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Abstract. The focus of this paper is the study of generalized Fibonacci polynomials and
Fibonomial coefficients. The former are polynomials {n} in variables s, given by {0} =
0, {1} =1, and {n} = s{n— 1} +1{n—2} for n > 2. The latter are defined by {}} =
{n}!/({k}!{n — k}!) where {n}! = {1}{2}---{n}. These quotients are also polynomials in
s,t and specializations give the ordinary binomial coefficients, the Fibonomial coefficients,
and the g-binomial coefficients. We present some of their fundamental properties, including a
more general recursion for {n}, an analogue of the binomial theorem, a new proof of the Euler-
Cassini identity in this setting with applications to estimation of tails of series, and valuations
when s and ¢ take on integral values. We also study a corresponding analogue of the Catalan
numbers. Conjectures and open problems are scattered throughout the paper.

Keywords: binomial theorem, Catalan number, Dodgson condensation, Euler-Cassini identity,
Fibonacci number, Fibonomial coefficient, Lucas number g-analogue, valuation

1. Introduction

We will be studying generalized Fibonacci polynomials and generalized Fibonomial
coefficients. Throughout this work, P will stand for the positive integers. The Fi-
bonacci numbers F, are defined by Fp =0, F; = 1 and, forn > 2,

Fo=F1+F2.

* Research partially supported by a grant from the China Scholarship Council.
T Research partially supported by the National Science Foundation NSF-DMS 1112656.
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The Lucas numbers L, are defined by the same recurrence, with initial conditions
Lo =2 and L; = 1. The reader will find an introduction to these well-studied se-
quences in the books by Koshy [18] and Moll [23].

One generalization of these numbers which has received much attention is the
sequence of Fibonacci polynomials

Fn(x):an—l(x)+Fn—2(x)a n227 (11)

with initial conditions Fyy(x) = 0, Fy(x) = 1. The generalized Fibonacci polynomials
which we will consider depend on two variables s, r and are defined by {0}, =0,
{1}s,;=1and, forn > 2,

{n}sr=s{n—1}+t{n—2},. (1.2)

Here and with other quantities depending on s and ¢, we will often drop the subscripts
if they are clear from context. For example, we have

{2} =s, {3}=s*+1, {4} =5 +2st, {5} =s"+3s%r+1%

When s and ¢ are integers, these sequences were first studied by Lucas in a series of
papers [20-22] and then forgotten. Nearly 100 years later, Hoggatt and Long [16]
rediscovered them, this time considering s and ¢ as variables. But they have received
considerably less attention than the one variable family in (1.1), although some of
their properties are the same because of the relation

Part of the purpose of the present work is to rectify this neglect.

Our notation is chosen to reflect two important specializations of this sequence
(other than the one s =t = 1 already mentioned). In particular, if s=2 and r = —1
then {n} =n. Andif s=¢g+ 1 and t = —¢ then

(M} =1+q+q++q"" =[n, (1.3)

the standard g-analogue of n.
There is a corresponding extension of the Lucas numbers, the generalized Lucas
polynomials, defined by

(Mysr=sn—1)s+t(n—2)5;, n>2

together with the initial conditions (0), ; = 2 and (1), = s. Here is a list of the first
few polynomials

(2)s.0 =5 +21, (3)5r =5 +3st,
(4)5 = s +457t +20%, (5)5. =5 + 557 + 5st>.

Of course, when s =t = 1 these reduce to the ordinary Lucas numbers.
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One can find algebraic expressions for these polynomials using standard tech-
niques from the theory of recursively defined sequences. In particular, the character-

istic polynomial of the recurrence is z> — sz — t whose roots are
2 4t — sz 44t
x:”é T v=’ ¢;+ . (1.4)

We will often abbreviate v/s2 + 4t = A ;. The following relations between s, ¢ and
X, Y will be useful
s=X+Y, t=-XY, A=X-Y. (1.5)

Any solution of (1.2) can be expressed as cX" +dY" for constants ¢, d depending
on the initial conditions. Computing the constants in the two cases of interest to us
gives the following analogue of Binet’s formula for the Fibonacci numbers.

Proposition 1.1. For n > 0 we have

X" _yn
{n} = Yy and (n)=X"+Y".

Combining this result with Equation (1.3), we see that there is another relation
between {n} and [n], namely,

{n}se=Y"""[n]x)y. (1.6)

This will be useful in the sequel.

Sl

Figure 1: Linear and circular tilings.

In addition to this algebraic approach to our polynomials, there is a combinatorial
interpretation derived from the standard interpretation of F), via tiling. A linear tiling,
T, of a row of squares is a covering of the squares with dominos (which cover two
squares) and monominos (which cover one square). We let

Ly ={T: T alinear tiling of a row of n squares}.

