
β |= n. Let wα and wβ be disjoint (as sets) and model α and β, respectively. In this 
situation, the multiplication of fundamental quasisymmetric functions is given by

FαFβ =
∑

w∈wα

∃

wβ

Fw, (11)

where the sum is over all ordinary shuffles of wα and wβ .
Given α and a set C of positive integers with |α| = C, there is a canonical way to 

construct a w modeling α with entries in C. Fill the cells of the diagram of α bijectively 
with the elements of C so that rows and columns increase to form a tableau T . So, in 
particular, if C = [n], then T is a standard Young tableau of shape α. The row word of 
T , wT , is constructed by concatenating the rows of T starting with the bottom row and 
moving up. Continuing the example started at the beginning of this section, we could 
take the tableau in Fig. 1 in which case wT = 568413927. It is easy to see that the row 
and column restrictions on T imply that wT models α.

We are now ready to put everything together and apply Takeuchi’s formula. Fix once 
and for all a standard Young tableau T of shape α. Then

S(Fα) =
∑
k≥0

(−1)k
∑

α1|...|αk=α

FwT1
. . . FwTk

, (12)

where the αi are all nonempty and Ti is the subtableau cut out from T by αi. To 
illustrate, suppose α = (2, 1) and
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T = 1

2 3 4

5 6

Fig. 2. An example for Fα.

T = 1
2 3

.

Thus the terms in S(F(2,1)) correspond to the decompositions

1
2 3

, 1
2 3

, 1

2 3

, 1

2 3

of T so that

S(F(2,1)) = −F231 + F2F31 + F23F1 − F2F3F1.

We will adopt the terminology and notation of the previous section, the only differ-
ences being that we will use products of words to stand for products of fundamental 
quasisymmetric functions and that such products will be ordinary shuffles because 
of (11). We will use the notation αt to stand for the transpose or conjugate of α, that is, 
the diagram obtained by reflecting α in the main diagonal.

Theorem 5.1 ([16]). The antipode in the fundamental basis of QSym is given by

S(Fα) = (−1)|α|Fαt .

Proof. Let n = |α|. The definition of the splitting map is the same as in the proof of 
Theorem 4.1 except that one is dealing with products π of words and shuffles v which 
are terms in π. Also, in this case, we can apply the splitting map to any product with k
factors where k < n since n is the maximum number of nonempty subcompositions into 
which α can be decomposed by cuts. To illustrate, suppose α = (2, 3, 1) and we fix the 
tableau in Fig. 2. Now the product π = 5 · 6234 · 1 will contain the shuffle v = 621345. 
Since j = 2 is the smallest (in fact, only) index of a word in the product of length larger 
than one, we will have σ(π, v) = (π′, v) where π′ = 5 · 6 · 234 · 1.

The merge map is again very similar to the one used for the monomial quasisymmetric 
functions. We consider a shuffle v in the product π = w1 · . . . · wk and find the smallest 
index j, if any, such that

(i) |w1| = · · · = |wj | = 1, and
(ii) if B = wjwj+1, then v|B is the row word of a rim-hook subtableau of T .
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We then let μ(π, v) = (π′, v) where

π′ = w1 · . . . · wj−1 · wjwj+1 · wj+2 · . . . · wk

which is well defined, as before, because of condition (ii). Taking as an example π =
5 · 6 · 234 · 1 and v = 621345 we can not have j = 1 since then B = {5, 6} and v|B = 65
which is not the row word of the first two squares of T . But when j = 2 we have 
x|B = 6234 which is the row word of the four middle squares of T . Thus μ(π, v) = (π′, x)
where π′ = 5 · 6234 · 1, undoing the previous example’s application of σ.

One now defines the involution exactly as was done for the M -basis, applying σ if 
possible and otherwise applying μ if possible. So the only thing new is to determine the 
fixed point(s) (π, v). As before, they will all be in the last summand of equation (12)
which corresponds to k = n. So the factors in π are the individual elements of T and 
there is only one choice for π. Furthermore if μ can not be applied to (π, v), then one 
must have every pair of adjacent elements in wT being in the reverse order in v. But this 
can only happen if v is wT read backwards, which is precisely the row word of αt. �
6. The fundamental basis of mQSym

Motivated by work of Buch [7] on set-valued tableaux, Lam and Pylyavskyy [15]
defined six new Hopf algebras. These can be thought of as K-theoretic analogues of the 
symmetric function, quasisymmetric function, noncommutative symmetric function, and 
Malvenuto–Reutenauer Hopf algebras (the first and last both having two analogues). 
They appealed to Takeuchi’s Theorem to conclude the existence of antipodes. Recently, 
Patrias [20] has given explicit formulas for these maps. We wish to show how one of these 
expressions can be derived using splitting and merging.

We will describe multi-QSym, denoted mQSym, the K-theoretic analogue of QSym. 
Because of the use of set-valued maps, we will need to permit arbitrary Z-linear combi-
nations of basis elements and these elements will not be homogeneous of a certain degree. 
Since elements of mQSym are not of bounded degree, it is not graded. However, we can 
still apply Takeuchi’s formula because its proof also works more generally for any Hopf 
algebra where the projection map (1) is locally nilpotent.

Let P̃ be the family of all finite, nonempty sets of positive integers. If S, T ∈ P̃, then 
we write S < T (respectively, S ≤ T ) if maxS < minT (respectively, maxS ≤ minT ). 
Let w = c1c2 . . . cn be a permutation of [n]. A w-set-valued partition is a map f : [n] → P̃
satisfying

{
f(i) ≤ f(i + 1) if ci < ci+1,
f(i) < f(i + 1) if ci > ci+1

for i ∈ [n − 1]. This is a special case of a more general definition for P -set-valued parti-
tions, P a poset, which we will not need. To illustrate, if w = 231, then a w-set-valued 
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partition would satisfy f(1) ≤ f(2) < f(3). For example one could have f(1) = {5, 7}, 
f(2) = {7, 8, 10} and f(3) = {11}.

Associate with any S ∈ P̃ the monomial xS =
∏

s∈S xs, and with any w-set-valued par-
tition f the monomial xf =

∏
i∈[n] xf(i). The fundamental multi-quasisymmetric function

associated with a composition α is

F̃α = F̃w =
∑
f

xf ,

where w models α, and the sum is over all w-set-valued partitions f . Continuing the 
example above, α = (2, 1) is modeled by w = 231 and the given partition would con-
tribute x5x

2
7x8x10x11 to F̃(2,1). We note that the sum of the terms of least degree in F̃α

is exactly Fα. Finally we let mQSym be the span of the F̃α.
We need some combinatorial constructions to describe the bialgebra structure of 

mQSym. Many of the ideas which came into play in proving the antipode formula in 
the fundamental basis for QSym will also be used here. In addition to being able to 
separate a diagram at a cut-edge, we will need to be able to separate it at a cell. So if c
is a cell of the diagram of α which we will call the cut-cell, then we write α = β •γ where 
β is the composition whose diagram is all cells southwest of and including c and γ is the 
composition to the northeast and including c. Equivalently, α is formed by identifying 
the last square of β with the first square of γ. Note that both β and γ include c so that 
|β| + |γ| = |α| + 1. For example, if α = (3, 1), then here are the various pairs β and γ as 
the cell c moves from southeast to northwest

, , , .

The coproduct of mQSym can now be written

Δ(F̃α) =
∑
β,γ

F̃β ⊗ F̃γ ,

where the sum is over all β, γ such that α = β|γ or α = β • γ. Continuing our example

Δ(F̃(3,1)) = 1 ⊗ F̃(3,1) + F̃(1) ⊗ F̃(3,1) + F̃(1) ⊗ F̃(2,1) + F̃(2) ⊗ F̃(2,1) + F̃(2) ⊗ F̃(1,1)

+ F̃(3) ⊗ F̃(1,1) + F̃(3) ⊗ F̃(1) + F̃(3,1) ⊗ F̃(1) + F̃(3,1) ⊗ 1

as the position of the cut travels over alternating edges and cells from southwest to 
northeast.

