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Preface

Enumerative combinatorics has seen an explosive growth over the last 50 years. The
purpose of this text is to give a gentle introduction to this exciting area of research. So,
rather than trying to cover many different topics, I have chosen to give a more leisurely
treatment of some of the highlights of the field. My goal has been to write the exposition
so it could be read by a student at the advanced undergraduate or beginning graduate
level, either as part of a course or for independent study. The reader will find it similar
in tone to my book on the symmetric group. I have tried to keep the prerequisites to a
minimum, assuming only basic courses in linear and abstract algebra as background.
Certain recurring themes are emphasized, for example, the existence of sum and prod-
uct rules first for sets, then for ordinary generating functions, and finally in the case of
exponential generating functions. I have also included some recent material from the
research literature which, to my knowledge, has not appeared in book form previously,
such as the theory of quotient posets and the connection between pattern avoidance
and quasisymmetric functions.

Most of the exercises should be doable with a reasonable amount of effort. A few
unsolved conjectures have been included among the problems in the hope that an in-
terested student might wish to tackle one of them. They are, of course, marked as such.

A few words about the title are in order. It is in part meant to be a tip of the hat to
Donald Knuth’s influential series of books The art of computer programing, Volumes
1-3 [51-53], which, among many other things, helped give birth to the study of pattern
avoidance through its connection with stack sorting; see Exercise Bg in Chapter 1. I
hope that the title also conveys some of the beauty found in this area of mathemat-
ics, for example, the elegance of the Hook Formula (equation (7.10)) for the number
of standard Young tableaux. In addition I should mention that, due to my own pref-
erences, this book concentrates on the enumerative side of combinatorics and mostly
ignores the important extremal and existential parts of the field. The reader interested
in these areas can consult the books of Flajolet and Sedgewick [25] and of van Lint [95].

Xi
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xii Preface

This book grew out of the lecture notes which I have compiled over years of teach-
ing the graduate combinatorics course at Michigan State University. I would like to
thank the students in these classes for all the feedback they have given me about the
various topics and their presentation. I am also indebted to the following colleagues,
some of whom taught from a preliminary version of this book, who provided me with
suggestions as well as catching numerous typographical errors: Matthias Beck, Moussa
Benoumhani, Andreas Blass, Seth Chaiken, Sylvie Corteel, Georges Grekos, Richard
Hensh, Nadia Lafreniere, Duncan Levear, and Tom Zaslavsky. Darij Grinberg deserves
special mention for providing copious comments and corrections as well as providing
a number of interesting exercises. I also received valuable feedback from four anony-
mous referees. Finally, I wish to express my appreciation of Ina Mette, my editor at
the American Mathematical Society. Without her gentle support and persistence, this
text would never have seen the light of day. Because I typeset this document myself,
all errors can be blamed on my computer.

East Lansing, Michigan, 2020
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—
Chapter 1

Basic Counting

In this chapter we will develop the most elementary techniques for enumerating sets.
Even though these methods are relatively basic, they will presage more complicated
things to come. We denote the integers by Z and parameters such as n and k are always
assumed to be integral unless otherwise indicated. We also use the notation N and P
for the nonnegative and positive integers, respectively. As usual, Q, R, and C stand
for the rational numbers, real numbers, and complex numbers, respectively. Finally,
whenever taking the cardinality of a set we will assume it is finite.

1.1. The Sum and Product Rules for sets

The Sum and Product Rules for sets are the basis for much of enumeration. And we will
see various extensions of them later to ordinary and exponential generating functions.
Although the rules are very easy to prove, we will include the demonstrations because
the results are so useful. Given a finite set S, we will use either of the notations #S or
|S| for its cardinality. We will also write S @ T for the disjoint union of S and T, and
usage of this symbol implies disjointness even if it has not been previously explicitly
stated. Finally, our notation for the (Cartesian) product of sets is

SXT={(s,t)|seS,teT}

Lemma 1.1.1. Let S, T be finite sets.
(a) (SumRule)IfSN T = @, then
|SwT|=|S|+|T].
(b) (Product Rule) For any finite sets
[SXT|=1S]-|T|.

Proof. Let S = {sy,...,8,and T = {t,...,t,}. For part (a), if S and T are disjoint,
thenwehave SW T = {Sy,..., S, t1,..., ty}sothat [SW T| =m+n =S|+ |T|.

1
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2 1. Basic Counting

For part (b), we inducton n = |T|. If T = §J, then S X T = @ so that |S X T| = 0 as
desired. If |T| > 1, thenlet T' = T — {t,,}. Wecanwrite SXT = (S X T") W (S x {t,,}).
Also S X {t,,} = {(s1,t3),-..,(Sm,t,)}, which has |S| = m elements since the second
component is constant. Now by part (a) and induction

[SXT|=[SXT'|+|SX{t,}| =mn—1)+ m = mn,

which finishes the proof. O

In combinatorial choice problems, one is often given either the option to do one
operation or another, or to do both. Suppose there are m ways of doing the first oper-
ation and n ways of doing the second. If there is no common operation, then the Sum
Rule tells us that the number of ways to do one or the other is m + n. And if doing the
first operation has no effect on doing the second, then the Product Rule gives a count
of mn for doing the first and then the second. More generally if there are m ways of
doing the first operation and, no matter which of the m is chosen, the number of ways
to continue with the second operation is n, then again there are mn ways to do both.
(The actual n second operations available may depend on the choice of the first, but not
their number.) So in practice one translates from English to mathematics by replacing
“or” with addition and “and” with multiplication.

Another important concept related to cardinalities is that of a bijection. A bijection
between sets S, T is a function f : S — T which is both injective (one-to-one) and sur-
jective (onto). If S, T are finite, then the existence of a bijection between them implies
that |S| = |T|. (One can extend this notion to infinite sets, but we will have no cause
to do so here.) In combinatorics, one often uses bijections to prove that two sets have
the same cardinality. See, for just one of many examples, the proof of Theorem
below.

We will illustrate these ideas with one of the most famous sequences in all of com-
binatorics: the Fibonacci numbers. As is sometimes the case, there is an amusing (if
somewhat improbable) story attached to the sequence. One starts at the beginning of
time with a pair of immature rabbits, one male and one female. It takes one month
for rabbits to mature. In every subsequent month a pair gives birth to another pair of
immature rabbits, one male and one female. If rabbits only breed with their birth part-
ner and live forever (as I said, the story is somewhat improbable), how many pairs of
rabbits are there at the beginning of month n? Let us call this number F,. It will be con-
venient to let F, = 0. Since we begin with only one pair, F; = 1. And at the beginning
of the second month, the pair has matured but produced no offspring, so F, = 1. In
subsequent months, one has all the rabbits from the previous month, counted by F,_;,
together with the newborn pairs. The number of newborn pairs equals the number of
mature pairs from the previous month, which equals the total number of pairs from
the month before which is F,_,. Thus, applying the Sum Rule,

(1.1) E,=E,_1+F,_,forn>2withFy=0and F; =1

where we can start the recursion at n = 2 rather than n = 3 due to letting F, = 0.
The F, are called the Fibonacci numbers. It is also important to note that some authors
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1.1. The Sum and Product Rules for sets 3

Figure1.1. 73

define this sequence by letting

(1.2) Jo=fi=land f, = fo1 + fpp forn>2.
So it is important to make sure which flavor of Fibonacci is being discussed in a given
context.

One might wonder if there is an explicit formula for F, in addition to the recursive
one above. We will see that such an expression exists, although it is far from obvious
how to derive it from what we have done so far. Indeed, we will need the theory of
ordinary generating functions discussed in Chapter [ to derive it.

Another thing which might be desired is a combinatorial interpretation for F,. A
combinatorial interpretation for a sequence of nonnegative integers aq,a;, a,,... is a
sequence of sets Sy, S1,S,,... such that #S,, = a,, for all n. Such interpretations of-
ten give rise to very pretty and intuitive proofs about the original sequence and so are
highly desirable. One could argue that the story of the rabbits already gives such an
interpretation. But we would like something more amenable to mathematical manip-
ulation.

Suppose we are given a row of squares. We are also given two types of tiles: domi-
nos which can cover two squares and monominos which can cover one. A tiling of the
row is a set of tiles which covers each square exactly once. Let J;, be the set of tilings
of a row of n squares. See Figure [L. for a list of the elements of J3. There is a simple
relationship between tilings and Fibonacci numbers.

Theorem 1.1.2. Forn > 1 we have

Fy=#Jy_1.

Proof. It suffices to prove that both sides of this equation satisfy the same initial con-
ditions and recurrence relation. When the row contains no squares, it only has the
empty tiling so J; = 1 = F;. And when there is one square, it can only be tiled by
a monomino so J; = 1 = F,. For the recursion, the tilings in J;, can be divided into
two types: those which end with a monomino and those which end with a domino.
Removing the last tile shows that these tilings are in bijection with those in J,,_; and
those in 7;,_,, respectively. Thus #7,, = #7,,_; + #J,,_, as desired. |

To see the power of a good combinatorial interpretation, we will now give a simple
proof of an identity for the F,. Such identities are legion. See, for example, the book of
Benjamin and Quinn [10].

Corollary 1.1.3. Form > 1 and n > 0 we have

Fpin = By_1bp + EpFy .
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4 1. Basic Counting

Proof. By the previous theorem, the left-hand side counts the number of tilings of a
row of m 4+ n — 1 squares. So it suffices to show that the same is true of the right. Label
the squares 1,...,m + n — 1 from left to right. We can write 7;,,,,,_; = S ¥ J where
8 contains those tilings with a domino covering squares m — 1 and m, and J™ has the
tilings with m—1 and m in different tiles. The tilings in J” are essentially pairs of tilings,
the first covering the first m — 1 square and second covering the last n squares. So the
Product Rule gives |T| = |7;,_1| - |Tn| = EnFE,+1.- Removing the given domino from the
tilings in 8 again splits each tiling into a pair with the first covering m — 2 squares and
the second n — 1. Taking cardinalities results in |S| = F,,_;F,. Finally, applying the
Sum Rule finishes the proof. O

The demonstration just given is called a combinatorial proof'since it involves count-
ing discrete objects. We will meet other useful proof techniques as we go along. But
combinatorial proofs are often considered to be the most pleasant, in part because they
can be more illuminating than demonstrations just involving formal manipulations.

1.2. Permutations and words

Itisalways important when considering an enumeration problem to determine whether
the objects being considered are ordered or not. In this section we will consider the
most basic ordered structures, namely permutations and words.

If S is a set with #S = n, then a permutation of S is a sequence 7 = 7, ...7,
obtained by listing the elements of S in some order. If 7 is a permutation, we will
always use 7; to denote the ith element of 7 and similarly for other ordered structures.
We let P(S) denote the set of all permutations of S. For example,

P({a, b, c}) = {abc, acb, bac, bca, cab, cba}.
Clearly #P(S) only depends on #S. So often we choose the canonical n-element set
[n] ={1,2,...,n}.

We can also consider k-permutations of S which are sequences 7 = 7 ... 7, obtained
by linearly ordering k distinct elements of S. Here, k is called the length of the permu-
tation and we write () = k. Again, we use the same terminology and notation for
other ordered structures. The set of all k-permutations of S is denoted P(S, k). By way
of illustration,

P{a,b,c,d},2) ={ab, ba, ac, ca, ad, da, bc, cb, bd, db, cd, dc}.

In particular, if #S = n, then P(S,n) = P(S). Also P(S, k) = @ for k > n since in this
case it is impossible to pick k distinct elements from a set with only n. And P(S, 0) = {¢}
where ¢ is the empty sequence.

To count permutations it will be convenient to introduce the following notation.
Given nonnegative integers n, k, we can form the falling factorial

nly=nnh—-1)...(n—k+1).

Note that k equals the number of factors in the product.
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1.3. Combinations and subsets 5

Theorem 1.2.1. Forn,k > 0 we have
#P([n], k) =nly .

In particular
#P([n]) = n!.

Proof. Since P([n]) = P([n],n), it suffices to prove the first formula. Given 7 =
7y ... T € P([n], k), there are n ways to pick 7;. Since 7, # 7, there remains n — 1
choices for 7,. Since the number of choices for 7, does not depend on the actual ele-
ment chosen for 7, one can continue in this way and apply a modified version of the
Product Rule to obtain the result. O

Note that when 0 < k < n we can write
n!

(13) nlk— m

But for k > n the product n ] still makes sense, even though the product cannot be
expressed as a quotient of factorials. Indeed, if k > n, then zero is a factor and so
n |= 0, which agrees with the fact that P([n], k) = @. In the special case k = 0 we
have n | ;= 1 because it is an empty product. Again, this reflects the combinatorics in
that P([n],0) = {e}.