The three tilings in the first row of Figure 1 are the elements of £3. We will also
consider circular tilings where the (deformed) squares are arranged in a circle. We
will use the notation C,, for the set of circular tilings of n squares. So the set of tilings
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in the bottom row of Figure 1 is C3. For any type of nonempty tiling, 7', we define its
weight to be

# of monominos in 7 # of dominos in 7'

wtT =5 t

We give the empty tiling € of zero boxes the weight wte = 1 if it is being considered
as a linear tiling or wte = 2 if it is being considered as a circular tiling. The follow-
ing proposition is immediate from the definitions of weight and of our generalized
polynomials.

Proposition 1.2. Forn > 0 we have

{n+1}=Y wtT and (n)= ) wtT.
TeL, TEC,

We are now in a position to define corresponding generalized binomial coeffi-
cients. Given a sequence a = {a, } of nonzero real numbers, it is natural to define the

a-factorials by
n
nla= Hai,
i=1

and the a-binomial coefficients by

<Z)a: k!a(:!jk)!a'

The classical example comes from a, = n with the standard g-analogue being ob-
tained when a,, = [n],. Here, we will consider a, = {n},,; and a, = (n),,;. To simplify
the notation, these are written, respectively, as

{n}x,t! and <n>s,t!

U, = G,

for binomial coefficients. The product {n}! is called a generalized fibotorial and
(n)! is a generalized lucatorial. The binomial coefficients { } and (}) are called
generalized Fibonomial and Lucanomial coefficients, respectively.

We can relate the generalized Fibonomials to the g-binomial coefficients alge-
braically. Indeed, it follows easily from (1.6) that

{Z}, =it [ZL/Y~ (1.7)

There is also a simple combinatorial interpretation of { Z } which was given by Savage
and Sagan [25] using tilings of a k x (n — k) rectangle containing a partition. But we
will not use this description, and instead we refer the reader to their paper for the
details. It would be very interesting to give combinatorial proofs for some of the
results we give for Fibonomials.

The rest of this paper is structured as follows. In the next section we present
some of the fundamental properties of {n} and (n) which will be useful in the rest

for factorials, and
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of the paper. Section 3 is devoted to valuations. In particular, we provide a complete
description of the 2-adic valuation of {n} and {n}! for arbitrary integers s,¢. The
Euler-Cassini identity is the focus of Section 4. We give a new proof of the diagonal
case of this equality using Dodgson condensation. We also use this identity to give
estimates for the tails of Fibonacci analogues of the series for the Riemann zeta func-
tion. In Section 5 we return to the generalized Fibonomial coefficients and consider
their recursions and analogues of the binomial theorem. We end by studying an s, ¢-
version of the Catalan numbers C, and proving analogues of the theorem giving the
2-adic valuation of C,,. Various open problems and conjectures are mentioned.

2. Fundamental Properties of {n} and (n)

In this section we collect some of the important properties of {n}, and (n)s to be
used in the sequel. Most can be proved using either the algebraic descriptions in terms
of X and Y, or the combinatorial interpretations, or both. Often the demonstrations
do not differ significantly from ones already in the literature, so we will sometimes
omit the proofs and just supply references where they can be found.

We begin with the expansion of our polynomials into monomials.

Proposition 2.1. The polynomials {n} and (n) are given by

(n}=Y (n _IZ_ 1>s"_2k_1tk @1

k>0

and

no(n—=k\ o
<n>_k;0n_k< )
Proof. We just prove the first identity as the second is similar. By Proposition 1.2, it
suffices to show that the kth term of the sum is the sum of the weights of all linear
tilings of n — 1 squares with k dominos. If there are k dominos, then there must be
n — 2k — 1 monominos and so this accounts for the monomial s"~2~1#¥. To count the
number of arrangements of these tiles, number the squares 1,...,n — 1 from left to
right. Then picking the places for the left endpoints of the dominos is equivalent to
picking k numbers from 1,..., n — 2 with no two consecutive. The number of ways
of doing this is ("7’;71), and once the dominos are placed, there is no further choice
for distributing the monominos. This finishes the proof.

The next result is a useful generalization of the defining recurrence for the poly-
nomials {n}.

Theorem 2.2. For m > 1 and n > 0 we have

{m+n}={mi{n+1}+t{m—1}{n}.

Proof. This can be given a combinatorial proof (see [25]), but we will indicate an
algebraic one to illustrate the method. First one uses (1.5) and Proposition 1.1 to
convert the equality into an equivalent statement about polynomials in X and Y. This
statement can then be easily verified by algebraic manipulations.
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We now note two identities relating {n} and (n).

Proposition 2.3. ([25]) For n > 1 we have
(ny={n+1}+t{n—1}

And for m,n > 0 we have

m)ing+ymg(n
gy (k)
2
The next result can be used to show that many divisibility properties carry over
directly from the integers n to the polynomials {n}.

Proposition 2.4. ([16]) For m,n > 1 we have

ged({m}, {n}) = {ged(m, n)}.
Equivalently, m divides n if and only if {m} divides {n}.

Using standard techniques, one can convert the defining recursion for {n} into a
generating function.