We can now apply Takeuchi’s formula to get

S(F̃α) =
∑

(−1)k
∑

F̃α1 . . . F̃αk
(13)
k≥0 α1,...,αk
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•

• •

1

2 • 3

4 • 5 6 • 7 8

Fig. 3. The diagram of (1) • (2) • (1)|(1)|(1) • (1, 1) and it superstandard labeling.

with the sum being over all α1, . . . , αk such that

α = α1 ◦1 α2 ◦2 · · · ◦k−1 αk, (14)

where either ◦i = | or ◦i = • for all i. Note that two expressions with the same αi

but different ◦i both contribute separately to the sum. For example, if α = (3), then 
α = (1) • (2)|(1) and α = (1)|(2) • (1) are different terms. We can write any expression 
of the form (14) by grouping together all the compositions between any two occurrences 
of an edge cut. Specifically, we will write

α1 ◦1 α2 ◦2 · · · ◦k−1 αk = β1|β2| . . . |βm,

where β1 = α1 • · · ·•αa, β2 = αa+1 • · · ·•αb, and so forth. We will call the βi components
and the αj subcomponents of this expression. To illustrate, if α = (3, 1, 1), then

(3, 1, 1) = (1) • (2) • (1)|(1)|(1) • (1, 1)

has three components, namely β1 = (1) • (2) • (1), β2 = (1), β3 = (1) • (1, 1).
It will be convenient to have a geometric way to visualize the components and sub-

components of an expression. For the components, we will use the same convention as 
for QSym, where the diagram of α is split along the cut-edges. For the subcomponents, 
each cut-cell will be split in two by a vertical edge. These edges will be decorated with 
a bullet to distinguish them from the original edges of α. The diagram for the example 
at the end of the last paragraph is shown in Fig. 3. Note that the components of the 
expression are the connected components of the diagram while the subcomponents can 
be obtained by cutting each component along the bullet edges.

To complete our exposition, we need to describe how to take products of the F̃α. 
Given a word w = c1 . . . cn, then a multiword on w is a word of the form w̃ = cm1

1 . . . cmn
n

where cmi
i indicates that ci is to be repeated mi > 0 times for all i. Exponents of one 

can be omitted. For example, if w = 231, then we could take w̃ = 24312 = 2222311. The 
multishuffles of words v and w, denoted v ˜∃ w, is the set of all words x = d1 . . . dr such 
that

1. x is a shuffle of some ṽ and w̃, and
2. di �= di+1 for all i ∈ [r − 1].

Note that this set is infinite. By way of illustration if v = 21 and w = 3, then
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α = 1

2

3 4 5

β: 1

34 25

12

34 5

12

3 45

1

3 245

Fig. 4. Collapsing α = (3, 1, 1) onto β = (2, 1).

21 ˜∃ 3 = {213, 231, 321, 2321, 2131, 2313, 3213, 3231, . . . },

where we have listed all the multishuffles of length 3 or 4. Now given compositions α and 
β we take words wα and wβ modeling them, respectively, on disjoint alphabets. In this 
case

F̃αF̃β =
∑

w∈wα
˜∃ wβ

F̃w. (15)

Continuing our example, 21 models α = (1, 1) and 3 models β = (1) so that

F̃(1,1)F̃(1) = F̃213 + F̃231 + F̃321 + F̃2321 + F̃2131 + F̃2313 + F̃3213 + F̃3231 + . . . .

To combine (13) and (15), consider a decomposition of the form (14). Label the 
corresponding diagram to form a tableau in a superstandard way with the numbers 
1, . . . , 

∑
i |αi| from left to right in each row starting with the top row and working down. 

Then, for each i, let wi be the row word of the subtableau of T corresponding to αi. Our 
decomposition will be represented by

π = w1 ◦1 · · · ◦k−1 wk (16)

and the terms in the corresponding product of multi-quasisymmetric functions will be 
indexed by the multishuffles in w1 ˜∃ . . . ˜∃ wk. Fig. 3 illustrates these ideas, showing that 
(1) • (2) • (1)|(1)|(1) • (1, 1) when written in words becomes 4 • 56 • 7|8|2 • 31 which 
contains all terms of S(F(3,1,1)) corresponding to the multishuffle 4 ˜∃ 56 ˜∃ 7 ˜∃ 8 ˜∃ 2 ˜∃ 31.

To describe the coefficients of the cancellation free formula for the antipode we need 
the notion of collapsing a diagram. This operation is called merging in [20], but that 
would conflict with our use of the term in this work. We say that β is a collapse of α
if one can successively collapse together boxes of α which share an edge to form β. We 
let cα,β be the number of ways to collapse α to β. In counting collapses only the sets of 
boxes collapsed matters, not the order of the collapsing. Fig. 4 shows that if α = (3, 1, 1)
and β = (2, 1), then cα,β = 4. The labeling of the boxes is merely to show which sets 
were collapsed.

Theorem 6.1 ([20]). The antipode in the fundamental basis of mQSym is given by

S(F̃α) =
∑
β

(−1)|β|cβ,αt F̃β ,

where the sum is over all compositions β.
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1 2

3 • 4

, 1342
σ

−→

←−
μ

1 2

3 • 4

, 1342

1

2 3

, 2123
σ

−→

←−
μ

1

2 • 3 4

, 2134

Fig. 5. The splitting and merging operations.

Proof. The proof parallels that of Theorem 5.1. All diagrams are labeled in a super-
standard way and their reading words used in the corresponding multishuffles. We will 
define the involution on pairs (π, v) where π is a decomposition of the form (14) and v
is a term in the multishuffle corresponding to π. We denote the image of the pair under 
the involution as (π′, v′). As usual, the split operation is easiest to describe. For all i, let 
vi be the subword of v which is a multiword on wi where wi is the reading word of αi

in the superstandard tableau for π. Find the smallest index j, if any, such that |vj| ≥ 2
and suppose vj = ab . . . c. There are now two cases.

1. If a �= b, then let
(a) π′ = π with αj replaced by (1)|α′

j where α′
j is αj with its first square removed, 

and
(b) v′ = v.

2. If a = b, then let
(a) π′ = π with αj replaced by (1) • αj , and
(b) v′ = v with one added to all elements greater than or equal to b except a.

To illustrate these cases, let α = (1, 2). Suppose π = (1) • (1)|(2) which in terms of 
words is 3 •4|12 as can be seen in the top line of Fig. 5. Let v = 1342, a multishuffle in π
with corresponding subwords v1 = 3, v2 = 4, and v3 = 12. The only vj with at least two 
elements is 12 and for this subcomponent 1 �= 2. So using the first case above, we have 
σ(π, v) = (π′, v′) where π′ = (1) • (1)|(1)|(1) and v′ = 1342. On the other hand, suppose 
we consider α = (2, 1) and π = (2)|(1) or in term of words 23|1 as in the bottom line of 
Fig. 5. Then π contains the multishuffle v = 2123 with subwords v1 = 223 and v2 = 1. 
Now v1 is the only subword with at least two elements and it begins with 22. So we are 
in the second case of the definition of σ. Thus π′ = (1) • (2)|(1). Also v′ is obtained from 
v by increasing the second 2 and all larger numbers by one to obtain v′ = 2134. Note 
this convention is precisely what is needed to make v′ a shuffle in π′ and so this case is 
well defined. It is even easier to see that the first case is as well.

To describe the merge map, consider (π, v) and find the smallest index j, if any, such 
that |vi| = 1 for i ≤ j and the concatenation vjvj+1 is a multisubword of the concate-
nation wjwj+1. Furthermore, if ◦j = • we also insist that b and c are not consecutive in 
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v where vj = b and c is the first element of vj+1. Again, there are two cases to define 
μ(π, v) = (π′, v′).

1. If ◦j = |, then let
(a) π′ = π with αj |αj+1 replaced by α′

j which is formed by edge-pasting αj and 
αj+1 back together again, and

(b) v′ = v.
2. If ◦j = •, then let

(a) π′ = π with αj •αj+1 replaced by α′
jwhich is formed by cell-pasting αj and αj+1

back together again, and
(b) v′ = v with one subtracted from all element larger than or equal to c.