One of the other things to keep track of in a combinatorial problem is whether
elements are allowed to be repeated or not. In permutations we have no repetitions.
But the case when they are allowed is interesting as well. A k-word over a set S is a
sequence w = wj ... w; where w; € S for all i. Note that there is no assumption that
the w; are distinct. We denote the set of k-words over S by P((S, k)). Note the use of
the double parentheses to denote the fact that repetitions are allowed. Note also that
P(S, k) C P((S, k)), but usually the inclusion is strict. To illustrate

P(({a, b, c,d},2)) = P({a, b, c,d},2) w{aa, bb, cc,dd}.
The proof of the next result is almost identical to that of Theorem and so is left to
the reader. When a result is given without proof, this is indicated by a box at the end
of its statement.
Theorem 1.2.2. Forn,k > 0 we have
#P(([n], k)) = nk. O

1.3. Combinations and subsets

We will now consider unordered versions of the combinatorial objects studied in the
last section. These are sometimes called combinations, although the reader may know
them by their more familiar name: subsets.

Given a set S, we let 25 denote the set of all subsets of S. Notice that 25 is a set, not
a number. For example,

2100 = {@, {a}, {b}, {c}, {a, b}, {a,c}, {b,c}, {a,b,c}}.

The reason for this notation should be made clear by the following result.

The preliminary version made available with permission of the publisher, the American Mathematical Society



6 1. Basic Counting

Theorem 1.3.1. Forn > 0 we have

#2lnl = on,

Proof. By Theorem [[.2.2 we have 2" = #P(({0, 1}, n)). So it suffices to find a bijection
f: 2" = P(({0,1}, ),

and there is a canonical one. In particular, if S C [n], then we let f(S) = w;...w,
where, for all i,
» = { 1 ifies,
71 o ifigs.
To show that f is bijective, it suffices to find its inverse. Ifw = w; ... w, € P(({0, 1}, n)),
then we let f~}(w) = Swherei € Sifw; = 1andi ¢ Sifw; =0where1 <i < n. Itis
easy to check that the compositions f o f~! and f~! o f are the identity maps on their
respective domains. This completes the proof. O

The proof just given is called a bijective proof and it is a particularly nice kind of
combinatorial proof. This is because bijective proofs can relate different types of com-
binatorial objects, sometimes revealing unexpected connections. Also note that we
proved f bijective by finding its inverse rather than showing directly that it was one-
to-one and onto. This is the preferred method as having a concrete description of f~!
can be useful later. Finally, when dealing with functions we will always compose them
right-to-left so that

(f 2 @)(x) = f(g(x)).

We now want to count subsets by their cardinality. For a set S we will use the
notation

S
B)=iresinr-n

As an example,
{a,b,c}
, | ={lab} {ac} {b,ch}.
As expected, we now find the cardinality of this set.

Theorem 1.3.2. Forn,k > 0 we have
[n]\ _ nlk
#( k)= T
Proof. Cross-multiplying and using Theorem we see that it suffices to prove

#P([n], k) = k! -#([Z]).

To see this, note that we can get each 7, ... 7, € P([n], k) exactly once by running
through the subsets S = {s;,...,8:} C [n] and then ordering each S in all possible
ways. The number of choices for S is #([Z]) and, by Theorem again, the number
of ways of permuting the elements of S is k!. So we are done by the Product Rule. [
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Figure 1.2. Rows 0 through 4 of Pascal’s triangle

Given n, k > 0, we define the binomial coefficient

(1.4) (Z) - #<[Z]> = "k—l'k

The reason for this name is that these numbers appear in the binomial expansion which
will be studied in Chapter B. Often you will see the binomial coefficients displayed in
a triangular array called Pascal’s triangle which has (Z) as the entry in the nth row and
kth diagonal. When k > n it is traditional to omit the zeros. See Figure [[.2 for rows 0
through 4. (We apologize to the reader for not writing out the whole triangle, but this
page is not big enough.) For 0 < k < n we can use ([.3) to write

n n!
(13 (k) CICED)

which is pleasing because of its symmetry. We can also extend the binomial coefficients
to k < 0 by letting () = 0. This is in keeping with the fact that (/1) = @ in this case.

In the next theorem, we collect various basic results about binomial coefficients
which will be useful in the sequel. In it, we will use the Kronecker delta function defined

by
5 = { 1 ifx=y,
YTl 0 ifx#y.
Also note that we do not specify the range of the summation variable k in (c) and (d)
because it can be taken as either 0 < k < n or k € Z since the extra terms in the larger
sum are all zero. Both viewpoints will be useful on occasion.

Theorem 1.3.3. Supposen > 0.

(a) The binomial coefficients satisfy the initial condition

(-s-
and recurrence relation
-6+
k k-1 k
forn>1.
(b) The binomial coefficients are symmetric, meaning that

(=02
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8 1. Basic Counting

(c) We have

2=

k
(d) We have

Z(—nk(Z) = 8p0-
k

Proof. (a) The initial condition is clear. For the recursion let S; be the set of S € ([Z])
with n € S, and let 8, be the set of S € ([Z]) with n ¢ S. Then ([Z]) = 8, WS, But
ifn € S, then S — {n} € (I-1)). This gives a bijection between 8, and (I#~1) so that
#8, = (Z:}) On the other hand, ifn ¢ S,then S € ([”;1]) and thisimplies #8, = (”;1).
Applying the Sum Rule completes the proof.

(b) It suffices to find a bijection f : (I71) — (/["]). Consider the map f : 2! — 2l"]
by f(S) = [n] — S where the minus sign indicates difference of sets. Note that the
composition f? is the identity map so that f is a bijection. Furthermore S € ([Z]) ifand

only if f(S) € (n[f]k) So f restricts to a bijection between these two sets.
(c) This follows by applying the Sum Rule to the equation 2" = |4 K ([Z]).

(d) The case n = 0 is easy, so we assume n > 0. We will learn general techniques
for dealing with equations involving signs in the next chapter. But for now, we try to

prove the equivalent equality
% (0)=Z (;
k odd <k> k even (k)

Let 7; be the set of T € 21" with #T odd and let 75 be the set of T € 2I" with #T even.
We wish to find a bijection g : J; — 5. Consider the operation of symmetric difference
SAT=(S=T)w(T -S).

It is not hard to see that (SA T) A T = S. Now define g : 2"l = 21"l by g(T) = T A {n}
so that, by the previous sentence, g2 is the identity. Furthermore, g reverses parity and
so restricts to the desired bijection. O

As with the case of permutations and words, we want to enumerate “sets” where
repetitions are allowed. A multiset M is an unordered collection of elements which
may be repeated. For example

M ={{a,a,a,b,c,c}} ={{c,a,b,a,c,a}}.
Note the use of double curly brackets to denote a multiset. We will also use multiplicity
notation where a™ denotes m copies of the element a. Continuing our example
M = {{a3,b,c*}}.
As with powers, an exponent of one is optional and an exponent of zero indicates that

there are no copies of that element in the multiset. The cardinality of a multiset is its
number of elements counted with multiplicity. So in our example #M = 2+1+3 = 6.
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1.3. Combinations and subsets 9

If S is a set, then M is a multiset on S if every element of M is an element of S. We let
((i)) be the set of all multisets on S of cardinality k and

()=

(({“’ b C})) = {{{a.a}}, ffa.b}}. {fa.cl}, {1b.b}. {{b.cl}. {fe.})

andso ((3)) = 6.

Theorem 1.3.4. Forn,k > 0 we have

(0)-¢+)

Proof. We wish to find a bijection

. (([n] [n+k—1]
(-0
Given a multiset M = {{m; < m, < m3 < --- < my}}on [n], let

fM)={m <my+1<mg+2<--<m+k—1}

Now the m; +i — 1 are distinct, and the fact that m; < nimpliesm;+k—1<n+k—1.
It follows that f(M) € (["+;{‘_”) and so the map is well-defined. It should now be easy
for the reader to construct an inverse, proving that f is bijective. (]

As with the binomial coefficients, we extend ((}})) to negative k by letting it equal
zero. In the future we will do the same for other constants whose natural domain of
definition is n, k > 0 without comment.

We do wish to comment on an interesting relationship between counting sets and
multisets. Note that definition ([[.4) is well-defined for any complex number n since the
falling factorial is just a product, and in particular it makes sense for negative integers.
In fact, if n € N, then

(1.6) K i

nn+1)---(n+k-1)
k!

(—n) _(m(n—1)--(=n—k+1)

= (-D*

o)

by Theorem [[.3.4. This kind of situation where evaluation of an enumerative formula
at negative arguments yields, up to sign, another enumerative function is called com-
binatorial reciprocity and will be studied in Section B.9.
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10 1. Basic Counting

1.4. Set partitions

We have already seen that disjoint unions are nice combinatorially. So it should come
as no surprise that set partitions also play an important role.

A partition of a set T is a set p of nonempty subsets By, ..., B, such that T = Lﬂi B;,
written p + T. The B; are called blocks and we use the notation p = By/.../By
leaving out all curly brackets and commas, even though the elements of the blocks,
as well as the blocks themselves, are unordered. For example, one set partition of
T ={a,b,c,d,e, f,g}is

o =acf/be/d/g = d/eb/g/cfa.
We let B(T) be the set of all p - T. To illustrate,

B({a,b,c}) ={a/b/c, ab/c, ac/b, a/bc, abc}.

The nth Bell number is B(n) = #B([n]). Although there is no known expression for
B(n) as a simple product, there is a recursion.

Theorem 1.4.1. The Bell numbers satisfy the initial condition B(0) = 1 and the recur-

rence relation
n—1
B(n) =), (k _ 1)B(n - k)
k
forn>1.

Proof. The initial condition counts the empty partition of . For the recursion, given
p € B([n]), let k be the number of elements in the block B containing n. Then there
are (Z:}) ways to pick the remaining k — 1 elements of [n — 1] to be in B. And the
number of ways to partition [n] — B is B(n — k). Summing over all possible k finishes
the proof. O

We may sometimes want to keep track of the number of blocks in our partitions.
So define S(T, k) to be the set of all p + T with k blocks. The Stirling numbers of the
second kind are S(n, k) = #S([n], k). We will introduce Stirling numbers of the first
kind in the next section. For example

S({a, b, c},2) = {ab/c, ac/b, a/bc}

so S(3,2) = 3. Just as with the binomial coefficients, the S(n,k) for 1 < k < ncan
be displayed in a triangle as in Figure [.3. And like the binomial coefficients, these
Stirling numbers satisfy a simple recurrence relation.

1
1 1
1 3 1
1 7 6 1
1 15 25 10 1

Figure 1.3. Rows 1 through 5 of Stirling’s second triangle
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1.5. Permutations by cycle structure 11

Theorem 1.4.2. The Stirling numbers of the second kind satisfy the initial condition
S(0,k) = 8x,0
and recurrence relation
S(n,k)=S(n—1,k—1)+ kS(n—1,k)

forn>1.

Proof. By now, the reader should be able to explain the initial condition without diffi-
culty. For the recursion, the elements p € S([n], k) are of two flavors: those where n is
in a block by itself and those where n is in a block with other elements. Removing n in
the first case leaves a partition in S([n — 1], k — 1) and this is a bijection. This accounts
for the summand S(n—1, k—1). Removing n in the second case leaves o € S([n—1], k),
but this map is not a bijection. In particular, given o, one can insert n into any one of
its k blocks to recover an element of S([n], k). So the total count is kS(n — 1, k) for this
case. O

1.5. Permutations by cycle structure

The ordered analogue of a decomposition of a set into a partition is the decomposition
of a permutation of [n] into cycles. These are counted by the Stirling numbers of the
first kind.

The symmetric group is €,, = P([n]). Asthe name implies, &,, has a group structure
defined as follows. If 7 = 7;...7, € ©,, then we can view this permutation as a
bijection 7 : [n] —» [n] where 7(i) = 7;. From this it follows that &,, is a group where
the operation is composition of functions.

Given 7 € ©,, and i € [n], there is a smallest exponent £ > 1 such that 7¢(i) = i.
This and various other claims below will be proved using digraphs in Section [[.9. In
this case, the elements i, 77(i), 7%(i), ..., 7¢~1(i) are all distinct and we write

¢ = (i, n(i), 72(@), ..., 7?~1(i))

and call this a cycle of length ¢ or simply an €-cycle of 7. Cycles of length one are called
fixed points. As an example, if 7 = 6514237 and i = 1, then we have (1) = 6, 7%(1) =
3,73(1) = 1so that ¢ = (1,6,3) is a cycle of 7. We now iterate this process: if there
is some j € [n] which is not in any of the cycles computed so far, we find the cycle
containing j and continue until every element is in a cycle. The cycle decomposition
of 7 is 7 = c¢; ... c) where the c; are the cycles found in this process. Continuing our
example, we could get
= (1,6,3)(2,5)(4)7).