Proposition 2.5. The generating function of the polynomials {n} is given by

i){n}zn = _

Z

sz—17%
As an application of this result, we will derive a generalization of the following
well-known identity for Fibonacci numbers

= F

Z on+1 = 1’

n=0
which is the special case s =t = 1 and z = 1/2 of the above proposition.

Corollary 2.6. Fors,t € P we have

i t{n}s: B 1

= (st s+r—10

Proof. We will give both algebraic and combinatorial proofs. The former is obtained
by setting z = 1 /(s +1¢) in the generating function of Proposition 2.5. We must make
sure that this substitution is analytically valid in that 1/(s+¢) is smaller than the
radius of convergence of the power series which is min{1/|X|, 1/|Y|}. But this is a
routine check using Equation (1.4). Once the substitution is made, simple algebraic
manipulations complete the demonstration.

For the combinatorial proof, consider an infinite row of squares numbered left
to right by the positive integers. Suppose each square can be colored with one of s
shades of white and # shades of black. Let Z be the random variable which returns
the box number at the end of the first odd-length block of boxes all of the same black
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shade. For n € P, the event Z = n is equivalent to having box n painted with one
of the shades of black, box n 4+ 1 painted with any of the remaining colors, and all
blocks of a black shade among the first n — 1 squares being of even length. So there
are ¢ choices for the color of box n and s+t — 1 choices for the color of box n+ 1.
Each coloring of the first n — 1 squares gives rise to a tiling where each white box is
replaced by a monomino and a block of 2k boxes of the same black shade is replaced
by k dominoes. Also, the weight of the tiling is just the number of colorings mapping
to it. Thus, by Proposition 1.2, the number of colorings for the first n — 1 boxes is
{n}. Hence,
P(Z =n) = t(s+1— 1){n}w.
(s41)nt!

Summing these probabilities finishes the proof.

We end this section by exploring the binomial transformation of the sequence {n},
n > 0. Interestingly, doing so involves a change of variables from s, r tos+2, ¢ —s—1.
We then use the transform to prove a well-known identity for Fibonacci numbers.

Proposition 2.7. Forn > 0 we have

Zn: <Z> {k}s = {n}s+2,t7s71'

k=0

In particular, fors =t =1,

k— 12n-
k=0 k "

Proof. Using Proposition 1.1, we have the exponential generating function

i{k} Zk_eXz_eYz
P (D € G
Note that
X1yl (s+2)£Vs2+4t  (s+2)£/(s+2)2+4(r—s—1)

2 2

Putting everything together and using the product rule for exponential generating
functions gives

z n

o n Ny X2tz e(X+l)z_e(Y+1) .
k \) - < = — o )
,;)n!,;)<k>{ Jue=e X-Y X—Y rg){”}s+2,t sy

Extracting the coefficients of z” /n! completes the proof of the first equation.
For the second, from what we have just proved it suffices to show that {n}3 _; =
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{2}1}111. But

ol 1evs\ (15
e ()

SR}

={n}s, 1,

and we are done.

3. Arithmetic Properties

We will be concerned with the d-adic valuation function

the highest power of d dividing n, if n # 0,
Vg n) =

If the subscript is missing, then it is assumed that d = 2. A fact about valuations
which we will use repeatedly is that if v;(m) # v, (n) then

Vg(m+n) = min{v,(m), vs(n)}. 3.1)

Our primary goal will be to characterize v,({n},) for all possible integers s, ¢. This
will then be used in Section 6 to give analogues of a well-known theorem about the
2-adic valuation of the Catalan numbers. We will end the section with an indication
of what can be said for other moduli.

We will now characterize v({n}) = va({n},) for all integral s,7 as well as
v({n}!). We first consider the case when both s, ¢ are odd. If S is a set of integers
then we will have much use for the indicator function

s [ Tkes
o, ifkgs.

In this context, we will let E and O stand for the even and odd integers, respectively.

Lemma 3.1. Ler s and t be odd. We have v({n}) = 0 whenever n =3k+ 1 or 3k +2.
If n = 3k then

1+ 8:(k)(v(k{6})—2), ift=1 (mod4),

V({3k}): { V(k{3})7 ift=3 (mod 4).

Proof. Our proof will be by induction on n where the base cases are easy to verify.
From the recursion

{n}=s{n—1}+t{n—-2} (3.2)
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and the fact that s and ¢ are odd, it is clear that both {3k + 1} and {3k + 2} are odd
while {3k} is even. This finishes the cases when n = 3k+ 1 or n = 3k+2. The
demonstrations when # is divisible by 3 are similar for both possible residues of ¢, so
we will only present s =3 (mod 4).
Suppose now that n = 6k + 3 for some integer k. Using the recursion in Theo-
rem 2.2 we have
{6k+3} = {3}{6k+ 1} +1{2}{6k}.