By way of example, consider π = (1) • (1)|(1)|(1) and v = 1342 which is the upper 
right pair in Fig. 5. In terms of words π = 3 • 4|1|2 and v has corresponding subwords 
v1 = 3, v2 = 4, v3 = 1, v4 = 2. First consider j = 1. Then v1v2 = 34 is a subword of v. 
But ◦1 = • and 3, 4 are adjacent in v so they can not be merged. Next we try j = 2
giving v2v3 = 41. This is not a subword of v, so we test j = 3. Finally v3v4 = 12 is a 
subword of v and ◦3 = | so there is no further restriction. It follows that we can apply 
the first case of the merge definition and return to the original pair which started the 
split example. Now let us look at π = (1) • (2)|(1) and v = 2134 as in the lower right of 
Fig. 5. Translating to words gives π = 2 • 34|1 and v1 = 2, v2 = 34, v3 = 1. Taking j = 1
we see that v1v2 = 234 is a subword of v. Also ◦1 = •, but 2, 3 are not adjacent in v so 
that we can merge as in case 2. This undoes the effect of σ in the second split example. 
It should not be hard for the reader to prove that σ is well defined.

We now define the involution ι exactly as in the case of QSym: applying σ if an 
appropriate index j can be found and otherwise applying μ. It is straightforward to 
verify that the minimality of j makes these two operations inverses. In fact case 1 for σ
is the inverse of case 1 for μ and similarly for the 2nd cases. And, as usual, the fact that 
ι is sign-reversing is trivial.

There remains to determine the fixed points of ι. For this we will need a notion which 
is also useful in the theory of permutation patterns. Call a permutation v of the interval 
[a, e] colayered if it is of the form

v = d (d + 1) . . . e c (c + 1) . . . (d− 1) . . . a (a + 1) . . . (b− 1)

for certain a, b, c . . . , e. The reason for this terminology is because the complement of v
is layered in the usual sense. The layer lengths of v are the cardinalities of the maximal 
increasing intervals. For example v = 678945123 is colayered with layer lengths 4, 2, 3. 
There is a natural bijection between colayered permutations of [d] and compositions of 
α = (α1, . . . , αk) of d: just assign to each colayered permutation the composition of its 
layer lengths. For the inverse, take the diagram of α and let v be the row word of its 



C. Benedetti, B.E. Sagan / Journal of Combinatorial Theory, Series A 148 (2017) 275–315 293
1 • 2

3 • 4 • 5 6

, v = 216534 ←→ 534

21 6
collapsed from 3 4

5

1 6

2

Fig. 6. A fixed point for α = (2, 1).

superstandard filling. So as v varies over all colayered permutations of [d] the associated 
α will run over all compositions of d.

No let (π, v) be a fixed point of ι where π = α1 ◦1 · · · ◦k−1 αk. Such a fixed point for 
α = (2, 1) is shown in Fig. 6 to help clarify the following argument. Since we can not 
apply σ, we must have |vi| = 1 for all i. This has several consequences. First of all v
can have no repeated elements. Also, |αi| = 1 for all i. Thus every cut-edge of α (except 
the first and last) has been split to form π and there is a natural bijection between the 
cells of α and the components of π. Furthermore, every edge internal to a component 
is dotted. Let the reading words of the components of π be w1, . . . , wl in order from 
southwest to northeast. In the example, w1 = 345, w2 = 6, and w3 = 12.

We claim that the possible second coordinates in our fixed point are exactly those of 
the form v = w′

lw
′
l−1 . . . w

′
1 where w′

i is a colayered permutation of the elements of wi. 
And once this claim is established, we will be done. Indeed, recall the bijection between 
colayered permutations and compositions as well as the bijection between components 
of π and the cells of α. This combined with the order reversal in going from the wi to 
the w′

i results in a bijection between the fixed points and row words of compositions β
which collapse to αt where the elements of v′i collapse to form the ith box (counting from 
southeast to northwest) of αt. See Fig. 6 for an illustration.

We will prove the claim in the case that the number of components is l = 2 since the 
general case is similar inducting on l. So let w1 = a1 . . . ap and w2 = b1 . . . bq. Since the 
components are single cells, the subcomponents of a given component form a single row. 
It follows that the reading words w1, w2 are increasing sequences of consecutive integers. 
Since we can not apply μ we have, by case 1, that b1 must be to the left of ap in v. And 
by case 2, the only way that ai+1 can be to the right of ai is if they are adjacent, with 
a similar statement holding for the bj. It follows by induction on i and j that all the 
bj must come before all the ai. A similar induction shows that the ai and bj must be 
arranged in colayered permutations. This completes the proof. �
7. The incidence Hopf algebra on graphs

Now we turn our attention to the incidence Hopf algebra on graphs G. We begin by 
introducing some notation. Let G = (V, E) be a simple graph with vertex set V = [n]
and edge set E. We denote by [G] the isomorphism class of G. The Hopf algebra G is 
the free F-module on the isomorphism classes [G]. It has been studied by Schmitt [22], 
and Humpert and Martin [14] among others. Ardila and Aguiar (private communication) 
have recently described the antipode of G using the more general setting of Hopf monoids.
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The product and coproduct maps in G are as follows

[G ·H] = [G �H] (17)

Δ ([G]) =
∑

(V1,V2)|=[n]

[GV1 ] ⊗ [GV2 ], (18)

where GV1 is the subgraph of G induced by the vertex set V1 and similarly for GV2 . We 
will henceforth drop the square brackets denoting equivalence class to simplify notation. 
No confusion should be caused by this convention.

To state the formula of Humpert and Martin for the antipode, we recall that a flat of 
G is a spanning subgraph F such that every component of F is induced. These are just 
the flats of the cycle matroid of G. We will denote the number of components of F by 
c(F ). Given any collection F of edges of G, the graph obtained from G by contracting 
the edges in F will be denoted G/F . Finally, we let a(G/F ) be the number of acyclic 
orientations O of G/F . That is, O is a digraph with underlying graph G/F such that O
contains no directed cycles.

Theorem 7.1 ([14]). The antipode in G is given by

S(G) =
∑

F flat of G

(−1)c(F )a(G/F )F.

Proof. We will give a combinatorial proof of this theorem using the ideas from Sec-
tion 2. By virtue of (17), (18), and Takeuchi’s formula, the same reasoning that lead to 
equation (3) applied to G gives

S(G) =
∑
k≥0

(−1)k
∑

(V1,...,Vk)|=[n]

GV1 � · · · �GVk
. (19)

Since each GVi
is induced, each graph F = GV1 �· · ·�GVk

in the inner sum is a flat of G. 
In order to show that the coefficient of F in S(G) is (−1)c(F )a(G/F ) we will construct, 
for each flat F , a sign-reversing involution ι on the set

AF =
⋃
k≥0

{π = (V1, . . . , Vk) : π |= [n] and GV1 � · · · �GVk
= F}

with sign function

sgn π = (−1)k

for π = (V1, . . . , Vk). This involution will have fixed points which are in bijection with 
acyclic orientations of G/F and which all have sign (−1)c(F ), so we will be done.

We will first give the proof in the case that F is the flat with no edges and then indicate 
how this demonstration can be modified for a general flat. Note that if π = (V1, . . . , Vk) ∈
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AF where F is the empty flat, then each Vi is a set of independent vertices. Let Oπ be 
the orientation in G = G/F defined by orienting its edges as

u → v whenever u ∈ Vi, v ∈ Vj and i < j.

Note that Oπ is acyclic because each Vi is independent and the usual ordering of the 
integers is transitive.

In general, there will be many different π giving rise to the same orientation. So given 
an orientation O, we let

ΠO = {π : Oπ = O}.

Among all the partitions in ΠO, we distinguish a canonical one φO = (bO1 , bO2 , . . . , bOn )
defined as follows. Let bO1 be the largest source in O. Next consider the digraph O − bO1
and let bO2 be its largest source. Continue in this way, removing sources and selecting the 
largest source in the remaining graph until we are left with a single vertex bOn . An example 
follows this proof. Our strategy will be, for each acyclic orientation O, to construct a 
sign-reversing involution ιO : ΠO → ΠO which has φO as its unique fixed point. Note 
that sgnφO = (−1)n = (−1)c(F ) where F is the empty flat. This will complete the proof 
in the case under consideration.