To distinguish the cycle decomposition of 7z from its description as 7 = 7, ... 7, we will
call the latter the one-line notation for 7z. This is also distinct from two-line notation,
which is where one writes

1.7 T

T, Ty ... T,
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12 1. Basic Counting

1
1 1
2 3 1
6 11 6 1
24 50 35 10 1

Figure 1.4. Rows 1 through 5 of Stirling’s first triangle

Note that an ¢-cycle can be written in ¢ different ways depending on which of its
elements one starts with; for example

(1,6,3) =(6,3,1) = (3,1,6).

Furthermore, the distinct cycles of 7 are disjoint. So if we think of the cycle c as the
permutation of [n] which agrees with 7 on the elements of ¢ and has all other elements
as fixed points, then the cycles of 7 = ¢, ... ¢, commute where we consider the product
as a composition of permutations. Returning to our running example, we could write

As mentioned above, we defer the proof of the following result until Section [[.9.

Theorem 1.5.1. Every m € &,, has a cycle decomposition w = c; ... cy which is unique
up to the order of the factors and cyclic reordering of the elements within each c;.

We are now in a position to proceed parallel to the development of set partitions
with a given number of blocks in the previous section. For n > 0 we denote by c([n], k)
the set of all permutations in &,, which have k cycles in their decomposition. Note the
difference between “k cycles” referring to the number of cycles and “k-cycles” referring
to the length of the cycles. The signless Stirling numbers of the first kind are c(n, k) =
#c([n], k). So, analogous to what we have seen before, c(n,k) = 0 fork < 0O or k > n.
To illustrate the notation,

c([4],1) ={(1,2,3,4),(1,2,4,3),(1,3,2,4),(1,3,4,2),(1,4,2,3),(1,4,3,2)}

soc(4,1) = 6. In general, as you will be asked to prove in an exercise, c¢([n], 1) = (n—1)!.
Part of Stirling’s first triangle is displayed in Figure [.4. We also have a recursion.

Theorem 1.5.2. The s signless Stirling numbers of the first kind satisfy the initial condition
c(0,k) = 6,0
and recurrence relation
cnk)=chn—1,k—1)+m—1)c(n—1,k)
forn>1.
Proof. As usual, we concentrate on the recurrence. Given 7 € c([n], k), we can re-
move n from its cycle. If n was a fixed point, then the resulting permutations are

counted by c¢(n — 1,k — 1). If n was in a cycle of length at least two, then the per-
mutations obtained upon removal are in ¢([n — 1], k). So one must find the number of
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ways to insert n into a cycle of some o € ¢([n —1], k). There are € places to insert nin a
cycle of length €. So the total number of insertion spots is the sum of the cycle lengths
of o, whichisn — 1. O

The reader may have guessed that there are also (signed) Stirling numbers of the
first kind defined by

s(n, k) = (=1)"ke(n, k).

It is not immediately apparent why one would want to attach signs to these constants.
We will see one reason in Chapter § where it will be shown that the s(n, k) are the
Whitney numbers of the first kind for the lattice of set partitions ordered by refinement.
Here we will content ourselves with proving an analogue of part (d) of Theorem [.3.3.

Corollary 1.5.3. Forn > 0 we have

Z s(n, k) =

{ 1 ifn=0o0rl,
k

0 ifn>2

Proof. The cases when n = 0 or 1 are easy to verify, so assume n > 2. Since s(n, k) =
(=1)"*c(n, k) and (—1)" is constant throughout the summation, it suffices to show
that )’ k(—l)kc(n, k) = 0. Using Theorem and induction on n we obtain

D(=Dke(n,k) = D (=1Fe(n— 1,k — 1) + D (-D¥(n — De(n — 1, k)
k k k
= =S (=DFle(n—1,k—1) +(n—1) D (~Dke(n — 1,k)
k k

-0+ (n—-1)0
=0

as desired. O

Note the usefulness of considering the sums in the preceding proof as over k € Z
rather than 0 < k < n. This does away with having to consider any special cases at the
valuesk =0ork = n.

1.6. Integer partitions

Just as one can partition a set into blocks, one can partition a nonnegative integer as
a sum. Integer partitions play an important role not just in combinatorics but also in
number theory and the representation theory of the symmetric group. See the
at the end of the book for more information on the latter.

An integer partition of n > 0 is a multiset 1 of positive integers such that the sum
of the elements of 4, denoted |4|, is n. We also write A - n. These elements are called
the parts. Since the parts of 1 are unordered, we will always list them in a canonical
order 1 = (4,...,4;) which is weakly decreasing. We let P(n) denote the set of all

The preliminary version made available with permission of the publisher, the American Mathematical Society



14 1. Basic Counting

partitions of n and p(n) = #P(n). For example,
P(4)={(1,1,1,1), (2,1,1), (2,2), (3,1), (4}

so that p(4) = 5. Note the distinction between P([n]), which is a set of set partitions,
and P(n), which is a set of integer partitions. Sometimes we will just say “partition”
if the context makes it clear whether we are partitioning sets or integers. We will use
multiplicity notation for integer partitions just as we would for any multiset, writing

A=(1"™,2"2, . ,n"n)
where m; is the multiplicity of i in A.

There is no known product formula for p(n). In fact, there is not even a simple
recurrence relation. One can use generating functions to derive results about these
numbers, but that must wait until Chapter f. Here we will just introduce a useful
geometric device for studying p(n). The Ferrers or Young diagram of 1 = (4,,...,4;)
n is an array of n boxes into left-justified rows such that row i contains 4; boxes. Dots
are also sometimes used in place of boxes and in this case some authors use “Ferrers
diagram” for the dot variant and “Young diagram” for the corresponding array of boxes.
We often make no distinction between a partition and its Young diagram. The Young
diagram of 1 = (5,5,2,1) is shown in Figure [[.3. We should warn the reader that
we are writing our Young diagrams in English notation where the rows are numbered
from 1 to k from the top down as in a matrix. Some authors prefer French notation
where the rows are numbered from bottom to top as in a Cartesian coordinate system.
The conjugate or transpose of A is the partition A* whose Young diagram is obtained by
reflecting the diagram of A about its main diagonal. This is done in Figure [[.3, showing
that (5,5,2,1) = (4,3,2,2,2). There is also another way to express the parts of the
conjugate.

/1=(5,5,2,1)= S I I
A=

Figure 1.5. A partition, its Young diagram, and its conjugate
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1.6. Integer partitions 15

Proposition 1.6.1. If 1 = (,,...,4;) is a partition and ' = (%,...,2}), then, for
1<j<l,
A= #{i| 4 2 j}.

Proof. By definition, /15- is the length of the jth column of A. But that column contains
abox in row i if and only if 4; > j. O

The number of parts of a partition A is called its length and is denoted €(4). At
this point the reader is probably expecting a discussion of those partitions of n with
€(1) = k. As it turns out, it is a bit simpler to consider P(n, k), the set of all partitions 4
of nwith €(1) < k, and p(n, k) = #P(n, k). Note that the number of 1 - nwith€(1) = k
is just p(n, k) — p(n, k — 1). So in some sense the two viewpoints are equivalent. But it
will be easier to state our results in terms of p(n, k). Note also that

p(n,0) < p(n,1) < --- < p(n,n) = p(n,n +1) = --- = p(n).

Because of this behavior, it is best to display the p(n, k) in a matrix, rather than a trian-
gle, keeping in mind that the entries in the nth row eventually stabilize to an infinite
repetition of the constant p(n). Part of this array will be found in Figure [.6. We also
assume that p(n,k) = 0if n < 0 or k < 0. Unlike p(n), one can write down a simple
recurrence relation for p(n, k).

Theorem 1.6.2. The p(n, k) satisfy

| 0 ifk<o,
and
p(n, k) = p(n — k, k) + p(n,k — 1)
forn>1

Proof. We skip directly to the recursion. Note that since conjugation is a bijection,
p(n, k) also counts the partitions 4 = (4;,...,4;) F nsuch that ; < k. It will be
convenient to use this interpretation of p(n, k) for the proof. We have two possible
cases. If 1; = k,then u = (1,,...,4;)) F n—kand 1, < 1; = k. So these partitions are
counted by p(n — k, k). The other possibility is that 4; < k — 1. And these A are taken

care of by the p(n, k — 1) term. O
01 2 3 4 5
0/1 11 1 11
110 1.1 1 11
210 1 2 2 2 2
3101 2 3 3 3
410 1 3 4 5 5

Figure 1.6. The values p(n,k)for0<n<4and0<k<5
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1.7. Compositions

Recall that integer partitions are really unordered even though we usually list them in
weakly decreasing fashion. This raises the question about what happens if we consid-
ered ways to write n as a sum when the summands are ordered. This is the notion of a
composition.

A composition of n is a sequence a = [ay,..., o] of positive integers called parts
such that )}, a; = n. We write a F n and use square brackets to distinguish composi-
tions from integer partitions. This causes a notational conflict between [n] as a compo-
sition of n and as the integers from 1 to n, but the context should make it clear which
interpretation is meant. Let Q(n) be the set of compositions of n and q(n) = #Q(n).
So the compositions of 4 are

Q@) =1{[1,1,1,1], [2,1,1], [1,2,1], [1,1,2], [2,2], [3,1], [1,3], [4]}

So q(4) = 8, which is a power of 2. This, as your author is fond of saying, is not a
coincidence.

Theorem 1.7.1. Forn > 1 we have

q(n) = 2" 1.

Proof. There is a famous bijection ¢ : 2"~ — Q(n), which we will use to prove
this result. This map will be useful when working with quasisymmetric functions in
Chapter B. Given S = {sy, ..., Si} C [n — 1] written in increasing order, we define

(1.8) $(S) = [$1 — 50> $2 = S15 -++5 Sk = Sk—1> Sk+1 — Sk]

where, by definition, s, = 0 and s,,; = n. To show that ¢ is well-defined, suppose
#(S) = [ay,...,ak41]- Since S is increasing, o; = s; — s;_; is a positive integer. Fur-
thermore

k+1 k+1

Z ap = Z(Si —8i—1) = Sk41— S0 = N
i=1 i=1

Thus ¢(S) € Q(n) as desired.

To show that ¢ is bijective, we construct its inverse ¢ : Q(n) — 2"~ Given
a=[ay,...,41] € Q(n), we let

¢ W) =1y, oy + o, oy F g+ Az, o,y F O+ o+ o)

It should not be hard for the reader to prove that ¢! is well-defined and the inverse of

¢ O

As usual, we wish to make a more refined count by restricting the number of con-
stituents of the object under consideration. Let Q(n, k) be the set of all compositions
of n with exactly k parts and let q(n, k) = #Q(n, k). Since the q(n, k) will turn out to
be previously studied constants, we will forgo the usual triangle. The result below fol-
lows easily by restricting the function ¢ from the previous proof, so the demonstration
is omitted.
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1.8. The twelvefold way 17

Theorem 1.7.2. The composition numbers satisfy

q(0,k) =6y

q(n, k) = (Z _ i)

forn>1. O

and

1.8. The twelvefold way

‘We now have all the tools in place to count certain functions. There are 12 types of such
functions and so this scheme is called the twelvefold way, an idea which was introduced
in a series of lectures by Gian-Carlo Rota. The name was suggested by Joel Spencer and
should not be confused with the twelvefold path of Buddhism!

We will consider three types of functions f : D — R, namely, arbitrary functions,
injections, and surjections. We will also permit the domain D and range R to be of
two types each: either distinguishable, which means it is a set, or indistinguishable,
which means it is a multiset consisting of a single element repeated some number of
times. Thus the total number of types of functions under consideration is the product
of the number of choices for f, D, and R or 3 - 2 - 2 = 12. Of course, a function where
the domain or range is a multiset is not really well-defined, even though the intuitive
notion should be clear. To be precise, when D is a multiset and R is a set, suppose D’
is a set with |D’| = |D|. Then a function f : D — R is an equivalence class of functions
f: D' — R where f and g are equivalent if #f~1(r) = #g~!(r) for all r € R. The
reader can come up with the corresponding notions for the other cases if desired. We
will assume throughout that |D| = n and |R| = k are both nonnegative integers. We
will collect the results in the chart in Table [L.1].