By hypothesis and induction we know that {6k + 1}, {2}, and 7 are odd. Furthermore,
by induction again, v({6k}) =1+ v(k{3}) > v({3}). So using (3.1) on the previous
displayed equation gives v({6k+3}) = v({3}) = v((rn/3){3}) since n/3 is odd. This
is the desired conclusion.

For the final case, let n = 6k 4 6 for some k. Using Theorem 2.2 repeatedly we
obtain

{6k+6} = {3k +4}{3k+3} +1{3k+2}{3k+3}
= {3k+3} (s> +3st) {3k+ 1} + (s°t +2¢%) {3k}) .

As before, we can ignore {3k+ 1} and factors of s or 7 since they are odd. Since s
is odd, s> =1 (mod 4). It follows that v(s® + 3¢) = 1 while v({3}) = v(s*> +1) > 2.
Applying (3.1) and induction to the previous displayed equation gives

v({6k+6})=v({3k+3})+1=v((k+1){3})+1=v((2k+2){3}) =Vv((n/3){3})

which is, again, what we want.

We can use this lemma to calculate the 2-adic valuation of the corresponding
factorials.

Corollary 3.2. Let s andt be odd. We have

v([n/3]1) + [n/6]v({6}) +60([n/3)]), ift=1 (mod4),

V({n}!):{v(\_n/3J!)+Ln/3JV({3})7 ift=3 (mod 4),

where | -] is the floor function.

Proof. Again, we will only provide a proof when = 3 (mod 4) as the other con-
gruence class is similar. Write n = 3k 4 r where 0 < r < 3. Using Lemma 3.1 we
have

n k k

v({n}) =Y v({i) = Y v({3i}) = Y v(i{3}) = v(k!) +kv({3})

i1 i=1 i=1
and using the fact that k = |n/3] finishes the demonstration.

Now we turn to the cases when s and ¢ are of opposite parity. If s is odd and ¢
is even then a simple induction shows that {n} is always odd for n > 1. The reverse
case is more interesting.
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Lemma 3.3. Let s be even and t be odd. We have
v(sn/2), if niseven,

vin) = { 0, if nis odd.

Proof. This proof is much like the one given for Lemma 3.1 and so we will content
ourselves with stating the main equation for the induction step on even integers

{2n} = {n}(s{n} +2t{n—1}). (3.3)

The reader can easily fill in the details.

The proof of the following corollary is much like that of Corollary 3.2 and so is
omitted.

Corollary 3.4. Let s be even and t be odd. We have
v({n}) =v@m!)+ n/2|v(s/2).

Finally, we have the case where both parameters are even. To describe the 2-adic
valuations we will rely on a recursion.

Lemma 3.5. Let s, t be odd. We have

/2] + 84z (n) [v(n{4}as,2/4) 2], ifa=1,
v({n}s ) = { (/2] 4 Sp(m)v(m) a2, Fasa (3.4)

Now suppose s, t are arbitrary integers. We have

v({n}asa) =n—14+v({n},). (3.5)

This completely determines the 2-adic valuations of {n} where both subscripts are
even.

Proof. To prove (3.4) the usual ideas come into play. The equations which are used
for the induction are the defining recursion, Equation (3.3), and

{8k+4}s, ={4}s {8k + 1}, +1{3} {8k},

The proof of Equation (3.5) is very simple. In fact, a straightforward induction
on n shows that {n}y 4 = on-1 {n};,: which implies the desired result.

For the last statement, by repeated use of Equation (3.5), one can reduce finding
v({n}) to finding v({n}, ) where either at least one of s, ¢ is odd or both are even
and ¢ is twice an odd number. In the former case, the computation is finished by one
of our former results. In the latter case, one can use Equation (3.4) to complete the
evaluation.

Because of the recursive nature of these valuations, the corresponding formulas
for v({n}!) are complicated and too messy to be of real interest. On the other hand,
we do not wish to give the impression that one can only say interesting things for the
modulus d = 2. So our last result in this section will be for arbitrary d.
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Proposition 3.6. Consider any positive integer d > 2. We have, for anyn > 1,
Vd({n}d, 71) =6 (l’l)Vd (dn/Z)

Proof. First, consider the case where d is a prime. Using the defining recursion for
{n} = {n}a —1 one easily sees that {n} is divisible by d if and only if n is even. This
completes the n odd case. For even integers, letting s = d and t = —1 in Equation (2.1)
and re-indexing gives

_ n+k deZk
(0 ,§O<zk+1) (D =dndnd, o 1)y

where the ¢; are integers because n divides (n +k)(n+k—1)---(n—k). So, by
Equation (3.1), it suffices to show that the d-adic valuation of every term in the sum
over positive k is at least 1. Since d is prime, we can use Legendre’s well-known
formula v, (n!) = ¥~ [n/d'| to show that

2k
va(k+1)) < g d=1
2k—1, ifd=2.

ifd >3,

From this, it is easy to verify that v, (d*/(2k+ 1)!) > 1 which completes the case
when d is prime.