To define ι = ιO, suppose π = (V1, . . . , Vk) ∈ ΠO with π �= φO. Then there must 
be a smallest vertex i where π and φO disagree, that is, V1 = bO1 , . . . , Vi−1 = bOi−1, but 
Vi �= bOi . For simplicity, let b = bOi . Let Vj , j ≥ i, be the block containing b. If |Vj | ≥ 2, 
then we split Vj by replacing it with the ordered pair of blocks Vj − b, b to obtain a 
partition σj(π). If |Vj | = 1, then i �= j since otherwise π and φO would not differ at 
index i. Consider the suborientation O′ obtained by restricting O to Vi � · · · � Vk. So 
Vj−1 is in O′ which forces Vj−1 � Vj to be independent: if there were an edge in the 
graph underlying O′ from a vertex of Vj−1 to Vj = b, then it would be oriented into b, 
contradicting the fact that b is a source in O′. So we can merge Vj by replacing it with 
Vj−1 � Vj to form μj(π). Finally define

ι(π) =
{

σj(π) if |Vj | ≥ 2,
μj(π) if |Vj | = 1.

As usual, it is clear that ι is sign-reversing. To check that it is an involution, we first 
show that the indices i for π and for ι(π) are the same. If a block is split, then b ends up 
one block to the right of its original position so that the ith block still differs from φO. 
If two blocks are merged, then the only way to change Vi is by merging in with Vi+1. 
But afterwards the ith block has size at least two and so again differs from that block 
in φO.

Since i does not change in passing from π to ι(π), the orientation O′ must 
be the same for both. Thus b is also invariant under this map since it is the 
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largest source in O′. Now the fact that ι is an involution follows in much that 
same way as in the proof for F[x]. This finishes the demonstration for the empty 
flat.

We now deal with the general case. As already noted, every term in the sum (19)
is a flat of G. Consider a flat F and a term GV1 � · · · � GVk

= F . Then G/F

is obtained by contracting every component of F to a point. Each such compo-
nent lies in one of the GVi

. So the partition (V1, . . . , Vk) of V (G) induces a parti-
tion (W1, . . . , Wl) of V (G/F ) where each of the Wi is independent in G/F . Clearly 
this process is reversible with each partition of V (G/F ) into independent sets giv-
ing rise to a partition of V (G) which induces the flat F . Now we can apply the 
same process as with the empty flat to the partitions of V (G/F ). This completes the 
proof. �

As an example of the involution in Theorem 7.1, consider the acyclic orientation O
depicted in the first graph of Fig. 7. To compute the fixed point φO we first remove the 
largest source, which is vertex 5, to be the first component of φO. The largest source 
in what remains is 8 since the arc from 5 to 8 has been removed, and this becomes the 
second component of φO. Continuing in this way, we obtain

φO = (5, 8, 7, 3, 6, 4, 2, 1)

as displayed in the second drawing of Fig. 7.
Now suppose we are given π = (5, 3, 4, 26, 8, 7, 1) as in the third illustration of Fig. 7. 

It is easy to verify that Oπ = O. Comparing π and φO, we see that they first differ in 
the second block so i = 2. The largest source of O′ = O − 5 is b = 8 which is in the 
singleton block V5. Thus

ι(π) = μ5(π) = (5, 3, 4, 268, 7, 1)

as drawn at the end of Fig. 7.
Finally, consider π′ = ι(π) = (5, 3, 4, 268, 7, 1). The reader should have no trouble 

verifying that for π′ we still have i = 2 and b = 8 which is now in block 4. Since this 
block has other elements in it as well

ι2(π) = ι(π′) = σ4(π′) = (5, 3, 4, 26, 8, 7, 1) = π

as desired.
Viewed as maps on ordered partitions, the involutions for F[x] and for G are not the 

same. However, if we take G to be the graph with V = [n] and no edges, then there is 
only one flat, namely F = G, and only one acyclic orientation O. So the involution in this 
case has a unique fixed point which is the same as the one in the proof of Theorem 2.1. 
In fact, we could have used this map to prove the polynomial result and emphasize even 
more the similarly of the demonstrations. We chose the earlier involution because of its 
simplicity.
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O =

6 5

7 4

8 3

1 2

φO = (5, 8, 7, 3, 6, 4, 2, 1) =

5 8 7 3 6 4 2 1

π = (5, 3, 4, 26, 8, 7, 1) =

5 3 4

6

2

8 7 1

ι(π) = (5, 3, 4, 268, 7, 1) =

5 3 4

6

2

8 7 1

Fig. 7. Example for Theorem 7.1.

8. The immaculate basis for NSym

The Hopf algebra of noncommutative symmetric functions, NSym, was introduced by 
Gelfand et al. [10], and its immaculate basis, Sα, was defined in the paper of Berg et 
al. [5]. There is no known cancellation-free formula for the antipode acting on Sα for 
general α. So in this section we derive expressions in the special cases where α is of hook 
shape or has at most two parts. In the case of hooks, the proof follows easily from the 
know expression for the antipode acting on the ribbon Schur basis. For shapes of at most 
two parts we give a new, cancellation-free expression proved by applying an involution.

The noncommutative symmetric functions are freely generated as an algebra by the 
noncommutative symbols Hn for n a positive integer. It is also convenient to let H0 = 1
and Hn = 0 for n < 0. Similarly, the ordinary symmetric functions, Sym, are generated 
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by the complete homogeneous symmetric functions h1, h2, . . . which do commute. There 
is also the forgetful function NSym → Sym defined by algebraically extending the map 
Hn �→ hn for all n.

Bases for Sym are indexed by integer partitions λ = (λ1, λ2, . . . , λk), which are weakly 
decreasing sequences of positive integers. The all-important Schur function basis can be 
defined by the k × k Jacobi–Trudi determinant

sλ = det(hλi+j−i).

Bases for NSym are indexed by compositions α = (α1, α2, . . . , αk), which are arbitrary 
sequences of positive integers. To get a basis for NSym corresponding to the Schur 
functions, we define the noncommutative determinant of a k×k matrix A = (ai,j) to be

DetA =
∑
σ

a1,σ(1)a2,σ(2) . . . ak,σ(k),

where the sum is over all permutations σ of [k]. The immaculate basis for NSym is defined 
to be

Sα = Det(Hαi+j−i).

If α is a partition, then we clearly have Sα �→ sα under the forgetful map. To simplify 
the notation for products in this determinant we use, for any sequence of integers α =
(α1, α2, . . . , αk), the shorthand Hα = Hα1Hα2 . . .Hαk

.
It is well known that Sym is actually a Hopf algebra where

Δhn =
n∑

i=0
hi ⊗ hn−i.

The antipode has a particularly nice action on the Schur basis, namely

S(sλ) = (−1)|λ|sλt , (20)

where λt is the conjugate of λ. We use the notation |λ| and l(λ) as we have done for 
compositions.

We also have that NSym is a Hopf algebra with

ΔHn =
n∑

i=0
Hi ⊗Hn−i. (21)

But it appears as if the antipode is much harder to compute in the immaculate basis. So 
we will only derive formulas for it when α is a hook or when α has (at most) two rows.

We will first derive a formula for S(Sα) when α is a hook. To do this, we recall another 
important basis of NSym. The ribbon Schur function corresponding to α is
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Rα =
∑
β≥α

(−1)l(α)−l(β)Hβ . (22)

The antipode in the ribbon basis has a simple formula which can be found in the book 
of Grinberg and Reiner [13, Theorem 5.42].

Theorem 8.1. For any composition α,

S(Rα) = (−1)|α|Rαt

A hook is a composition of the form α = (n, 1k). In this case, the determinant for Sα

can be expanded around its first column since the second entry in that column is H0 = 1
which commutes with the other Hi. This results in the recursion

Sn,1k = HnS1k − Sn+1,1k−1 .

On the other hand, partitioning the terms in the sum (22) for Rn,1k into those with 
β1 = n and those with β1 > n shows that this ribbon Schur function satisfies the same 
recursion. So the next result follows easily using Theorem 8.1 and induction on k. We 
note that Grinberg [12] has rederived this formula using his work on double posets, a 
concept introduced by Malvenuto and Reutenauer in [17].

Theorem 8.2. For all n ≥ 1 and k ≥ 0,

S(Sn,1k) = (−1)n+kSk+1,1n−1 .