We first deal with the case where both D and R are distinguishable. Without loss
of generality, we can assume that D = [n]. So a function f : D — R can be considered
asaword w = f(1)f(2)... f(n). Since there are k choices for each f(i), we have, by
Theorem [[.2.7, that the number of such f is #P(([k],n)) = k". If f is injective, then
w becomes a permutation, giving the count #P([k], n) = k|, from Theorem [.2.1. For
surjective functions, we need a new concept. If D is a set, then the kernel of a function
f: D — Risthe partition ker f of D whose blocks are the nonempty subsets of the form
f~(r) for r € R. For example, if f : {a,b,c,d} — {1,2,3}is given by f(a) = f(c) = 2,

Table 1.1. The twelvefold way

D | R || arbitrary f injective f surjective f

dist. dist. k" kl, k! S(n, k)

indist. | dist. || ("**7") () ()

dist. | indist. 25?:0 S(n,j) 8(n<k) S(n, k)

indist. | indist. || p(n, k) o(n<k) p(n, k) — p(n,k —1)
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18 1. Basic Counting

f(b) = 3,and f(d) = 1, then ker f = ac/b/d. If f is to be surjective, then the function
can be specified by picking a partition of D for ker f and then picking a bijection g from
the blocks of ker f into R. Continuing our example, f is completely determined by its
kernel and the bijection g(ac) = 2, g(b) = 3, and g(d) = 1. The number of ways to
choose ker f = B;/.../By is S(n, k) by definition. And, using the injective case with
n = k, the number of bijections g : {Bj,...,Br} — Ris k|= k!. So the total count is
k! S(n, k).

Now suppose D is indistinguishable and R is distinguishable where we assume
R = [k]. Then one can think of f: D — R as a multiset M = {{1™,...,k"}} on R
where m; = #f7!(i). It follows that )}, m; = #D = n. So, by Theorem [.3:4, the

number of all such f is
E\\ (n+k-1
nl) n '

If f is to be injective, then we are picking an n-element subset of R = [k] giving a count
of (ﬁ) If f is to be surjective, then m; > 1 for all i so that [m,, ..., m,] is a composition
of n. It follows from Theorem that the number of functions is q(n, k) = (Z:i)

To deal with the case when D = [n] is distinguishable and R is indistinguishable,
we introduce a useful extension of the Kronecker delta. If S is any statement, we let

1 if Sistrue,
0 if Sis false.

Returning to our counting, f is completely determined by its kernel, which is a parti-
tion of [n]. If we are considering all f, then the kernel can have any number of blocks
up to and including k. Summing the corresponding Stirling numbers gives the corre-
sponding entry in Table [[.1|. If f is injective, then for such a function to exist we must
have n < k. And in that case there is only one possible kernel, namely the partition
into singleton blocks. This count can be summarized as 6(n < k). For surjective f we
are partitioning [n] into exactly k blocks, giving S(n, k) possibilities.

(1.9) 5(S) = {

If D and R are both indistinguishable, then the nonzero numbers of the form m; =
#f~1(r) for r € R completely determine f. And these numbers form a partition of
n = #D into at most k = #R parts. Recalling the notation of Section [[.§, the total
number of such f is p(n, k). The line of reasoning for injective functions follows that
of the previous paragraph with the same resulting answer. Finally, for surjectivity we
need exactly k parts, which is counted by p(n, k) — p(n, k — 1).

1.9. Graphs and digraphs

Graph theory is a substantial part of combinatorics. We will use directed graphs to
give the postponed proof of the existence and uniqueness of the cycle decomposition
of permutations in &,,.

A labeled graph G = (V,E) consists of a set V of elements called vertices and a set
E of elements called edges where an edge consists of an unordered pair of vertices. We
will write V(G) and E(G) for the vertex and edge set of G, respectively, if we wish to
emphasize the graph involved. Geometrically, we think of the vertices as nodes and
the edges as line segments or curves joining them. Conventionally, in graph theory an
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1.9. Graphs and digraphs 19

Figure 1.7. A graph G

edge connecting vertices v and w is written e = vw rather than e = {v, w}. In this case
we say that e contains v and w, or that e has endpoints v and w. We also say that v and
w are neighbors. For example, a drawing of the graph G with vertices V = {v, w, x, y}
and edges E = {vw, vx, vy, wx, xy} is displayed in Figure [.7. If #V = 1, then there is
only one graph with vertex set I and such a graph is called trivial.

Call graph H a subgraph of G, written H C G, if V(H) C V(G) and E(H) C E(G).
In this case we also say that G contains H. There are several types of subgraphs which
will play an important role in what follows. A walk of length € in G is a sequence of
vertices W : vg,Vy,..., 0, such that v;_;v; € E for 1 <i < ¢. We say that the walk is
fromuvg tov,, oris a vy-v, walk, or that vy, v, are the endpoints of W. We call W a path
if all the vertices are distinct and we usually use letters like P for paths. In particular,
we will use W, or B, to denote a walk or a path having n vertices, respectively. In our
example graph, P : y,v, x, w is a path of length 3 from y to w. Notice that length refers
to the number of edges in the path, which is one less than the number of vertices. A
cycle of length ¢ in G is a sequence of distinct vertices C : vy, U,, ..., U, such that we
have distinct edges v;_,v; for 1 < i < ¢, and subscripts are taken modulo ¢ so that
Uy = U,. Returning to our running example, C : v, X,y isacycle in G of length 3. In a
cycle the length is both the number of vertices and the number of edges. The notation
C, will be used for a cycle with n vertices and we will call this an n-cycle. 'We also
denote by K, the complete graph which consists of n vertices and all possible (’21) edges
between them. A copy of a complete graph in a graph G is often called a clique. There
is a close relationship between some of the parts of a graph which we have just defined.

Lemma 1.9.1. Let G be a graph and letu,v € V.

(a) Anywalk from u to v contains a path from u to v.

(b) The union of any two different paths from u to v contains a cycle.

Proof. We will prove (a) and leave (b) as an exercise. Let W : v,..., U, be the walk.
We will induct on ¢, the length of W. If ¢ = 0, then W is a path. Soassume ¢ > 1. If W
is a path, then we are done. If not, then some vertex of W is repeated, say v; = v; for
i < j. Then we have a u~v walk W' @ vy, Vq,...,0;,Vj41,Vj42, -+, Up Which is shorter
than W. By induction, W’ contains a path P and so W contains P as well. O
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20 1. Basic Counting

To state our first graphical enumeration result, let G(V) be the set of all graphs on
the vertex set V. We will also use G(V, k) to denote the set of all graphs in (V) with k
edges.

Theorem 1.9.2. Forn > 1and k > 0 we have

#5([n)) =20

sty =()

Proof. If V = [n] is given, then a graph G with vertex set V is completely determined
by its edge set. Since there are n vertices, there are (’2’) possible edges to choose from.
So the number of G in G([n]) is the number of subsets of these edges, which, by The-
orem [.3.1], is the given power of 2. The proof for G([n], k) is similar, just using the
definition (L.4). O

and

A graph is unlabeled if the vertices in V are indistinguishable. If the type of graph is
clear from the context or does not matter for the particular application at hand, we will
omit the adjectives “labeled” and “unlabeled”. The enumeration of unlabeled graphs
is much more complicated than for labeled ones. So this discussion is postponed until
Section 6.4 where we will develop the necessary tools.

If G is a graph and v € V, then the degree of v is
degv = the number of e € E containing v.

In our running example degv = degx = 3 and degw = degy = 2. There is a nice
relationship between vertex degrees and the cardinality of the edge set. The demon-
stration of the next result illustrates an important method of proof in combinatorics,
counting in pairs.

Theorem 1.9.3. For any graph G we have
> degv = 2|E|.

velV

Proof. Consider

P ={(v,e) | vis contained in e}.

Then
#P = Z (number of e containing v) = Z degu.
veV velV
On the other hand
#P = Z (number of v contained in e) = Z 2 =2|E|.
ecE ecE
Equating the two counts finishes the proof. ]
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1.9. Graphs and digraphs 21

Figure 1.8. A digraph D

Theorem [[.9.3 is often called the Handshaking Lemma because of the following
interpretation. Suppose V is the set of people at a party and we draw an edge between
person v and person w if they shake hands during the festivities. Then adding up the
number of handshakes given by each person gives twice the total number of hand-
shakes.

It is often useful to have specified directions along the edges. A labeled directed
graph, also called a digraph, is D = (V,A) where V is a set of vertices and A is a set
of arcs which are ordered pairs of vertices. We use the notation a = vw for arcs and
say that a goes from v to w. To illustrate, the digraph with V = {v,w,x,y}and A =
{ow, wb, wX, yv, yx} is drawn in Figure [.§. We use V(D) and A(D) to denote the vertex
set and arc set, respectively, of a digraph D when we wish to be more precise. Directed
walks, paths, and cycles are defined for digraphs similarly to their undirected cousins in
graphs, just insisting the v;_;v; € A for i in the appropriate range. So, in our example
digraph, P : y,v,w, x is a directed path and C : v, w is a directed cycle. Note that
w, X, Y, U is not a directed path because the arc between x and y goes the wrong way.

Let D(V) and D(V, k) be the set of digraphs and the set of digraphs with k arcs,
respectively, having vertex set V. The next result is proved in much the same manner
as Theorem so the demonstration is omitted.

Theorem 1.9.4. Forn > 1and k > 0 we have
#D([n]) = 2n-D

and

#D([n], k) = (”(”k‘ D). 0

In a digraph D there are two types of degrees. Vertex v € V has out-degree and
in-degree
odegv = the number of a € A of the form a = oW,

idegv = the number of a € A of the form a = wo,

respectively. In Figure [.§, for example, odegv = 1 and ideg v = 2. The next result will
permit us to finish our leftover business from Section [.5. The union of digraphs DUE
is the digraph with vertices V(DUE) = V(D)U V(E) and arcs A(DUE) = A(D) UA(E).
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22 1. Basic Counting

Lemma 1.9.5. Let D = (V,A) be a digraph. We have odegv = idegv = 1 forallv € V
if and only if D is a disjoint union of directed cycles.

Proof. The reverse implication is easy to see since the out-degree and in-degree of any
vertex v of D would be the same as those degrees in the directed cycle containing v.
But in such a cycle odegv = idegv = 1.

For the forward direction, pick any v = v; € V. Since odegv; = 1 there must
exist a vertex v, with 0;0, € A. By the same token, there must be a v; with 0,03 € A.
Continue to generate a sequence vy, U,, ... in this manner. Since V is finite, there must
be two indices i < j such that v; = v;. Let i be the smallest such index and let j be
the first index after i where repetition occurs. Thus i = 1, for if not, then we have
0;_10;, 0j_10; € A, contradicting the fact that idegv; = 1. By definition of j, we have
a directed cycle C : v;,0y,...,0 -1 Furthermore, no vertex of C can be involved in
another arc since that would make its out-degree or in-degree too large. Continuing in
this manner, we can decompose D into disjoint directed cycles. O

Sometimes it is useful to allow loops in a graph which are edges of the form e = vv.
Similarly, we can permitloops as arcs a = vU in a digraph. Another possibility is that we
would want multiple edges, meaning that one could have more than one edge between
a given pair of vertices, making E into a multiset. Multiple arcs are defined similarly.
If we make no specification for our (di)graph, then we are assuming that it has neither
loops nor multiple edges. We will now prove Theorem [[.5.1].

Proof (of Theorem [[.5.1)). To any 7 € ©,, we associate its functional digraph D,
which has V = [n] and an arc ij € A if and only if 7(i) = j. Now D, is a digraph
with loops. Because 7 is a function we have odegi = 1 for all i € [n]. And because 7
is a bijection we also have idegi = 1 for all i. The proof of the previous lemma works
equally well if one allows loops. So D;; is a disjoint union of cycles. But cycles of the
digraph D;, correspond to cycles of the permutation zz. Thus the cycle decomposition
of 77 exists. It is also easy to check that the cycles of D,, produced by the algorithm in the
demonstration of necessity in Lemma are unique. This implies the uniqueness
statement about the cycles of 7 and so we are done. O

1.10. Trees

Trees are a type of graph which often occurs in practice, even in domains outside of
mathematics. For example, trees are used as data structures in computer science, or
to model evolution in genetics. A graph G is connected if, for every pair of vertices
v,w € V, there is a walk in G from v to w. By Lemma [.9.1)(a), this is equivalent to
there being a path from v to w in G. The connected components of G are the maximal
connected subgraphs. If G is connected, there is only one component. Call G acyclic
if it contains no cycles. A forest is another name for an acyclic graph. The connected
components of a forest are called trees. So a graph T is a tree if it is both connected and
acyclic. Figure [[.9 contains five trees Ty, ..., Ts.
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1 1 1 1 1
5 2 3 2 3 2 2
L T, T T, Ts
w1—4 w2—6 U)3=1 LU4—4
11—5 12—3 l3—6 l4—2

Figure 1.9. The Priifer algorithm

A leafin a graph G is a vertex v having degv = 1. The next result will show that
nontrivial trees have leaves (regardless of the time of year). Further, it should be clear
from this lemma why leaves are a useful tool for induction in trees. In order to state it,
we need the following notation. If G is a graph and W C V, then G — W is the graph
on the vertex set V' — W whose edge set consists of all edges in E with both endpoints
inV —WwW. f W = {v} for some v, then we write G — v for G — {v}. In Figure [L.9,
T, = T} — 5. Similarly, if F C E, then G — F is the graph with V(G — F) = V(G)
and E(G — F) = E(G) — E(F). If F consists of a single edge, then we use a similar
abbreviation as for subtracting vertices.