To finish the proof, note first that the only place where we used the fact that d was
prime was in deriving the upper bounds on v;((2k+ 1)!). But these will still hold
when d is a prime power, and may even become sharper. Finally, for general d we
just use the fact that if p and ¢ are relatively prime then v,,(n) = min{v,(n), v,(n)}
for any integer n.

We conjecture that the roles of the modulus d and the parameter s in the previous
proposition can be decoupled.

Conjecture 3.7. Suppose s > 2 is an integer and d > 3 is an odd integer. There exist
positive integers s*, d* depending only on s, d such that d* < d and

Vd({n}sv,l) = Sd*z(n)vd(s*n/d*).

Of course, it would be desirable to have a way of computing s* and d* from s and d
rather than just an existential proof. The following table lists pairs (s*, d*) for small
values of s and d indexing the rows and columns, respectively. Note that if d is prime,
then any two values of s* with the same valuation modulo d will yield the same result
on the right-hand side of the equation in the conjecture. Also note that if the first
positive integer n with v4({n}, _1) # 0 is n = d then we have a choice as to whether
toletd* =1ord* =d.
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4. The Euler-Cassini Identity

In this section we will consider various results related to the famous Euler-Cassini
identity for Fibonacci numbers. We will first recall a version of this equation proved
by Cigler [7] for a g-analogue of our generalized Fibonacci polynomials. We then
show how Dodgson condensation [12] can be used to prove a particular case of this
identity. Finally, we use a slightly more general form of Euler-Cassini to give esti-
mates for the tails of certain infinite series with terms involving the polynomials {n}
evaluated at various integers.

The g-analogue of {n} which we will be consideringis {n}(g) = {n}s.(q) defined

by {0}(q) =0. {1}(g) =1 and
{n}(q) = s{n—1}(q) +1¢"*{n—2}(q), “.1)

for n > 2. Cigler [6-9] introduced and studied these polynomials which have also
been considered by Goyt and Sagan [15] and Goyt and Mathisen [14].

To motivate the (generalized) Euler-Cassini identity, recall that a sequence of real
numbers (a)n>0 is called log concave if it satisfies

2
a, —dp—10ap+1 >0,

for all n > 1. Many sequences of combinatorial nature are log concave, for example
any row of Pascal’s triangle will do. The identity

Frzn _Fr(nJrl)Fr(nfl) = (_l)rFr2

shows that the sequence with a,, = F},, is log concave for r even. See the articles of
Brenti [4], Stanley [27], or Wilf [28] for more details about log concavity and related
issues.

It is easy to see that, for sequences (a,),>0 of positive reals, the log-concavity
condition is equivalent to the seemingly stronger statement that

Anpim—1 2 An—1An+m

for all m, n > 1. The importance of the following generalization of the Euler-Cassini
identity (which is the special case s =t = ¢ = 1) should now be clear.

Theorem 4.1. ([7]) We have
{n}silg) {n+m—1}q(q) —{n—1}sq(q) - {n+m}s(q)
= (=0)""'q8) {m} g (q).

Note that as an immediate corollary, the sequence {n};. is log concave for all # < 0.

We are going to give a novel proof for the m = 1 case of this theorem using the
Dodgson condensation technique for computing determinants. So we will need a
determinantal expression for {n}(g). We obtain this using a tridiagonal matrix which
is a method common in the theory of special functions.
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Proposition 4.2. The polynomial {n}(q) is given by

s -1 0 - 0 O

qgq s —1--- 0 0

0g¢% s -~ 0 0
{nig)=det| . .. .. .|,

00 0 - s -1

00 0 - q¢g"% s
where the tridiagonal matrix is of size (n—1) x (n—1).

Proof. By expansion about the last column, one easily verifies that the determinant
satisfies the same initial conditions and recurrence as {n}(q).

For the final piece of background, we recall the method of Dodgson condensation.
For any n X n matrix A, let A,(k, £) be the r x r connected submatrix whose upper
leftmost corner is the entry gy ¢. If detA,_»(2,2) # 0 then

detA,—i(1,1)detA,_1(2,2) —detA,_ (1, 2)detA, (2, 1)
N detA, »(2,2)

Applications of this method can be found in the papers of Amdeberhan and Zeil-
berger [1] and Zeilberger [30].

detA . 4.2)

Proof of Theorem 4.1 for m = 1. To prove

{nhsa(@) (1}ear(@) = {n = sal@)- (n+ hssl) = (=" 'q®), @3
just apply Equation (4.2) to the determinant for {n+ 1} (g). The result is
_ ai(@) - {nbsale) — (=11 ()
B {n - 1}s7qt(Q) 7
and applying a little algebra finishes the proof.

{n + l}s,t(Q)

It would be very interesting to prove the full version of Theorem 4.1 in a similar
manner. This would perhaps require a more general version of condensation.

We now provide an application of the Euler-Cassini identity to infinite series. We
will need the following slight variant of Theorem 4.1 when ¢ = 1. It can be proved
by adapting Cigler’s original proof.