For the two-row case, we will express the antipode in terms of certain sets of tableaux. 
The shape of a composition α = (α1, . . . , αl) is an array of l rows of left-justified boxes 
with αi boxes in row i. We will use English notation where the first row is at the top as 
well as matrix coordinates for the cells. We also do not distinguish between a composition 
and its shape. So, for example,

(3,1,2,2) =

.

A dual immaculate tableau of shape α is a placement T of positive integers in the cells of 
α such that the rows strictly increase and the first column weakly increases. The reason 
for using “dual” is because the strong and weak inequalities are interchanged from those 
for an immaculate tableau as defined in the paper of Berg et al. [5]. We write shT = α. 
One dual immaculate tableau of shape (3, 1, 2, 2) is



300 C. Benedetti, B.E. Sagan / Journal of Combinatorial Theory, Series A 148 (2017) 275–315
T =

1 3 4
1
2 6
2 4

.

We let Tc = Ti,j be the element of T in cell c = (i, j). The content of T is the composition 
co(T ) = (m1, m2, . . . ) where mi is the multiplicity of i in T . In our example tableau 
co(T ) = (2, 2, 1, 2, 0, 1).

Suppose T is a set of tableaux. A set of frozen cells for T is a set of cells such that, 
for each such cell c, the element Tc is the same for all T ∈ T . This includes the case 
when Tc is empty for all T ∈ T . We will denote a frozen cell by giving its element a star. 
In the case the cell is to be empty, we use the symbol ∅∗. To illustrate, here is a set of 
tableaux indicating one of its sets of frozen cells

T =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1∗ 3∗ 4
1∗ 4
2∗ 6∗ ∅∗
2∗
∅∗

,

1∗ 3∗ 4
1∗
2∗ 6∗ ∅∗
2∗ 4
∅∗

,

1∗ 3∗
1∗ 4
2∗ 6∗ ∅∗
2∗ 4
∅∗

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

In all cases of interest to us, the set of frozen cells will have the shape of a composition, 
that is, frozen cells in a row are left-justified and the set of frozen cells in the first column 
is connected. So we will call the elements in these cells a frozen tableaux T ∗. Note that 
T ∗ includes the cells which are forced to be empty and we also require that all such cells 
are either at the right end of a row or at the bottom of the first column. In our example, 
the shape of T ∗ is (2, 1, 3, 1, 1). A dual immaculate tableau which includes empty cells 
in this way will be called an extended tableau.

Now given an extended tableau T ∗ and a content vector v, define the set T (T ∗, v) to 
be the set of all dual immaculate tableaux such that

(a) T ∗ is a frozen tableau for T (T ∗, v),
(b) co(T ) = v for every T ∈ T (T ∗, v), and
(c) T (T ∗, v) contains every dual immaculate tableau satisfying (a) and (b).

Note that our example T is such a set. It will turn out that the sets T (T ∗, v) which we 
will need always also have the property

(d) if v = (v1, . . . , vm), then coT ∗ = (v1, . . . , vm−1, w) for some w ≤ vm.

So henceforth we also assume that T (T ∗, v) also satisfies (d). It turns out that these are 
exactly the sets we need to describe the antipode.
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Given α = (α1, . . . , αl) |= n we will have to compute expressions of the form

S(Hα1Hα2 . . .Hαl
) = S(Hαl

) . . . S(Hα2)S(Hα1)

= (−1)nS1αl . . .S1α2S1α1 ,

where the second equality comes from the case k = 0 of Theorem 8.2. In [5, Theorem 7.3]
a rule is given for expanding SαSλ in the immaculate basis whenever α is a composition 
and λ is a partition. Applying this rule repeatedly to the last equation easily gives

S(Hα) = (−1)|α|
∑
T

Ssh(T ), (23)

where the sum is over all dual immaculate tableaux T with co(T ) = (αl, . . . , α2, α1). We 
are now in a position to prove our result for two-rowed tableaux. An example illustrating 
the following theorem follows its proof. One can also obtain a formula for S(Sm,n) by 
changing to the ribbon basis, using Theorem 8.1, and changing basis back, but this 
expression in not cancellation free.

Theorem 8.3. Given m, n ≥ 1, let T1 = T (T ∗
1 , (n, m)) and T2 = T (T ∗

2 , (n − 1, m + 1))
where

T ∗
1 =

1∗
...
1∗ 2∗

, T ∗
2 =

1∗
...
1∗
∅∗

.

Then

S(Sm,n) = (−1)m+n
∑
T∈T1

Ssh T + (−1)m+n+1
∑
T∈T2

Ssh T .

Proof. Since Sm,n = Hm,n −Hm+1,n−1 we see, using equation (23), that

S(Sm,n) = (−1)m+n
∑
T

Ssh T + (−1)m+n+1
∑
T

Ssh T ,

where the first sum is over all possible dual immaculate tableaux of content (n, m) and 
the second over such tableaux of content (n − 1, m +1). Let T be the signed set which is 
the union of these two sets of tableaux, with signs being assigned so as to give the sums 
above. Now it suffices to find a sign-reversing involution ι : T → T whose fixed points 
are exactly the tableaux in T1 ∪ T2.

Consider T ∈ T . If T contains n ones, then change the lowest one (which must be in 
the first column since T is dual immaculate) to a two as long as the resulting tableau 
is still dual immaculate. If T contains n − 1 ones, then change the highest two in the 
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first column of T (if one exists) to a one. Note that if this is possible, then the resulting 
tableau must be dual immaculate. If neither of these options is possible, then T is a fixed 
point.

It is clear from the definitions that this is an involution and reverses sign. To find 
the fixed points, note that the only tableaux with n ones fixed by ι are those where the 
lowest one also has a two in its row. This gives precisely the tableaux in T1. Similarly, 
the tableaux with n − 1 ones fixed by ι are exactly those with no two in the first column 
which correspond to the tableaux in T2. This finishes the proof. �

By way of illustration, to calculate S(S2,4) we compute

T1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1∗ 2
1∗
1∗
1∗ 2∗

,

1∗
1∗ 2
1∗
1∗ 2∗

,

1∗
1∗
1∗ 2
1∗ 2∗

,

1∗
1∗
1∗
1∗ 2∗
2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

and

T2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1∗ 2
1∗ 2
1∗ 2
∅∗

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

so

S(S2,4) = S2,1,1,2 + S1,2,1,2 + S1,1,2,2 + S1,1,1,2,1 − S2,2,2.

9. The Malvenuto–Reutenauer Hopf algebra

Aguiar and Sottile [2] were the first to give an explicit, combinatorial formula for the 
antipode of the Malvenuto–Reutenauer Hopf algebra of permutations, but it was not 
cancellation free. Aguiar and Mahajan [1] derived an expression for the antipode in this 
Hopf algebra using an antipode formula in a certain Hopf monoid. While their formula 
is cancellation-free, one needs the monoid structure for its construction. We will derive 
certain cancellation-free formulas which can be derived without appealing to the monoid. 
In particular, we will find such expressions for permutations whose image under the 
Robinson–Schensted map is a column superstandard Young tableau of hook shape. These 
tableaux will appear again in the next section when we consider the Poirier–Reutenauer 
Hopf algebra.

Let Sn be the symmetric group on [n] and S = ∪n≥0Sn. The Malvenuto–Reutenauer 
Hopf algebra SSym has basis S. To describe the product, if σ = a1a2 . . . an ∈ Sn and 
m is a positive integer, then let σ+m denote the sequence obtained by increasing every 
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element of σ by m. For example, if σ = 231, then σ + 4 = 675. Now if π ∈ Sm and 
σ ∈ Sn, then we define

π · σ =
∑

τ∈π

∃

(σ+m)

τ

To illustrate

12 · 21 = 1243 + 1423 + 1432 + 4123 + 4132 + 4312.

For the coproduct, we need the notion of standardization. If σ = a1a2 . . . an is any 
sequence of distinct positive integers, then its standardization is the permutation st(σ)
obtained by replacing the smallest ai by one, the next smallest by two, and so on. By 
way of illustration st(9587) = 4132. For π ∈ Sn we let

Δ(π) =
∑
στ=π

st(σ) ⊗ st(τ),

where στ represents concatenation of sequences, empty sequences allowed. As an exam-
ple

Δ(3142) = ε⊗ 3142 + 1 ⊗ 132 + 21 ⊗ 21 + 213 ⊗ 1 + 3142 ⊗ ε,

where ε is the empty permutation.
Each term in the Takeuchi expansion of S(σ) is the sum of the elements of a set of 

shuffles σ1

∃ . . . ∃ σk and it will be convenient in what follows to identify the shuffle set 
with the sum of its elements.