Lemma 1.10.1. Let T be a tree with #V > 2.

(a) T has (at least) 2 leaves.
(b) Ifvisaleafof T, then T' = T — vis also a tree.

Proof. (a) Let P : vy, ..., V0, be a path of maximum length in T. Since T is nontrivial,
Uy # Up. We claim that v, v, are leaves and we will prove this for v, as the same proof
works for v,. Suppose, towards a contradiction, that degvy > 2. Then there must be a
vertex w # v; such that vow € E. We now have two possibilities. If w is not a vertex of
P, then the path P’ : w,vy,..., U, is longer than P, a contradiction to the definition of
P. If w = v; for some 2 < i < ¢, then the portion of P from v, to v; together with the
edge vyv; forms a cycle in T, again a contradiction.

(b) It is clear that T’ is still acyclic since removing vertices cannot create a cycle.
To show it is connected, take x,y € V(T'). So x,y are also vertices of T. Since T is
connected, Lemma [[.9.1(a) implies that there is a path P from x to y in T. If this path
isalsoin T', then we will be done. But if P goes through v, then, since there is a unique
vertex v" adjacent to v, P would have to pass through v’ just before and just after v. This
contradicts the fact that the vertices of P are distinct. O

There are a number of characterizations of trees. We collect some of them here as
they will be useful in the sequel.

The preliminary version made available with permission of the publisher, the American Mathematical Society



24 1. Basic Counting

Theorem 1.10.2. Let T be a graph with #V = n and #E = m. The following are
equivalent conditions for T to be a tree:

(a) T is connected and acyclic.
(b) Tisacyclicandn =m + 1.
(c) Tisconnectedandn =m+ 1.

(d) For every pair of vertices u, v there is a unique path from u to v.

Proof. We will prove the equivalence of (a), (b), and (c). The equivalence of (a) and
(d) is left as an exercise. To prove that (a) implies (b), it suffices to show by induction
on nthat n = m + 1. This is trivial if n = 1. If n > 2, then, by Lemma [[.10.1, T has
a leaf v. Induction applies to T’ = T — v so that its vertex and edge cardinalities are
relatedbyn’ =m' + 1. Butn=n'+landm=m' + 1sothatn =m+ 1.

To see why (b) implies (c), consider the connected components Ti,..., T of T.
Since T is acyclic, each of these components is a tree. Also, from the implication (a)
= (b), we have that n; = m; + 1 for 1 <i < k where n; = #V(T;) and m; = #E(T;).
Adding these equations together and using the fact that ), n; = nand )}, m; = m we
obtain n = m + k. But we are given that n = m + 1. So we must have k = 1. This
means that T only has one component and so is connected.

We prove that (c) implies (a) by contradiction. So suppose that T contains a cycle
C and let e = uv € E(C). We claim that T — e is still connected. For if x,y are any
two vertices of T — e, then there is a walk W from x to y in T. If W does not contain e,
then W is still in T — e. If W does contain e, then replace e in W with the path C — e
to form a new walk W' from x to y in T — e. We can keep removing edges in this way
until the resulting graph T’ is acyclic. Since T’ is still connected, it is a tree. And by
the first implication we have n’ = m’ + 1. Butn’ = nand m’ < mso thatn < m + 1,
the desired contradiction. O

Let (V) be the set of all trees on the vertex set V. There are quite a number of
different proofs of the beautiful formula below for #J°(V), many of which are in Moon’s
book on the subject [64].

Theorem 1.10.3. Forn > 1 we have

#7([n]) = n"2.

Proof. The result is trivial if n = 1, so assume n > 2. By Theorem it suffices
to find a bijection f: J([n]) - P(([n],n — 2)). There is a famous algorithm for con-
structing f which is called the Priifer algorithm. An example will be found in Figure[[.9.
Given T € J([n]), to determine f(T) = w; ... w,_, we will build a sequence of trees
T=1,T,...,T,_, by removing vertices from T as follows. Since the vertices of T
are labeled 1, ..., n it makes sense to talk about, e.g., a maximum vertex because of the
ordering on the integers. Given T;, we find the leaf [; € V(T;) such that /; is maximum
and let T;,; = T; — ;. By the previous lemma, T;,; will also be a tree. Since J; is a leaf,
it is adjacent to a unique vertex w; in T; and we let w; be the ith element of f(T). Now
each w; € [n] and f(T) has length n — 2 by definition. So f(T) € P(([n], n — 2)).
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To show that f is a bijection, we find its inverse. Given w € P(([n], n —2)), we will
first construct a permutation I = [y ...l,,_, € P([n],n — 2) where [; will turn out to be
the leaf removed from T; to form T;, ;. We construct the [; inductively by letting

(1.10) L =max([n] —{l,..., i1, Wi, ..., Wy_2}).

Finally we construct f~}(w) = T by letting T have edges ¢; = w; for1 <i <n-—2
as well as the edge e,,_; = I,,_;l,, where [n] — {L4,...,1,_»} = {l,,_1,1,,}. To show that
f~(w) = T is a tree, note first that [, is a leaf of T because [; is attached to w; but
to none of the other vertices of T by ([.10) and the definition of e,,_;. Consider w’ =
W, ... w,_, and apply the algorithm for f~! to w’ using the ground set [n] —{l,} instead
of [n]. By induction, the resultis a tree T'. And T is formed by adding [; as aleafto T’,
which makes T a tree as well.

To show that f and f~! are inverses we will show that f~! o f is the identity map,
leaving the proof for f o f~! to the reader. Suppose f(T) = w;...w,_,. Also let
the sequence of leaves removed during the construction of f(T) be Ij...l,_,. Then
by definition of the algorithm, the edges of T are exactly jw; for1 < i < n—2
and I,,_;1I;, where [n] — {l1,...,1,_,} = {I,_1,1,}. Comparing this with the definition
of =1 we see that it suffices to show that [; = I} for all i and that this will follow if
one can prove the equality holds for 1 < i < n — 2. Since [} is a leaf in T}, it cannot
be any of the previously removed leaves [j,...,[;_;. Of the remaining vertices, those
which are among wj, ..., w,_, are not currently leaves since they are attached to fu-
ture leaves which are to be removed. And conversely those not among the w;, ..., w,_,
must be leaves; otherwise, they would be listed as some w;j for j > i once all their
adjacent leaves were removed. Hence the leaves of T; are precisely the elements of

[n] = {l1,....1_;, w;, ..., w,_,}. Since we always remove the leaf of maximum value,
we see that the rule for choosing I; is exactly the same as the one in ([.10). So [; = I} as
desired. O

1.11. Lattice paths

Lattice paths lead to many interesting counting problems in combinatorics. They are
also important in probability and statistics; see the book of Mohanty [63] for examples.

Consider the integer lattice in the plane
7> ={(x,y) | x,y € Z}.
A lattice path is a sequence of elements of Z? written

P: (xo,J’o), (xl’yl)’ ’(xe»)"e)-

Just as in graph theory, we say the path has length ¢ and goes from (x,, yg) to (x4, Y,),
which are called its endpoints. Unlike graph-theoretic paths, we do not assume the
(x;,y;) are distinct. To illustrate the notation, if we assume that the left-hand path in
Figure starts at the origin, then it would be written

P :(0,0), (0,1), (0,2), (1,2), (1,3), (2,3), (3,3), (3,4), (4,4).
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Figure 1.10. Dyck paths

The step between (x;_;,y;_1) and (x;,y;) on P is the vector s; = [x; — X;_1,V; — YVi—1]-
Note the use of square versus round brackets to distinguish steps from vertices of the
path. Note that P is determined up to translation by its steps and that it is determined
completely by its steps and initial vertex. If no initial vertex is specified, it is assumed to
be the origin. WeletE = [1,0] and N = [0, 1], calling these east and north steps, respec-
tively. The path on the left in Figure could also be represented P : NNENEENE.

For our first enumerative result, we use the notation N'E(m, n) for the set of lattice
paths from (0, 0) to (m, n) only using steps north and east. We call lattice paths using
only N and E steps northeast paths.

Theorem 1.11.1. For m,n > 0 we have

HNE(m,n) = (mr: ”).

Proof. Let P be a northeast lattice path from (0,0) to (m, n). Then P has m + n total
steps. And once m of them are chosen to be E, the rest must be N. The result follows.
O

We will be particularly concerned with a special type of northeast path. A Dyck
path of semilength n is a northeast lattice path which begins at (0, 0), ends at (n, n), and
never goes below the line y = x. The first path in Figure is of this type. Note
that n is called the semilength because the Dyck path itself has 2n steps. We let D(n)
denote the set of Dyck paths of semilength n. This should cause no confusion with
the notation D(V) for the set of digraphs on the vertex set V because in the former
notation n is a nonnegative integer while in the latter it is a set. We now define that
Catalan numbers to be

C(n) = #D(n).

The Catalan numbers are ubiquitous in combinatorics. In fact, Stanley has written
a book [92] containing 214 different combinatorial interpretations of C(n). A few of
these are listed in the exercises. The Catalan numbers satisfy a nice recursion.
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Theorem 1.11.2. We have the initial condition
co)=1
and recurrence relation
Cn)=CO0)C(n—-1)+CA)(n—-2)+C2)C(n—3)+ -+ C(n—1)C(0)

forn>1.

Proof. The initial condition counts the trivial path of a single vertex. For the recursion,
take P : vy, ..., Uy, € D(n) where v; = (x;,y;) for alli. Let j > 0 be the smallest index
such that v,; is on the line y = x. Such an index exists since v,, = (n,n) satisfies
this condition. Also note that no vertex of odd subscript is on y = x since the number
of north steps and the number of east steps preceding that vertex cannot be equal. It
follows that B, the portion of P from v, to v,j_;, stays above y = x + 1. So the number
of choices for B is C(j — 1). Furthermore, if B, is the portion of P from v,; to v,,, then
B is (a translation of) a Dyck path of semilength n — j. So the number of choices for
B is C(n — j). Thus the total number of such P is C(j — 1)C(n — j). Summing over
1 < j < nfinishes the proof. O

There is an explicit expression for the Catalan numbers. But to derive this formula
it will be convenient to use a second set of paths counted by C(n). Call the steps U =
[1,1] and D = [1,—1] up and down, respectively. An updown path is one using only
such steps. It should be clear that if we let D(n) be the set of updown lattice paths from
(0,0) to (2n, 0) never going below the x-axis, then #D(n) = #D(n) = C(n). In fact one
can get from the paths in one set to those in the other by rotation and dilation of the
plane. The two paths in Figure correspond under this map and the second one
would be represented as P : UUDUDDUD.

Theorem 1.11.3. Forn > 0 we have
1 2n
Cln) = n+1(n>'
Proof. We rewrite the right-hand side as

1 (2n) _ (Cn! 1 2n+1
n+1\n) n(m+1) 2n+1\ n [
Let P be the set of all updown paths starting at (0, 0) and ending at (2n + 1, —1). Such

paths have 2n + 1 steps of which n are up (forcing the other n + 1 to be down) so that
#2 = (*"+1). Our strategy will be to find a partition p of  such that

(1) #B = 2n + 1 for every block B of p and
(2) there is a bijection between the blocks of p and the paths in D(n).

It will then follow that #D(n) is equal to the number of blocks of p, which is
#2P/(2n + 1), giving the desired equality.
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To determine p, we will take any P € P and describe the block B containing P. We
will refer to the y-coordinate of a vertex v of P as its height, written ht v. Suppose P has
step representation P : §;5, ... S,,41. Define the rth rotation of P to be the path

B Sri1Sp42-+-S2n 415152 -+ Sp

where all paths start at the origin. Let B = {R,...,B,}. So to show that B has the
correct cardinality, we must prove that the P; are all distinct. Suppose to the contrary
that two are equal. By renumbering if necessary, we can assume that Ry = P; for some
1 < j < 2n. Take j be be minimum. Iterating this equality, we get B, = P; = B; = ....
These equalities and the fact that j is as small as possible imply that P = R is the
concatenation of P’ : s; ...s; with itself, say k times for some k > 2. Suppose P’ ends
at height h. Then P must end at height kh and so kh = —1. This forces k = 1, which is
a contradiction.