Lemma 4.3. Let r,m,n € P and s, t be arbitrary integers. We have

{ra} - {r(n+m—1)} = {r(n— D} - {r(ntm)y = (=)D {r}{rm}.

Various authors have considered the following Fibonacci analogue of the Rie-
mann zeta function -
z)= .
See the article of Wu and Zhang [29] and references therein. In particular, there has
been interest in finding estimates of the tails of such series for positive integers z. Hol-
liday and Komatsu [17] considered what could be said for the Fibonacci polynomials
where r = 1 (recall (1.1)) and proved the following result.
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Theorem 4.4. ([17]) Ift =1 and s,n € P, then

(li {]lc}]> :{n}‘v’l_{n_l}s,l—So(n)

and
. -1
<Z {k;Z ) :s{n}&l{n_l}s,l_6E(”)-
k=n s, 1

Holliday and Komatsu also asked if their theorem could be generalized to other
t and we will do this for the first summation. In addition, our results cover a more
general class of sums and the proofs, based on Lemma 4.3, will be much simpler than
the ones given in [17]. To see the equivalence of our second sum when r = 1 with the
one of Holliday and Komatsu, we note that if r = 1 then

{nf? —{n =112+ (=1)" =s{n}{n -1},
an identity which is easily proved using Proposition 1.1 and Equation (1.5).

Theorem 4.5. Ifs >t > 1andn,r € P, then

-1
<,§' {rlk} ) ={rn}sc = {r(n—=1)}ss = 8e(r(n—1)).

Ift =1ands,n,r € P then

-1
(; {rk1}21> :{”n}il_{”(’l_l)}il—&(r(n—l)).

Proof. First note that both series must converge by comparison with the known con-
vergent series Y ;> 1/Fg.

We now consider the first series. We will only give details for the case when
r(n—1) is even as the odd case is similar. For ease of notation, let

=1
A(n) = .
k:z;z {rk}
It suffices to show that

{m}—{r(n—1)}—-1< <{rm}—{r(n—1)}.

A(n)
Note that since s,  are positive, so are all the {rk} and inequalities will not be affected
when multiplying by them.

We first deal with the right-hand inequality. Multiply through by A(n) and then
cancel the 1 on the right with the first term of the series {rn}A(n). For m > 1 we
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then compare the term for k = n+m in {rn}A(n) with the term fork =n+m—1in
{r(n—1)}A(n) to see that it suffices to show

oo mb (=)

{r(n+m)}  {r(n+m—1)} (4.4)

But this is true by Lemma 4.3 and the fact that r(n — 1) is even.
We now apply the same procedure as in the previous paragraph to the left-hand
inequality and reduce it to proving
{rn} {r(n—1)} 1

{rntm)} ~ {r(ntm— 1} = {ratm—1)}) )

Cross-multiplying and using Lemma 4.3 again as well as the parity of r(n — 1), we
see that it suffices to prove /"~ D {r}{rm} < {r(n+m)}. Using Theorem 2.2 and the
fact that ¢ is positive gives

{r(n+m)} = {1} {rm} > {r(n— 1)+ 2H{rHrm} > 'O rm},

where the last inequality comes from the fact that, by Proposition 2.1 and s > ¢ > 1,
we have {/} > s/~! >+'~!. Thus, we are done with the first series.

The proof for the second series has many similarities, so we will only mention
the places where they differ. Assume, again, that #(n — 1) is even. To obtain the
squared version of (4.4), merely move the negative fraction onto the other side of the
inequality (which we know to be true from the first half of the proof) and square both
sides.

When each fraction in inequality (4.5) is replaced by its square one obtains, after
clearing denominators,

{rmy{r(n+m—1)y = {r(n= D)} {r(n+m)}* < {rn+rm}>

Factoring the left-hand side and applying Lemma 4.3 once again, this time with r = 1,
gives the equivalent inequality

{rH{rm} - ({rnH{r(n+m— 1)} + {r(n—1)}r(n+m)}) < {rn+rm}>.

It is easy to prove by induction that under the restrictions on s, 7 the sequence {n} is
weakly increasing. Using this observation as well as repeated application of Theo-
rem 2.2, we obtain

{r(n+m)}? = {r(n+m)}-({r(n+m—=DHr+ 1} + {r(n+m—1) = 1}{r})
Z {rm{rmi{r(n+m—1){r} +{r(n+m){r(n = 1) {rm}{r},
and factoring out {r}{rm} leads to the desired conclusion.

We believe that there are analogues of these results for other values of s, ¢. The
restriction (s, ¢) # (2, —1) in the following conjecture is to ensure that the series
converges.
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Conjecture 4.6. If s >t > 1 with (s, —t) # (2, —1) and n, r € P, then

) —1
<k§: {rlk} _;> - {rn}x’il N {r(n - 1)}3',71 — 1.

Ift=—1ands, n,r € Pthen

s,—1

~1
= 1
(%{rk}z ) _={m}i_l—{r<n—1>}3_l—1.