The next result permits us to derive information about two antipode expansions at 
once. We write [π]f for the coefficient of π in any formal sum of permutations f .

Theorem 9.1. If π, σ ∈ Sn, then

[π]S(σ) = [σ−1]S(π−1).

Proof. There is a bijection between the shuffle sets in S(σ) and compositions α where the 
shuffle set σ1

∃ . . . ∃ σk corresponds to the composition α = (α1, . . . , αk) with |σi| = αi

for all i. The sign of the shuffle set is (−1)k and π occurs at most once in each shuffle 
set. So to prove the theorem, it suffices to show that π occurs in the shuffle set of S(σ)
corresponding to α if and only if σ−1 appears in the shuffle set of S(π−1) corresponding 
to α. By symmetry, it suffices to show the forward implication.

Suppose that π occurs in the shuffle set σ1

∃ . . . ∃ σk. Then for all i we must have that 
σi is a subsequence of π. We will show that in this case the shuffle set π′

1

∃ . . . ∃ π′
k in 

S(π−1) corresponding to the same composition must contain a copy of σ−1 in that π′
i

is a subsequence of σ−1 for all i. We will do the case i = 1 as the others are similar. 
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Suppose π = a1 . . . an, σ = b1 . . . bn and σ1 = st(b1 . . . bl) = c1 . . . cl := τ ∈ Sl. Since 
σ1 is a subsequence of π there must be indices i1 < · · · < il such that π(ij) = cj for 
1 ≤ j ≤ l. Because of this and the fact that c1, . . . , cl is a permutation of 1, . . . , l it 
must be that π′

1 = τ−1. Also σ(j) = bj for 1 ≤ j ≤ l and σ1 = τ implies that τ−1 is a 
subsequence of σ−1. So π′

1 is a subsequence of σ−1 as desired. �
There is another way to use information about one value of the antipode map to 

determine a second. As in the theory of pattern avoidance, we consider the diagram of a 
permutation σ ∈ Sn to be the set of points (i, σ(i)), 1 ≤ i ≤ n, in the Cartesian plane. 
One can then ask, which of the eight operations on permutations induced by the action 
of the dihedral group of the square preserve coefficients of the antipode? Aside from the 
trivial action, there is only one other which leaves the multiset of coefficients invariant. 
Examples in S3 and with σ = 2413 show that the other six actions do not preserve 
coefficients. Given σ, let σo be the permutation whose diagram is gotten from rotating 
the diagram of σ by 180 degrees. In other words if σ = b1 . . . bn, then

σo = (n + 1 − bn) . . . (n + 1 − b1).

The next proposition now follows easily from the fact that we always have st(wo) =
(stw)o and so we omit the proof.

Proposition 9.2. If π, σ ∈ Sn, then

[π]S(σ) = [πo]S(σo).

Before we start to give formulae for the antipode on specific elements of SSym, we 
wish to recall an important connection with ribbon Schur functions. Consider the map 
i : NSym → SSym defined by

i(Rα) =
∑

w∈Sn: Des(w−1)=D(α)

w (24)

where D and Des are as defined by (9) and (10), respectively. This is an injective Hopf 
algebra map [13, Corollary 8.14].

We now give some explicit, cancellation-free expressions for S(σ) for various specific σ. 
We start with the identity permutation. This can easily be derived from Theorem 8.1
together with i(Rn) = 12 . . . n and i(R1n) = n(n − 1) . . . 1. But we prefer to give a 
merge-split proof.

Proposition 9.3. We have

S(12 . . . n) = (−1)n(n(n− 1) . . . 1).
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Proof. It suffices to put a sign-reversing involution on the terms appearing in S(12 . . . n)
whose unique fixed point is π0 = n(n − 1) . . . 1 with sign (−1)n. The only shuffle set 
in S(12 . . . n) containing π0 is the term (−1)n(1 ∃ 2 ∃ . . . ∃ n) which gives us the desired 
fixed point.

Now take any π �= π0. Then there must be a smallest index i such that i + 1 appears 
to the right of i in π. Since the numbers 1, . . . , i − 1 appear in reverse order in π, every 
shuffle set in S(12 . . . n) containing π must be of the form

(−1)k(1 ∃ 2 ∃ . . . ∃ (i− 1) ∃ σi
∃ . . . ∃ σk)

for some k. If we are considering an appearance of π in a shuffle set with |σi| = 1, then 
let the involution pair it with the occurrence of π in the merged shuffle set

(−1)k−1(1 ∃ 2 ∃ . . . ∃ (i− 1) ∃ σiσi+1

∃ σi+2

∃ . . . ∃ σk).

If we are considering an appearance of π in a shuffle set with |σi| > 1, then let the 
involution pair it with an occurrence of π in the split shuffle set

(−1)k+1(1 ∃ 2 ∃ . . . ∃ i ∃ σ′
i

∃ σi+1 . . .

∃ σk),

where σ′
i is σi with i removed. It is clear from the definitions that these operations are 

inverses and sign-reversing. �
Using the Theorem 9.1, the previous proposition, and the fact that 12 . . . n is its own 

inverse, we can compute when 12 . . . n appears as a term in S(σ) for any σ.

Corollary 9.4. We have

[12 . . . n]S(σ) =
{

(−1)n if σ = n(n− 1) . . . 1,
0 else.

Using similar techniques, we can prove the following result about σ = n . . . 21. It 
would be interesting to give general conditions under which [π]S(σ) = [π′]S(σ′) where 
the prime denotes either reflection in a vertical axis or rotation by π/2 radians. Note 
that in either case (12 . . . n)′ = (n . . . 21).

Proposition 9.5. We have

S(n . . . 21) = (−1)n(12 . . . n)

and

[n . . . 21]S(σ) =
{

(−1)n if σ = 12 . . . n,
0 else.



306 C. Benedetti, B.E. Sagan / Journal of Combinatorial Theory, Series A 148 (2017) 275–315
We are going to generalize Propositions 9.3 and 9.5 to certain permutations starting 
with a decreasing sequence and ending with an increasing one. Applying the Robinson–
Schensted map to these permutations outputs a pair of tableaux of hook shape the second 
of which is column superstandard. First let us introduce the notation

ηk,l = k(k + 1) . . . l and δl,k = l(l − 1) . . . k

with the convention that if k > l, then ηk,l and δl,k are both the empty word. We will 
further abbreviate to

ηk = η1,k and δk = δn,k

when dealing with results for Sn. Another useful notion for applying induction is the 
following. If A is a set of positive integers with |A| = n and SA is the set of permutations 
(linear orderings) of the elements of A, then we have the standardization bijection stA :
SA → Sn. We then define, for any σ ∈ SA,

S(σ) = st−1
A S(stA(σ)), (25)

where stA is extended linearly.
We will need the following lemma which is a refinement of the well-known fact that 

the alternating sum of any row of Pascal’s triangle (except the first) is zero.

Lemma 9.6. For any n ≥ 1 we have

n∑
k=0

(−1)k(ηk ∃ δk+1) = 0.

Proof. It suffices to define a sign-reversing involution without fixed points on the terms 
appearing in the sum. Let v be a such a term and let k, 1 ≤ k ≤ n, be the largest integer 
such that ηk is a subword of v. Then v appears in (−1)k(ηk ∃ δk+1) and, by maximality 
of k, in (−1)k−1(ηk−1

∃ δk). Since these are the only two places v appears, v cancels and 
this is true for all v, leaving a sum of zero. �

Our next result is the promised generalization. Note that concatenation takes prece-
dence over shuffle. Note also that the following formula is cancellation free since the 
terms in each summand end with a different integer.