To finish the proof, we must show that the blocks of p are in bijection with the
paths in D(n). Let D’(n) denote the set of paths obtained by appending a down step to
each path in D(n). So p partitions P D D’(n). Thus it suffices to show that there is a
unique path from D’ () in each block B of p. Let B be generated by rotating a path P as
in the previous paragraph and let P : v, ...v,, 1 be the lattice point representation of
P. Let h be the minimum height of a vertex of P, and among all vertices of P of height
h let v, be the left most. We claim that P. € D’(n) and no other P, is in this set for
s €{0,1,...,n} — {r}. We will prove the first of these two claims and leave the second,
whose demonstration is similar, as an exercise. Since v, is translated to the origin and
has smallest height in P, the translations of all v; for i > r will lie weakly above the x-
axis. As for the v; with i < r, they must be translated so the v, becomes the last vertex
of B. which is of height —1. But since v, was the first vertex of minimum height in P,
the vertices before it must be translated to have height greater than —1 and so must
also lie weakly above the x-axis. It follows that only the last vertex of F. is below the
x-axis, which is what we wished to prove. O

1.12. Pattern avoidance

Pattern avoidance is a relatively recent area of study in combinatorics. It has seen
strong growth in part because of its connections to algebraic geometry and computer
science. For more information about this topic, see the books of Béna [I§] or Ki-
taev [48].

Let S be a set of integers with #S = k and consider a permutation o € P(S).
The standardization of o is the permutation std o € P([k]) obtained by replacing the
smallest element of o by 1, the next smallest by 2, and so on. For example, if o = 263,
then stdo = 132. Given 0 € ©,, and 7 € & in one-line notation, we say that o
contains a copy of 7 if there is a subsequence ¢’ of o such that std ¢’ = 7. Note that
a subsequence need not consist of consecutive elements of 7. In this case, 7 is called
the pattern. To illustrate, c = 425613 contains the pattern 7 = 132 since ¢’ = 263
standardizes to 7z. On the other hand, we say that o avoids 7 if it has no subsequence
¢’ with std o = 7. Continuing our example, one can check that o avoids 4321 since
o does not contain a decreasing subsequence of length four. There is an equivalent
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Figure 1.11. The diagrams for 7 = 132 and o = 425613

definition of pattern containment which the reader will see in the literature. If S, T are
sets with #S = #T = k, thencallo = 0;...0, € P(S)and 7 = ;... 7 € P(T) order
isomorphic if o; < 0 is equivalent to 7; < 7; for all i, j. It is easy to see that o contains
a copy of 7 if and only if o contains a subsequence order isomorphic to 7.

To study patterns, it will be useful to have a geometric model of a permutation
analogous to its permutation matrix. Again, the integer lattice will come into play.
Given o = 0,...0, € &, its diagram is the set of points (i,0;) € Z>for1 < i < n.
In displaying the diagram, the lower-left corner is always assumed to have coordinates
(1,1). Using our running example, the diagrams for 7 = 132 and ¢ = 425613 are
shown in Figure [[.T1. The points corresponding to the copy 263 of 7 in ¢ have been
enlarged to emphasize how easily one can see pattern containment using diagrams.

From an enumerative point of view, avoidance often turns out to be easier to work
with than containment. So given = € &, we consider

Avy () = {o € &, | o avoids 7}.

Note that many authors use &,, () instead of Av,, () for this set. Call 7 and 7' Wilf
equivalent, written = = 7', if # Av,(7) = # Av, (') for all n > 0. It is easy to see that
this is an equivalence relation on &,,. We will prove that any two permutations in &;
are Wilf equivalent, although this is not as startling as it might first sound.

Certain Wilf equivalences follow easily from manipulation of diagrams. Consider
the dihedral group of the square
(1.11) D ={po; P90> P180> P270> Tos 11> T-15 oo}

where pg is rotation by 6 degrees counterclockwise and r,, is reflection across a line
of slope m. If o contains a copy ¢’ of 7 and f € D, then f(o) contains a copy f(c’)
of f(7r). Using f~1, we see that the converse of the previous assertion is also true. It
follows that o avoids 7 if and only if f(o) avoids f(7r). We have proven the following
result.

Lemma 1.12.1. Forany w € €, and any f € D we have w = f(7). O
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Figure 1.12. Decomposing o € Av,,(132)

The equivalences in this lemma are called trivial Wilf equivalences. In particular,
in @; one sees by repeatedly applying pg, that 132 = 231 = 213 = 312 and 123 = 321.
In fact, all six permutations are Wilf equivalent and their avoidance sets are counted by
the Catalan numbers. We start with 132 from the first set of equivalent permutations.

Theorem 1.12.2. For n > 0 we have

# Av,(132) = C(n).

Proof. We will induct on n, using the initial condition and recurrence relation for C(n)
given in Theorem [[.11.2. As usual, we concentrate on the latter. Pick o = 0y...0, €
Av,(132) and suppose o; = n. So we can write 0 = o'no” where ¢’ = 0;...0j_;
and ¢” = 0 ...0,. Clearly o’ and ¢” must avoid 132 since they are subsequences
of 0. We also claim that mino’ > maxo” so that we can think of the diagram of o
decomposing as in Figure [.12. Indeed, if there is s € ¢’ and ¢t € ¢” with s < t, then ¢
contains snt, which is a copy of 132, a contradiction. Thus ¢’ and ¢” are permutations
of{n—1,n-2,...,n—j+1}and [n—j], respectively, both of which avoid 132. Conversely,
if the diagram of ¢ has the form given in Figure with ¢’, 0" avoiding 132, then o
must avoid 132. This is a case-by-case proof by contradiction, considering where the
elements of a copy of 132 could lie in the diagram if one existed. We leave the details
to the reader. To finish the count, from what we have shown and induction there are
C(j — 1) choices for ¢’ and C(n — j) for ¢”. Taking their product and summing over
J € [n] shows that there are C(n) choices for o. |

Next we will tackle 123, but to do so we will need some new concepts. The left-
right minima of 0 = oy ... 0, € €, are the o; satisfying o; < min{o;,05,...,0;_;}. For
example o = 698371542 has left-right minima o; = 6, o, = 3, and o5 = 1. The indices
i such that o; is a left-right minimum are called the left-right minimum positions. If
necessary to distinguish from the positions, the o; themselves are called the left-right
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minimum values. Reading the left-right minima in order from left to right, the positions
and values always satisfy

(1.12) 1=i;<ip<--<ip and my>my>-->m=1
for some [ > 1.

We will need to determine, given a set of values and positions, whether a permu-
tation exists with left-right minima having these values and positions. To do this, we
introduce the dominance order on compositions, which is also useful in other areas
of combinatorics and representation theory. A weak composition of n is a sequence
a = [ay,...,q;] of nonnegative integers with . a; = n. So in weak compositions zero
is permitted as a part and we will use 0 subscripts on notation for compositions when
used for weak compositions. If a, 8 F( n, then a is dominated by 3, written o < 3, if we
have

atatota <P+ Brt e+
forall j > 1, where a; = 0if j > £(a) and similarly for 8. To illustrate, [2,2,1,1] <
[3,1,2] because 2 < 3,242 <3+4+1,2+2+1 <3+1+2,and2+2+1+1 =3+1+2+0.
Since a, f Fq n the last inequality always becomes an equality. In the next result, the
reader will notice a similarity between the construction of t and u and the map ¢ defined

by (L.3).
Lemma1.12.3. Letoc € ©,,.

(a) We have o € Av,,(123) if and only if its subsequence of non-left-right minima
is decreasing.

(b) There exists c € Av,(123) with left-right minima positions and values given
by (L.12) if and only if t < u where
lz(iz—il_l, i3_i2_1, ey il+1—il—1),
u=my—m; —1, my—my—1, ..., m_; —m; — 1),

and i, = my = n+ 1. In this case, o is unique.

Proof. (a) We will prove this statement in its contrapositive form. Suppose first that
o contains a copy 0;0;0y of 123. Then ¢, 0} cannot be left-right minima since o; is
smaller than both and to their left in 0. Since o; < oy, the non-left-right minima
subsequence contains an increase. Conversely, suppose 0; < o) with j < k and both
non-left-right minima. Let o; be the left-right minimum closest to o; on its left. We
have that o; exists since o begins with a left-right minimum. Then o; < g; < oy, giving
a copy of 123.

(b) Clearly if o exists, then it must be unique since the positions and values of its
left-right minima are given by (I.12) and the rest of the elements can only be arranged
in one way by (a). We can attempt to build o satisfying the given conditions as follows.
An example will be found following the proof. Start with a row of n blank positions.
Now fill in the values m; > --- > my; at the positions i; < --- < i;. Filling in the rest
of the positions with the elements of S = [n] — {m,, ..., m;} (the set of non-left-right
minima) in decreasing order gives a o avoiding 123 since o is a union of two decreasing
subsequences. So the only question is whether doing this will result in a permutation
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having the m; as its left-right minima. We have that m, is always a left-right minimum
regardless of the other entries. Now m;; will be the next left-right minimum after m;
if and only if the blanks before position i;,, are filled with elements larger than m;.
Note that ¢; = ij,, — i; — 1 is the number of spaces between positions i; and i;,. Also
uj = mj_;—mj—1isthe numberofs € Swithm; <s < m;_,. Itfollows that(; +---+y;
is the number of blanks before position i, ; and u; + -+ + y; is the number of elements
of S greater than m;. So filling in the spaces preserves the left-right minima if and only
if the inequalities for ¢ < u are satisfied. This completes the proof. O

Suppose we want to see if there is 0 € Avy(123) with left-right minima 6 > 3 > 1
in positions 1 < 4 < 6. We start off with the diagram

(1.13) o=6 3 1

We wish to check whether filling the blanks with the remaining elements of [9] in
decreasing order will result in a permutation which has the initial elements as left-
right minima. One way to do this is just to fill the blanks and verify that the desired
elements become left-right minima: o = 6 98 371 54 2. Another way is to use the
t and u compositions. Note that ;; = 4 — 1 — 1 = 2 is the number of blanks between
m; = 6 and m, = 3 in the original diagram. Similarly y; = 10—6—1 = 3 is the number
of elements of S = [9] —{6, 3, 1} greater than m; = 6. In order to fill the blanks between
6 and 3 so that 6 is a left-right minimum, the numbers used must all be greater than 6.
This is possible exactly when ¢; < p;. Similarly ¢ + 1, < u; + p, ensures that one can
fill the blanks to the left of m; = 1 with numbers greater than m, = 3, and so forth. So
checking whether ¢ < u also determines whether o has the correct left-right minima.

We will need an analogue of Lemma for elements of Av,(132). To state it,
we define the reversal of a weak composition a = [ay, &3, ..., ;] to be

a"=la,a_1,..., ]
Lemmal.124. Letoc € ©,,.

(a) We have o € Av,(132) if and only if, for every left-right minimum m, the ele-
ments of o to the right of and greater than m form an increasing subsequence.

(b) There exists c € Av,(132) with left-right minima positions and values given
by (.12) if and only if u" < (" where t, u are as given in Lemma [L.12.3 In this
case, o is unique

Proof. Much of the proof of this result is similar to the demonstration of Lemma
and so will be left as an exercise. Here we will only present the construction of o €
Av,(132) from its diagram of left-right minima and blanks. Again, an example follows
the explanation. We keep the notation of the proof of the previous lemma. We start by
filling the blanks to the right of m; = 1 with the elements s € Ssuch thatm; < s < m;_;
in increasing order and as far left as possible (so they will be consecutive). Next we fill
in the remaining blanks to the right of m;_; with those s € Ssuch thatm;_; <s < m;_,
so that they form an increasing subsequence which is as far left as possible given the
spaces already filled. Continue in this manner until all blanks are occupied. O
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Suppose we wish to fill in the diagram ([.13) so that o avoids 132. If m; < s < m,,
then s = 2, so we put 2 just to the rightof m; = 1togeto=6_ 3 12 . Similarly,
m; < s < m, is satisfied by s = 4,5 so we put these elements followmg m, = 3in
increasing order using the left-most blanks available to obtaino =6 34125 _
Finally, we do the same for the elements greater than m; = 6 to get the end result
0=6783412509.

We need one last observation before we achieve our goal of showing all elements
of &; are Wilf equivalent. Suppose ¢ = [ay,...,] and 8 = [B4,..., 3] are weak
compositions of n. We claim o < § if and only if " < a”. To see this, note that the
inequality a; +---+a; < ;+---+f; isequivalent ton— (B, +---+8;) < n—(ay +---+a;).
Butn—(a;+---+a;) = a,+a,_;+---+a;,, and similarly for 8. Making this substitution
we get the necessary inequalities for §” <a” and all steps are reversible. Finally, we say
that a bijection f : S — T preserves property P if s € S having property P is equivalent
to f(s) having property P for all s € S.