5. Fundamental Properties of {} }

We now return to the generalized Fibonomial coefficients. We will describe various
recursions which they satisfy as well as analogues of the binomial theorem and Chu-
Vandermonde summation.

It is not clear from the definition that {} } is a polynomial in s, # with nonnegative
integral coefficients. This will follow by an easy induction using the first recursion in
Theorem 5.2. The Lucanomials are not so well behaved. For instance,

4\ (+30) (s + 45’ +212)
<2 B 5242t

can not be brought to polynomial form. Also, we could introduce a g-analogue
{%1}(q) of the generalized Fibonomials by using the polynomials {n}(g) defined

by (4.1). But then it is easy to check that {g} (¢) is not a polynomial. This is one of

the reasons we have decided to mainly consider the case ¢ = 1 in this work.
Our first property of generalized Fibonomials is their symmetry. This follows
immediately from their definition.

Proposition 5.1. If 0 < k < n then

(=10
kS \n—k/J’
Next we consider two recursions for the Fibonomials.

Theorem 5.2. For m,n > 1 we have

{’”*”}:{n+1}{’”+”‘1}+t{m—1}{’"“_1} (5.1)

m m—1 m

—1 —1
:Y"{mﬂ }+X’"{m+” } (5.2)
m—1 m

In particular, they are polynomials in s and t.
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Proof. The first recursion follows easily from Theorem 2.2. The second can be ob-
tained from the g-binomial recursion

{m—kn} [m+n—1] m{m—kn—l]
m m—1 m
via the substitution (1.7).

The next result gives two analogues of the binomial theorem.

Theorem 5.3. Letting z be an indeterminate, the genearlized Fibonomials satisfy

(L+X”*Q)U:+X”4Y@-~(I+XM7Q)::ji(—ﬁg){Z}zk (5.3)
k=0

and

1 e ntk=1
(1—Xm=12) (1 —X"=2Yz) - (1 —Yn—1g) —k;){ X }z. 54

Proof. We will indicate how to prove the first equation as the second is similar. One
approach is to use (5.2) and induction. Alternatively, one can start with the g-binomial
theorem in the form

(1 +z)(1+qz)---(1+q"*lz) = Zn:q@ [Z} z,
k=0

substitute Y"1z for z, use (1.7), and clear denominators. The details of both proofs
are routine and so these are left to the reader.

It is interesting to note that when t = —1 we can write (5.4) using generalized
Fibonomials with negative upper indices. We note that in this case, the generalized
Fibonacci polynomial sequence is called an ¢-sequence (where s = ¢) and such se-
quences are intimately related with lecture hall partitions; see the papers by Bousquet-
Meélou and Eriksson [2,3] and by Savage and Yee [26] for more information. We first
extend the sequence {n} to negative integers by insisting that the recursion (1.2) con-
tinues to hold. In this case, it is not hard to show by induction that, for n > 0,

—{n}
{—n}= .
(=)
So when r = —1 the {—n} are polynomials in s, 7 with integral coefficients. In this
case, let
{—n} _{—n}{—n—l}---{—n—k+l}_(_1)k{n+k—l}
kS {k}! oSy

Hence, (5.4) becomes

1 — [ —n
(1—X”*IZ)(I—X”fZYZ)---(l—Y’“lZ) = Z{ k }S7_1(_Z)k.
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The specialization = —1 also permits us to obtain nice analogues of the formulas
for the sum and alternating sum of a row of Pascal’s triangle. This is because, by (1.5),
we have XY = 1 which permits simplifications. Note also that if s =2 and t = —1
then it is easy to prove that (n),, _; =2 for all n > 0, so that in this case the following
identities reduce to the usual ones.

Corollary 5.4. If t = —1, then

- /2]
k;o{k}s,—l = (1+80(n)) 1131 2+ (n—2i+1))
and
i(—l)"{"} = 8x(n) Lﬁj(2—<n—2i+1>).
k=0 kJs -1 i:l

Proof. As usual, we just prove the first identity. Letting # = —1 and z = 1 in Equa-
tion (5.3) gives

n

Z’ {Z}s‘q = (l-i—X”—l) (1+X"—2y)... (1+Y"_1),

If i < j then we have, using Proposition 1.1,

(L4+XYT) (1+X7Y) = 14+ XY (XI 4+ Y77 4 XY =24 (j—i).
Pairing up such factors and remembering that there will be an unpaired factor when
n is odd completes the proof.

Returning to an arbitrary ¢, we can use any identity for g-integers and g-binomials
to derive a corresponding one for {n} and {/ }. For example, the g-Chu-Vander-

monde summation
MAN| NS ki) | M| [N
[ k ] =Lq k—i [ i ]

1
gives rise to the following result.

Theorem 5.5. We have

{m;—n} _ Z(_t)i(i*k)xmiy‘”(k*i) {ki} {':} .