Theorem 9.7. For 1 ≤ k < n we have

S(δk,1ηk+1,n) =
k∑

j=1
(−1)n+k+j [ηj−1

∃ (δk,j+1

∃ δk+2)(k + 1)]j.
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Proof. We will induct on k where Proposition 9.3 is the base case. We will show that 
the terms of S(δk,1ηk+1,n) ending in j, 1 < j ≤ k, are as given in the summation. The 
cases j = 1 and j > k are similar. Applying the definition of an antipode and (25) gives

S(δk,1ηk+1,n) = −
[

k∑
i=1

δi,1

∃ S(δk,i+1ηk+1,n) +
n∑

i=k+1

δk,1ηk+1,i

∃ S(ηi+1,n)
]
.

Applying induction we see that the only terms ending in j will be in the first sum since 
j ≤ k, and that these terms must come from the sum

j−1∑
i=1

(−1)n+k+j+i−1 (δi,1 ∃ [ηi+1,j−1
∃ (δk,j+1

∃ δk+2)(k + 1)]j) .

Extracting only the terms ending in j from this sum and factoring out the shared ex-
pression v = (δk,j+1

∃ δk+2)(k + 1) gives

(−1)n+k+j

[{
j−1∑
i=1

(−1)i−1δi,1

∃ ηi+1,j−1

}

∃ v

]
j.

We can now use Lemma 9.6 (reading all the words backwards for this application) to 
simplify the sum to ηj−1. Plugging in this as well as the value of v gives that the terms 
ending in j are exactly

(−1)n+k+j [ηj−1

∃ (δk,j+1

∃ δk+2)(k + 1)]j

as desired. �
Combining the previous result with Proposition 9.2, using the fact that

(ηj ∃ δj+1)o = δn−j,1

∃ ηn−j+1,n

and reindexing gives the following corollary.

Corollary 9.8. We have

S(η1,kδn,k+1) =
n∑

j=k+1

(−1)n+k+j+1j[k(δk−1,1

∃ δj−1,k+1) ∃ ηj+1,n].

We end this section with a couple of conjectures. To state them, we will need to extend 
the previous notation. If A is a set of positive integers, then we let ηA and δA denote the 
increasing and decreasing words whose elements are A, respectively. Given A ⊆ [n] we 
let A = [n] − A be the complement of A in [n]. If a ∈ [n], then we use the abbreviation 
a = [n] − {a}. We want to consider permutations of the form σA = δAηA. Note that the 
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previous theorem deals with the case when A = [k] for some k < n. Now we consider 
what happens when |A| = 1. Note that when a summand in one of these expressions 
contains a number greater than n, then the expression is considered to be the empty 
sum. So, for example, the first summand in the next conjecture is empty if n = 2.

Conjecture 9.9. Let A = {a} where 1 < a ≤ n. We have

S(σA) = (−1)n−1(2 ∃ δ4)31 + (−1)n+a((a− 1)ηa−2
∃ δa+1)a

+
a−1∑
j=2

(−1)n+j [((j − 1)ηj−2
∃ δj+1)j + ((j + 1)ηj−1

∃ δj+2)j].

Here is what we believe happens when |A| = 2 and 2 ∈ A.

Conjecture 9.10. Let A = {a, 2} with 2 < a ≤ n. We have

S(σA) = (−1)n[(32 ∃ δ5)41 + (12 ∃ δ4)3] + (−1)n−1[(1 ∃ (3 ∃ δ5)4)2]

+
a−1∑
j=3

(−1)n+j [((j + 1)21η3,j−1

∃ δj+2)j − (j21η3,j−1

∃ δj+2)(j + 1)].

Note that all of the above shuffle expressions have coefficients ±1 although when they 
are expanded as sums of permutations, the permutations can have larger coefficients. 
Can S(σA) always be expressed in this form?

10. The Poirier–Reutenauer Hopf algebra

The Poirier–Reutenauer Hopf algebra [21], PSym, is a sub-Hopf algebra of the 
Malvenuto–Reutenauer Hopf algebra. It has a distinguished basis indexed by standard 
Young tableaux. If π ∈ S, then let P (π) denote the insertion tableau of π under the 
Robinson–Schensted correspondence. The basis element corresponding to a standard 
Young tableau P is defined to be

P =
∑

π : P (π)=P

π.

For example, if P is the tableau given in Fig. 8, then

P = 32154 + 32514 + 32541 + 35214 + 35241.

We extend this notation in the obvious way to tableaux whose entries are not necessarily 
1, . . . , n.
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P = 1 4

2 5

3

P
′ = 1 3

2 5

4

Fig. 8. Two standard Young tableaux, the first one superstandard, the second not.

Let PSym be the span of the P as P runs over all standard Young tableaux. This is a 
graded Hopf algebra PSym =

∑
n≥0 PSymn where the grading is inherited from SSym. 

The multiplication is given by

P · Q =
∑
R

R,

where the sum is over all standard Young tableaux R such that P is a subtableau of R
and Q = st(j(R/P )) where j is jeu de taquin and st is the standardization map applied 
to tableaux. If |P | = n and Q is obtained by increasing all the entries of a standard 
Young tableau by n, then it will be convenient to also define P · Q = P · st(Q). For 
example,

1 2
3

· 1 2 = 1 2
3

· 4 5

= 1 2 4 5
3

+ 1 2 5
3 4

+ 1 2 5
3
4

+ 1 2
3 5
4

.

To describe the coproduct, let π ∼= σ mean that π and σ are Knuth equivalent. Then

Δ(R) =
∑
P,Q

st(P) ⊗ st(Q),

where the sum is over all P , Q whose row words satisfy wPwQ
∼= wR, or equivalently 

P (wPwQ) = R. As with the product, we will sometimes not standardize P and Q. To 
illustrate, suppose

R = 1 3
2

.

Then the words in the Knuth class of R are π = 213 and π = 231. So to compute Δ(R)
we first look at all concatenations π = π1π2 where π1 and π2 are row words of tableaux. 
Putting a space between the prefixes and suffixes, we have 213 = ∅ 213 = 2 13 = 21 3 =
213 ∅ where ∅ is the empty word and 231 = 2 31 = 23 1. Note that we do not get ∅ 231
since 231 is not the row word of any tableau. Translating from words to tableaux gives
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Δ(R) = ∅ ⊗ 1 3
2

+ 2 ⊗ 1 3 + 1
2

⊗ 3 + 1 3
2

× ∅

+ 2 ⊗ 1
3

+ 2 3 ⊗ 1

= ∅ ⊗ 1 3
2

+ 1 ⊗ 1 2 + 1
2

⊗ 1 + 1 3
2

× ∅

+ 1 ⊗ 1
2

+ 1 2 ⊗ 1 .

The antipode in PSym seems to be even more complicated than the one in SSym. 
But we at least have a result for certain hook-shaped tableaux. Let λ be a partition. The 
column superstandard Young tableau of shape λ, Pλ, is obtained by filling the first column 
with the numbers 1, . . . , k, then the second column with the numbers k+1, . . . , k+ l, and 
so forth. In Fig. 8, we have P = P(2,2,1) while P ′ is not column superstandard. Recall 
that the descent set of a standard Young tableau P , DesP , is the set of all i such i + 1
is in a lower row. From properties of the Robinson–Schensted correspondence it follows 
that P (π) = P implies Desπ−1 = DesP . If λ = (n, 1k) is a hook and P = Pλ then the 
converse is also easily seen to be true. It follows that Pλ = i(R1k,n) where i is the map 
in (24). Together with Theorem 8.1, this proves the following result.

Theorem 10.1. If λ is a hook, then in PSym we have

S(Pλ) = (−1)|λ|Pλt .

We have not been able to give an involution proof of this result except in some special 
cases. We have already done this when λ is a single row; see Proposition 9.3. It is also 
possible to use this technique on two-row hooks.

Proposition 10.2. If λ = (n − 1, 1), then in PSym we have

S(Pλ) = (−1)|λ|Pλt .

Proof. First note that the Knuth class for Pλ consists of the permutations

πi = η2,i+11ηi+2,n,

where 1 ≤ i ≤ n − 1. So the terms in Takeuchi’s expansion for S(Pλ) are of the form 
(−1)kP1 · . . . ·Pk where the Pj come from a concatenation of subwords of some πi which 
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are row words of tableaux. The variable k will always denote the number of factors. We 
will associate with such a term the pair (i, α) where πi is the permutation giving rise 
to the term and α = (α1, . . . , αk) is a composition where αj = |Pj | for all j. Note that 
this pair fully determines the corresponding term. Finally, we will not standardize the 
Pj but rather write st(Pj) explicitly if we need to do so.