Theorem 1.12.5. Forn > 0 and any w € ©; we have
# Av, () = C(n).

Proof. By Theorem and the discussion just before it, it suffices to show that we
have # Av,(123) = C(n). This will be true if we can find a bijection f: Av,(123) —
Av,(132). Infact, f will preserve the values and positions of left-right minima. Suppose
o € Av,(123) has its positions and values given by (I.12). By Lemma there is a
unique such o and we must also have ¢ < . But, as noted just before this theorem, this
isequivalent to u" <i". So, using Lemma [[.12.4, there is a unique o’ € Av,(132) having
the given positions and values of its left-right minima and we let f(o) = ¢’. Because of
the existence and uniqueness of o and ¢’, this is a bijection. O

Note that the description of f in the previous proof can be made constructive.
Given o € Av,(123), we remove its non-left-right minima and rearrange them using
the algorithm in the proof of Lemma [.12.4. So, using our running example,
f(698371542) = 678341259.

Exercises

(1) Prove each of the following identities for n > 1 in two ways: one inductive and one
combmatorlal

(a) ZF Fraa =

(b) Z B =Fp — 1

i=1

© Y Fi1 = Fop.

i=1
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(2) Prove that if k,n € P with k | n (meaning k divides evenly into n), then Fy | E,.

(3) Given m € P, show that the sequence of Fibonacci numbers is periodic modulo
m; that is, there exists p € P such that

E,.p = E, (mod m)

for all n > 0. The period modulo m is the smallest p such that this congruence
holds. Note that it is an open problem to find the period of the Fibonacci sequence
for an arbitrary m.

(4) The Lucas numbers are defined by Ly = 2,L; =1, and
L,=L, ,+L, ,forn>2.

Prove the following identities for m, n > 1.
(@) Ly =Fy_1 + Fopa
(b) Let €, be the set of tilings of n boxes arranged in a circle with dominos and
monominos. Show that #C,, = L,,.
(©) Liyn = En1Ly + FpLyya-
(d) By = ELy.
(5) Prove Theorem [[.2.2.
(6) Check that the two maps defined in the proof of Theorem [[.3.1] are inverses.
(7) (a) Prove Theorem [[.3.3(b) using equation ([L.5).
(b) Give an inductive proof of Theorem [.3.3(c).
(c) Give an inductive proof of Theorem [[.3.3(d).

(8) Let S, T be sets.
(a) Showthat SAT=(SuUT)—(SNT).
(b) Show that (SAT)AT = S.

(9) Given nonnegative integers satisfying n; + n, + --- + n,,, = n. the corresponding
multinomial coefficient is

n n!
(1.14) R L—
Ny, Ny,..., Ny n! ny!...ony,!

We extend this definition to negative n; by letting the multinomial coefficient be
zero if any n; < 0. Note that when m = 2 we recover the binomial coefficients as

()= (2)

(a) Find and prove analogues of Theorem [.3.3(a), (b), and (c) for multinomial

coefficients.

(b) A permutation of a multiset M = {{1™,2"2,...,m"}} is a linear arrangement
of the elements of M. Let P(M) denote the set of permutations of M. For
example

P({{12,22}}) = {1122, 1212, 1221, 2112, 2121, 2211}.
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Figure 1.13. Pascal’s triangle modulo 2

Prove that

#P({{1™, 2", ..., m"m}}) = (

n
Ny, Aoy s Ny

in three ways:
(i) combinatorially,
(ii) by induction on n,
(iii) by proving that

n _[(n n—n;
N1, Ay eees Mgy n\ny, ..., 0y

and then inducting on m.

(10) (a) Prove the Pascal triangle is fractal modulo 2. Specifically, if one replaces each
binomial coefficient by its remainder on division by 2, then, for any k > 0, the
triangle consisting of rows 0 through 2 — 1 is repeated on the left and on the
right in rows 2¥ through 2%¥+! —1 with an inverted triangle of zeros in between.
See Figure for the first eight rows. Hint: Induct on k.

(b) Formulate and prove an analogous result modulo p for any prime p.

(11) Find the inverse for the map in the proof of Theorem [[.34, proving that it is well-
defined and the inverse to the given function.

(12) For n > 0 define the nth Fibotorial to be the product F, = FF,...F,. Also, for
0 < k < n define a Fibonomial coefficient by

K, REL,

Note that from this definition it is not clear that this is an integer.
(a) Show that the Fibonomial coefficients satisfy the initial conditions (Z)F =

(Z)F = 1 and recurrence

n n—1 n—1
(k) :Fn—k+1<k_1) +Fk—l( k )
F F F

for0 < k < n.
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(b) Show that (Z)F is an integer for all 0 < k < n.
(c) Find a combinatorial interpretation of (Z)F

(13) For n > 1 show that the Stirling numbers of the second kind have the following

values.

(a) S(n,1) =1.

(b) S(n,2) =2""1—-1.
(©) S(n,n) =1.

@ S(n—1) = ’2’ .

(e) S(n,n—2) = (Z) + 3(2).

(14) For n > 1 show that the signless Stirling numbers of the first kind have the follow-
ing values.

(a) c(n,1) =(n—1)\

(b) c(n+1,2) = m;%
©) c(n,n) =1.
@) e(n,n—1) = Z)

(e) c(n,n—2) = 2(’;) + 3(2)

(15) Call an integer partition A self-conjugate if ¥ = 1. Show that the number of self-
conjugate A F n equals the number of ¢ F n having parts which are distinct (no
part can be repeated) and odd. Hint: Use Young diagrams and try to guess a bijec-
tion inductively by first seeing what it has to be for small n. Then try to construct a
bijection for n + 1 which will be consistent in some way with the one for previous
values. Finally try to describe your bijection in a noninductive manner.

(16) The main diagonal of a Young diagram is the set of squares starting with the one
at the top left and moving diagonally right and down. So in Figure [.3, the main
diagonal of 4 consists of two squares. Prove the following.

(a) If Ais self-conjugate as defined in the previous exercise, then |1| = d (mod 2)
where d is the length (number of squares) of the main diagonal.
(b) Let pg(n) be the number of partitions of n whose diagonal has length d. Then
pa(n) = Y, p(m,d)p(n —m —d?,d).
m>0
(17) Define p,(n, k) to be the number of A - n having exactly k parts. Prove the follow-
ing under the assumption that n > 4, where |-| is the round-down function.
(a) pe(n’ k) = p(n - k’ k)
(d) pe(n,1) =1.
(©) pe(n,2) = |n/2].
(d) pe(n,n—2)=2.
(e) p.(n,n—1)=1.
() pe(n,n) =1.
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(18) Finish the proof of Theorem [.7.1].
(19) Prove Theorem [.7.2.

(20) Consider a line of n copies of the integer 1. One can now put slashes in the spaces
between the 1’s and count the number of 1’s between each pair of adjacent slashes
to form a composition of n. For example, if n = 6, then we start with 11111 1.
One way of inserting slashes is 1 1/1/1 1 1, which corresponds to the composition
2+ 1 + 3 = 6. Give alternate proofs of Theorems and using this idea.

(21) A weak composition of n into k parts is a sequence of k nonnegative integers sum-
ming to n. Find a formula for the number of weak compositions of n into k parts
and then prove it in three different ways:

(a) by using a variant of the map ¢ defined in (L.§),

(b) by finding a relation between weak compositions and compositions and then
using the statement of Theorem (as opposed to their proofs as in part
(a)),

(c) by modifying the construction in the previous exercise.

(22) Show that the last two columns in Table [[.T agree when f is bijective, that is, when
n==k.

(23) Prove Lemma [[.9.1(b).

(24) A graph G = (V, E) is regular if all of its vertices have the same degree. If degv = r
for all vertices v, then G is regular of degree r.
(a) Show that if G is regular of degree r, then

vl
Bl = —-,

(b) Call G bipartite if there is a set partition of V' =V} w 1, such for all uv € E we
have u € V; and v € V, or vice versa. Show that a bipartite graph regular of
degree r > 1 has |V;| = |V,|.

(25) A graph G is planar if it can be drawn in the plane R? without edge crossings. In
this case the regions of G are the topologically connected components of the set-
theoretic difference R? — G. Let R be the set of regions of G. If r € R, then let degr
be the number of edges on the boundary of . Show that

Z degr < 2|E|.
reR

Find, with proof, a condition on the cycles of G which is equivalent to having equal-

ity.

(26) Two graphs G, H are isomorphic, written G = H, if they are equal as unlabeled
graphs. The complement of a graph G = (V, E) is the graph G with vertices V and
with uv an edge of G if and only if uv ¢ E. Call G self-complementary if G =~ G.

(a) Show that there exists a self-complementary graph with n vertices if and only
ifn =0(mod4) orn =1 (mod4).

(b) Show that in a self-complementary graph with n vertices where n = 1 (mod 4)
there must be at least one vertex of degree (n — 1)/2. Hint: Show that the
number of vertices of degree (n — 1)/2 must be odd.

(27) Prove Theorem [.9.4.
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(28) Prove that in any digraph D = (V, A) we have
Z idegv = Z odegv = |A|.

vel’ velV
(29) Prove the equivalence of (a) and (d) in Theorem [[.10.2. Hint: Use Lemma [[.9.1|(b).

(30) Consider a sequence of nonnegative integers d : di,...,d,. Call d a degree se-
quence if there is a graph with vertices vy, ..., v, such that degv; = d; for all i.
(a) Let T be a tree with n vertices and arrange its degree sequence in weakly de-
creasing order. Prove that for 1 <i < n we have

¢5["71L

i

(b) Let T be a tree with n vertices and let k > 2 be an integer. Suppose the degree
sequence of T satisfies d; = 1 or k for all i. Prove that d; = k for exactly

(n—2)/(k —1) indices i.
(31) Finish the proof of Theorem [[.10.3.

(32) Consider n cars Cy, ..., Cy, passing in this order by a line of n parking spaces num-
bered 1,...,n. Each car C; has a preferred space number c; in which to park. If
C; gets to space c¢; and it is free, then it parks. Otherwise it proceeds to the next
empty space (which will have a number greater than c;) and parks there if such a
space exists. If no such space exists, it does not park. Call ¢ = (¢y,...,c,) a parking
function of length n if all the cars end up in a parking space.

(a) Show that c is a parking function if and only if its unique weakly increasing
rearrangement d = (d,, ...,d,) satsifies d; < i for all i € [n].

(b) Use a counting argument to show that the number of parking functions of
length n is (n + 1)"*~1. Hint: Consider parking where there are n + 1 spaces
arranged in a circular manner and n + 1 is an allowed preference for cars.

(c) Reprove (b) by finding a bijection between parking functions of length »n and
trees on n + 1 vertices. Hint: Let T be a tree on n + 1 vertices labeled 0, ...,n
and call vertex 0 the root of the tree. Draw T in the plane so that the vertices
connected to the root, called the root’s children, are in increasing order read
left to right. Continue to do the same thing for the children of each child of
the root, and so forth. Create a permutation 7 by reading the children of the
root left to right, then the grandchildren of the root left to right, etc. Finally,
orient each edge of T so that it points from a vertex to its parent and call this
set of arcs A. Map T to ¢ = (cy,...,c,) Where

.={1 if 10 € A,

' 1+ ifir; € A

(33) Consider EW-lattice paths along the x-axis which are paths starting at the origin
and using steps E = [1,0] and W = [-1,0].
(a) Show that if an EW-lattice path has length n and ends at (k, 0), then n and k

have the same parity and |k| < n.
(b) Show that the number of EW-lattice paths of length n ending at (k, 0) is

()

The preliminary version made available with permission of the publisher, the American Mathematical Society



Exercises 39

(c) Show that the number of EW-lattice paths of length 2n ending at the origin
and always staying on the nonnegative side of the axis is C(n).

(34) Show that the Catalan numbers C(n) also count the following objects:

(a) ballot sequences which are words w = w; ... w,, containing n ones and n
twos such that in any prefix w; ... w; the number of ones is always at least as
great as the number of twos,

(b) sequences of positive integers

1<a;L£a,5L...5qa,y,

withq; <ifor1<i<mn,

(c) triangulations of a convex (n + 2)-gon using nonintersecting diagonals,

(d) noncrossing partitions p = B/ .../By I [n] where a crossingisa < b <c <d
such that a,c € B; and b,d € B; fori # j.

(35) Fill in the details of the proof of Theorem [.11.3.