1

We end this section by mentioning that Proposition 2.4 can be used to prove var-
ious divisibility properties of the Fibonomials {Z} An example is the following
primality testing condition. A proof for ordinary binomial coefficients can be found
in the article of Dilcher and Stolarsky [11]. Because of Proposition 2.4, the demon-
stration carries over mutatis mutandis to the general case.

Proposition 5.6. Consider s,t as variables. The positive integer p is prime if and
only if {p} divides { !} for each 0 < k < p.
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6. Catalan Numbers

In this section, we will consider an s, #-analogue of the Catalan numbers suggested by
Louis Shapiro (private communication). We will then investigate the 2-adic valuation
of these generalized Catalan numbers for various values of s and ¢, extending a well-
known theorem in the case s = 2,1 = —1.

Recall that the Catalan numbers are defined by

c, — 1 (2}1)
n+1\n

for n > 0. By analogy, define the generalized Catalan numbers to be

€ = {nil}{znn}'

Ekhad [13] was the first to note that these must be polynomials in s, ¢ with nonneg-
ative integral coefficients, because setting m = n in Theorem 2.2 and doing some
algebraic manipulation shows that

2n—1 2n—1
C{n}—{ ne 1 }-l—l{ n—Z}'

So we can ask about the arithmetic properties of Cy,, for integers s, 7.
To state and prove our results, we will need some notation. First of all, let

{p(n) = the number of nonzero digits of n in the base b.
Also, let
Kip (m + n) = the number of carries in doing the addition (m)p, + (n)p.

It will also be useful to introduce the expansion of n in an unusual base for the
integers. Given any infinite increasing sequence of positive integers b = (b, by, ...)
such that by = 1 and b;|b;1 for i > 1 we consider the expansion of n in base b to
be n = Y;>onib; where 0 < n; < b;1/b; for all i > 0. We will utilize the shorthand
(n)y = (ng, ny,...) for the digits n; in this expansion. If b consists of powers of an
integer m > 1 then we will merely write (n),,. And we will omit the subscript entirely
if the base is clear from context. A particular base of interest to us is

F=(1,3,3-2,3-2%,3.2°..).

This base arises naturally from studying the fractal nature of the Fibonomial triangle
modulo 2. See the paper of Chen and Sagan [5] for details. Other number-theoretic
functions which depend on choosing a base will follow the same conventions.

The next result is well known. See the paper by Deutsch and Sagan [10] for a
(mostly) combinatorial proof.

Theorem 6.1. If C, is an ordinary Catalan number, then

v (Co) = G(n+1)—1.
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We now prove analogues of this theorem for Cy,) using results from Section 3.
We first recall a famous theorem of Kummer [19] which is needed in the sequel.

Theorem 6.2. For any prime, p, we have

vp< <m:n) ) = Kp(m+n).

We start by considering what happens if s and ¢ are both odd.
Theorem 6.3. Let s and t be odd. We have
Cr(n+1)+wn({6})—3, ift=1(mod4)andn=3,4 (modo6),
V2 (C{n}) =
Cr(n+1)—1, else.
Proof. Since

%) (C{n}) =w({2n}!) —wa({n}!) —va({n+1}),

we can apply Corollary 3.2. As usual, we will just supply details when =3 (mod 4).
In this case, the terms from the corollary containing a factor of v,({3}) cancel in the
above equation. As a result,

— [2n/3] _ &(ln/3)), ifn=0,1 (mod 3),
v2(Ciy) = V2 ( ( |n/3] ) ) B { &H(ln/3]+1)—1, ifn=2(mod3),

where the second equality comes from Kummer’s Theorem and the fact that when
adding £ to itself in base two the number of carries is the number of nonzero digits.
We now translate from base 2 to base F. We must consider the congruence classes
modulo three individually. We will do n =0 (mod 3) and leave the rest to the reader.
In this case n = 3k where (k) = (ko, k1,...). So (n+1)p = 3k+ 1)p = (1, ko, k1,-..).
Thus,

G((n/3)) = Gak) = Ge(Bk+ 1) — 1= Geln+1) — 1,

which is what we wished to prove.

Now we consider s and ¢ of opposite parity. As remarked before, if s is odd and
t is even then Cy,) is always odd. If s is even and 7 is odd then Corollary 3.4 and
Theorem 6.1 also make evaluation a simple matter. Thus, we arrive at the following
theorem.

Theorem 6.4. Let s and t be of opposite parity. We have
Ln+1)—1, iftisodd,

wicw) ~{

We conclude with a very interesting question that Shapiro raised when he defined
the Catalans C{n}. As mentioned earlier, there is a nice combinatorial interpretation
of {Z} using tilings [25]. But it remains an open problem to find a combinatorial
interpretation for Cy,,y. This is especially puzzling given the plethora of combinatorial
interpretations for the ordinary Catalan numbers.

if t is even.

Note added in proof: Park [24] has proven Conjecture 3.7 and shown that Conjecture
4.6 holds for sufficiently large s and 7.
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