Initially, we will be canceling a single term in the expansion with a pair of terms which 
have the same sum but with opposite sign. The pair will be obtained by two different 
mergings of the single term. To describe the involution, it will be simplest to describe a 
bijection f : D → R whose domain elements are certain single terms and whose range 
elements are pairs of terms. Merging will correspond to applying f while splitting will 
correspond to applying f−1.

Our first function f1 : D1 → R1 has a domain all terms with

Pj = 1

for some j �= k. Note that it is also not possible to have j = 1 since none of the πi begin 
with a one. Thus the associated pairs for these terms are of the form (i, α) where i �= n −1
and αj = 1. The summands in the range will consist of all terms where 1 appears in 
a P′

j such that j �= 1 and there is at least one other element in the tableau P ′
j . Write 

P1 · . . . · Pk = A ·Pj ·Pj+1 ·B and let

f1(A · Pj ·Pj+1 ·B) = A · P′
j ·B + A · P′′

j ·B,

where the first summand is determined by the pair (i, α′) and the second by (i + 1, α′)
where α′ is α with the parts αj = 1 and αj+1 replaced by a single part α′

j = 1 +αj+1. For 
example, if n = 5, i = 2, and α = (1, 1, 1, 2), then π2 = 23145 and the term corresponding 
to α is

P1 ·P2 ·P3 · P4 = 2 · 3 · 1 · 45 .

Now j = 3 and so α′ = (1, 1, 1 + 2) = (1, 1, 3). So f maps this product to the sum of the 
products associated with α′ in π2 and π3 = 23415 which is

f1(P1 ·P2 · P3 · P4) = 2 · 3 · 1 4 5 + 2 · 3 · 1 5
4

.

We first need to verify that f is well defined in that the subwords of πi and πi+1
defined by α′ are indeed row words of tableaux. Since 1 must be the subword of πi

corresponding to αj = 1, the word corresponding to αj+1 must be ηi+2,l for some l. It 
follows that the subwords of πi and πi+1 corresponding to α′

j = 1 +αj+1 are 1ηi+2,l and 
(i + 2)1ηi+3,l, respectively. It is easy to see that both of these are row words.

Next we need to show that a product and its image under f1 cancel each other out 
in Takeuchi’s expansion. Clearly the initial product and the two image products are of 
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opposite sign. So it suffices to show that Pj · Pj+1 = P′
j + P′′

j . Using the description of 
the corresponding subwords in the previous paragraph gives

Pj · Pj+1 = 1 · i + 2 i + 3 . . . l

= 1 i + 2 i + 3 . . . l + 1 i + 3 . . . l

i + 2

= P′
j + P′′

j .

Finally, we need to prove that f1 is a bijection. We do this by constructing its inverse. 
Suppose we are given a product such that the factor P′

j containing one satisfies j �= 1 and 
|P ′

j | ≥ 2. We must find the product to add to the given one so that it can be mapped back 
to the domain. Suppose the product is associated with a pair (i, α′). Then considering 
the subwords of πi which contain 1 and which are row words of tableaux, we see that 
there are only two possibilities for P ′

j , namely

P ′
j = 1 i + 2 i + 3 . . . l or 1 i + 2 . . . l

i + 1

for some l. If P ′
j is the first (respectively, second) of these tableaux, then we pair the given 

product with the product associated with the pair (i + 1, α′) (respectively, (i − 1, α′)). 
It is now easy to verify that adding this pair simplifies to a single product which was 
mapped to the pair by f1.

The next part of the involution is similar to the first, so we will only provide a 
description of the map. Define a map f2 : D2 → R2 where the domain contains all 
products with

P1 = 2 and Pk = 1 .

Note that this forces the term to be associated with the pair (n −1, α) where α1 = αk = 1. 
Let f2 map this to the sum of the terms associated with the pairs (1, α′) and (n − 1, α′)
where α′ is α with its first two parts replaced by α′

1 = 1 + α2. One can then verify 
that the range contains sums of all pairs where the first (respectively second) summand 
contains one and two (respectively, two and three) in the first product tableau and n
(respectively, 1) as a singleton in the last.

From the descriptions of D1, D2, R1, R2 and an examination of which subwords of 
the πi can be row words, we see that the only terms which remain uncanceled so far are 
those associated with pairs of the form (1, α) where α1, αk ≥ 2. Among these products, 
the only one which can produce Pλt is the one associated with α = (2, 1, 1, . . . , 1, 2). So 
we will be finished if we can define a sign-reversing involution on the tableaux P �= Pλt

which occur in expanding the products under consideration.
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Since all our products come from π1, it suffices to specify α to focus on a given product 
whose expansion contains P. So suppose the product corresponding to α has P as a term. 
Let l be the largest integer such that 1, . . . , l are in the same cells in both P and Pλt . 
Equivalently we have 1, . . . , l in the first column of P but l+1 is not. Since P comes from 
a product associated with π1 and α1 ≥ 2 we have l ≥ 2. And since P �= Pλt , l ≤ n − 2. 
Let Pj be the factor in the product containing l. If l + 1 /∈ Pj , then P can be canceled
with its appearance in the product corresponding to α′ obtained from α by replacing 
αj with αj + αj+1. If l + 1 ∈ Pj , then form α′ by splitting αj = α′

j + α′
j+1 where α′

j

corresponds to the prefix (respectively, suffix) of the αj subword of π1 consisting of those 
elements less than or equal to (respectively, greater than) l. Note that the bounds on l
guarantee that α′ will still satisfy α′

1, α
′
l ≥ 2. To illustrate, suppose n = 5 and α = (2, 3). 

Then π1 = 21345 and so we are considering the product

1
2

· 3 4 5 = 1 3 4 5
2

+ 1 4 5
2
3

.

Comparing the first summand to

Pλt = 1 5
2
3
4

we see that l = 2. Since l+1 = 3 does not occur in the same tableau as 2 in the product, 
we merge and cancel this term with the tableau corresponding to α′ = (5) which is

− 1 3 4 5
2

.

For the second summand we have l = 3 which is in the same tableau as l + 1 = 4 in the 
product. So we split α into α′ = (2, 1, 2) and see that this P will cancel with one of the 
terms in

− 1
2

· 3 · 4 5
.

The proof that this is a well-defined, sign-reversing involution is similar to previous 
arguments we have seen earlier and so is omitted. This completes the demonstration of 
the proposition. �
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11. Future work and open problems

We hope that this article will just be a first step in the exploration of the use of 
sign-reversing involutions to derive formulas for antipodes. In addition to the conjectures 
and questions already raised, here are three directions which would be interesting to 
explore.

1. Are there other Hopf algebras where the split or merge idea can be used to derive 
nice, preferably cancellation-free, formulas for S? Even more ambitious, is there a 
(meta)-involution which can be used to prove antipode identities for many different 
Hopf algebras at once? As was noted at the end of Section 7, one can use an involution 
for F[x] which is the special case of the one for G where the graph has no edges. We 
should also mention that the proof in Section 7 is based on discussions with Nantel 
Bergeron. The involution we introduce is closely related to the one of Bergeron and 
Ceballos [6] for their Hopf algebra of subword complexes. A formula for the antipode 
of a Hopf algebra of abstract simplicial complexes has been computed using these 
techniques by the first author in joint work with Hallam and Machacek [4]. Samantha 
Dahlberg (private communication) has used our method to compute the antipode 
for a Hopf algebra on involutions. Eric Bucher and Jacob Matherne [8] have used the 
merge-split technique to determine the antipode for the restriction-contraction Hopf 
algebra on uniform matroids. Finally, this method has come into play in the work of 
Bergeron and Benedetti [3] in their work on cancellation-free formulas for linearized 
Hopf monoids.

2. Can one obtain a full cancellation-free formula for the antipode in NSym in the im-
maculate basis? We attempted to at least do the three-row case, but the expressions 
in terms of frozen tableaux became increasingly complicated. However, there may be 
some other idea which is needed to unify all the cases.

3. We know from equation (20) that the antipode for Sym is particularly simple when 
expressed in terms of the Schur basis. Is there a way to derive this beautiful formula 
using a sign-reversing involution?
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