(36) A stack is a first-in first-out (FIFO) data structure with two operations. One can
put something on the top of a stack, called pushing, or take something from the
top of the stack, called popping. A permutation ¢ = 0;...0, € €, is considered
sorted if its elements have been rearranged to form the permutation 7 = 12...n.
Consider the following algorithm for sorting o. Start with an empty stack and an
empty output permutation 7. At each stage there are two options. If the stack is
empty or the current first element s of o is smaller than the top element of the
stack, then one pushes s onto the stack. If o has become empty or the top element
t of the stack is smaller than the first element of o, then one pops ¢ from the stack
and appends it to the end of 7. An example showing the sorting of o = 3124 will

T stack o
€ € 3124

124

3
1
3
1 3 24
2
3
3

1 4
12 4
123 € 4
123 4 €

1234 € €

Figure 1.14. A stack-sorting algorithm
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be found in Figure [[.14. Note that the input permutation ¢ is on the right and the
output permutation 7 is on the left so that the head of o and the tail of 7 are nearest
the stack.
(a) Show that this algorithm sorts o if and only if o € Av,,(231).
(b) Show that if there is a sequence of pushes and pops which sorts o, then it must
be the sequence given by the algorithm.

(37) Suppose 7 = 7;...T € &. Prove the following descriptions of actions of ele-
ments of D in terms of one-line notation.
(@) ry(m) = g ...y := 7", the reversal of 7.
®) ry(m)=(k+1—my)...(k+1—m) := 7 the complement of 7.
(c) r(m) = 71, the group-theoretic inverse of .
(38) Finish the proof of Theorem [.12.2.
(39) Given any set of permutations IT we let
Av,(IT) = {oc € ©, | g avoids all = € IT}.

Ifn=mmn,...1m, €S, isapermutation and n € N, then we can construct a new
permutation
nT+n= 7T1 +n,77:2+n,...,7l'm+n.
Given permutations 7, o of disjoint sets, we denote by 7ro the permutation obtained
by concatenating them. Define two other concatenations on 7 € &,, and o € &,,,
the direct sum
n®o=mn(c+m)
and skew sum
7O o= (7 +n)o.
Finally for n > 0 we use the notation
l,=12...n
for the increasing permutation of length n, and
6p,=n...21

for the decreasing one. Prove the following.

(@) Av,(213,321) = {y, @ (i, © t,) | k1 + ky + k3 = n}.

(b) Av,(132,213) = {4, O 4, © -+ | 2; ki = n}.

(©) Av,(132,213,321) = {y, © u, | ks + k; = n}.

(d) Av,(132,231,312) = {3, Dy, | k; + k, = n}.

(e) Av,(132,231,321) = {10 4,) B, | ks + ky =n—1}

() Av,(123,132,213) = {i, O 1y, © --- | 2}, ki = nand k; < 2 for all i}.

(40) Finish the proof of Lemma [[.12.4.
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Chapter 2

Counting with Signs

In the previous chapter, we concentrated on counting formulae where all of the terms
were positive. But there are interesting things to say when one permits negative terms
as well. This chapter is devoted to some of the principal techniques which one can use
in such a situation.

2.1. The Principle of Inclusion and Exclusion

The Principle of Inclusion and Exclusion, or PIE, is one of the classical methods for
counting using signs. After presenting the Principle itself, we will give an application
to derangements which are permutations having no fixed points.

In the Sum Rule, Lemma [[.1.7|(a), we assumed that the sets S, T are disjoint. Of
course, it is easy to see that for any finite sets S, T we have

(2.1) ISUT| =S| +|T| - ISNT].

Indeed, |S| + |T| counts S N T twice and so to count it only once we must subtract the
cardinality of the intersection. But one could ask if there is a similar formula for the
union of any number of sets. It turns out that it is often more useful to consider these
sets as subsets of some universal set S and count the number of elements in S which are
not in any of the subsets, similar to the viewpoint used in pattern avoidance. To set up
notation, let S be asetand let S, ..., S,, C S. We wish to find a formula for |S — Ui Sil-
When n = 1 we clearly have

IS = S1[ = [S] = |S4]-
And for n = 2 equation (R.T]) yields

S = (S1 US| = IS = [S1] = IS2] + [S1 N S3.
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42 2. Counting with Signs

@

Figure 2.1. The PIE forn = 1,2

Venn diagrams showing the shaded region counted for these two cases are given in Fig-
ure R.I. The reader may have already guessed the generalization for arbitrary n. This
type of enumeration where one alternately adds and subtracts cardinalities is some-
times called a sieve.

Theorem 2.1.1 (Principle of Inclusion and Exclusion, PIE). IfS is a finite set with sub-
sets Sy,...,Sy, then

n

2.2) ‘s Usl’ S| = D 1S+ Y 1SinSil = -+ P[] Sil-

i=1 1<i<n 1<i<j<n i=1

Proof. For any set S we have |S| = >} _c 1. We will use the notation |S| = 3] _. 15 s0
that 1 will keep track of the contribution of s to the sum. So it suffices to show that the
coefficient of 1, in the alternating sum isone if s ¢ Ui S; and zero otherwise. In the first
case, 15 only occurs in |S|, giving the desired coefficient. In the second case, suppose
s € S; for exactly m > 1indicesi. Nows € S; N---NS;, precisely whenS; ,...,S; are
k of the m subsets containing s. It follows that the number of summands 1, in the sum
for k-fold intersections is (’,?) So the coefficient of 1, to the right-hand side of (B.2) is

(5-)-()-

by Theorem [[.3:3(d). This completes the proof. O

To simplify notation we will usually write just | S; for U?:l S;. We will also write
Sy in place of [,

ier S

As an apphcatlon of the PIE, we will count permutations without fixed points.
This problem is sometimes accompanied by the following story. Suppose that n jolly
revelers (and it is important that they be jolly) put their n identical bowler hats on a
hat stand before dinner at a restaurant. During the meal, the hat stand gets overturned
(I told you they were jolly) so that the hats, having no identifying markings, are re-
turned at random when the revelers leave. What is the probability that no man gets his
own hat back?
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2.1. The Principle of Inclusion and Exclusion 43

If one numbers the men 1, ..., n and similarly number the hats where hat i belongs
to man i, then a way of returning the hats is just a permutation = = 7;,...7, € &,
where 77; = j means that man i gets back hat j. So the condition that no man gets his
own hat means that 7; # i for all i; that is, 77 has no fixed points. Such a permutation
is called a derangement and the number of derangements in &,, is denoted D(n) and is
called the nth derangement number.

We now wish to set this problem up so that we can use the PIE. In particular, we
want to define S and subsets S, ..., S, so that D(n) = |S — |J S;|. To do this, we think
of the problem as counting a set of elements subject to certain restrictions and then let

(i) S be the set of objects with no restrictions and

(ii) S;,...,S, be subsets so that removing S; from S imposes the ith restriction.

We will have chosen S and the S; correctly if the cardinalities on the right-hand side
of (B.2) can be computed. In the case under consideration, we want to count permuta-
tions with no fixed points. So we should let S = &,,, the set of all permutations without
any restriction on their fixed points. We will also let S; be the set of 7 € &,, with 7; =i
so that we will remove those permutations having i as a fixed point. Note that we do
not choose subsets S; defined as the set of 7 € &,, with i fixed points, for if we did so,
then the S} would be disjoint so that |S — | Sj| = |S| — |Si| — --- — |Sy|. Because of this,
computing the cardinalities of the S; is about as hard as computing the cardinality of
the set difference directly and so one does not gain anything. However, our original
choice of subsets will turn out to be very nice.

We now compute the necessary cardinalities. Of course, |S| = |&,| = n!. Next, if
m € Sy, then 7 = 1x, ... 7, where 7, ... 7, form a permutation of 2,...,n. So |S;| =
(n — 1)\. Clearly the same argument could be applied to any S;, so

DSil=n-(n=1'=nl.

Similarly, S;NS,N---NSy is the set of all permutationsof the form 7z = 12... k7 q ... 7T,
and there are (n — k)! ways to choose 7y_1,...,7,. In fact, all the terms in the k-fold
sum have this value and there are (Z) such terms giving a total of

n n!

Summing up, so to speak, we have proved the following.
Theorem 2.1.2. The nth derangement number is given by

1 1

D(n) = n! (1— TR +(—1)n%)

forn>0. O
The reader should recognize the series in the previous result as a truncation of the
series for 1/e. Since the probability that no man gets his hat back is the number of

ways this could happen over the total number of permutations for returning the hats,
or D(n)/n!, we get a very pretty answer to the question originally posed.
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44 2. Counting with Signs

Corollary 2.1.3. In the limit as n — oo, the probability that no man gets his hat back is
1/e. O

Itisstriking that e, one of the quintessential transcendental numbers, should occur
in the solution to a combinatorial problem which, at the outset, involves only integers.

2.2. Sign-reversing involutions

Sign-reversing involutions are a powerful way of proving identities involving signs, and
even identities which do not explicitly have signs in them. As we will see, these maps
can be used to prove the PIE itself and play an important role in the Garsia-Milne
Involution Principle, which we will study in the next section.

Let S be a (not necessarily finite) set. A function¢: S — S is an involution if  is
the identity map on S. Equivalently, ¢ is a bijection such that (=} = 1. There is another
nice characterization of involutions which will be crucial once we introduce signs. For
any f: S — S, its fixed point set is

Fixf={se S| f(s) = s}
We also say that distinct elements s, t € S form a 2-cycle of f if f(s) = t and f(¢) = s.

In this case we write (s, t) or s < t to denote the 2-cycle.

Lemma 2.2.1. Considert: S — S. The function tis an involution if and only if S is the
disjoint union of the fixed points and 2-cycles of 1.

Proof. For the forward direction, it suffices to show that if s € S is not a fixed point,
then it is in a 2-cycle. So suppose «(s) = t. Then «(t) = (s) = s as desired.

Conversely, suppose that S is such a disjoint union and pick s € S. If s € Fixy,
then 2(s) = «(s) = s. Otherwise, s is in a 2-cycle (s, t) so that (*(s) = «(t) = s. So 2 is the
identity map and we are done. O

A signed set is a set S together with a function sgn : S — {+1, —1}. In this case we
let

St ={se S|sgns=+1}

and similarly for S™. If i : S — Sisaninvolution on S, then we say that ¢ is sign reversing

if sgn(s) = —sgns for every s which is in a 2-cycle of t. A pictorial representation of
this situation will be found in Figure B.3. Now suppose that S is finite. It follows that
(2.3) Z sgns = Z sgns.

seS seFixt

Indeed, if sis in a 2-cycle (s, «(s)), then on the left-hand side we have sgn s+sgn «(s) = 0.
So all elements in 2-cycles cancel from the sum, which leaves only terms from Fix:.
This formula can be very useful if the sum on the right has far fewer terms than the
one on the left. And if all the fixed points of ¢ have the same sign so that the right-
hand side of (B.3) is £| Fix (|, then we may be able to glean even more information. The
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2.2. Sign-reversing involutions 45

Figure 2.2. A sign-reversing involution on a set S

general method for trying to prove facts about a signed sum ) kzo(—l)kak for positive
integers a is as follows:

(i) Find a set S enumerated by the positive sum ;,_ay.
(ii) Sign S so that the left-hand side of (R.3) equals Zk(—l)kak.
(iii) Devise a sign-reversing involution ¢ on S with many 2-cycles.
As our first application of sign-reversing involutions, we will reprove the formula
for the alternating sum of the binomial coefficients in Theorem ([.3.3)(d). In fact, the

original demonstration was a closet version of this technique. But now we can present
the involution proof in its full glory. We restate the identity here for ease of reference:

(2.4) ij(—nk(Z) = 8p0.

Proof. Asusual, we assume n > 1 since n = 0 is trivial. From the sum with the signs
removed, it is clear that we should let S = 2["l. And from the way k is being used in
the original sum, one would be inclined to let sgn s = (—1)" for s C [n]. We now need
to check that the left-hand sides of (B.3) and (2.4) agree. The technique we will use, of
turning a single sum into a double sum and then grouping terms, is a common one in
enumerative combinatorics. In this case

Z sgns = Z (=1)*
seSs sC[n]
-3 ¥

<o)
-2

as desired.

As for the sign-reversing involution, we already saw it in the original demonstra-
tion of this result. Define ¢: 2I") — 2l by ((s) = s A {n}. As noted previously, this
is an involution. To see that it is sign reversing, we have that |s A {n}| = |s|] £ 1. So
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sgn(s) = (—=1)#! = —sgns. Finally, we just need to determine Fix:. But s A {n} # s
for all s C [n]. Thus the right-hand side of (£.3) is the empty sum. Since this equals
zero the proof is complete. O

Given that (2.4) was a crucial tool in proving the PIE, it may not come as a surprise
that the principle itself can be proved using a sign-reversion involution. We restate the
PIE here, in part so as not to conflict with the notation we have set up for sign-reversing
involutions. So given a finite set A and subsets A, ..., A, we wish to prove

n

(2.5) )A - UAl-

i=1

=14l = D) Al + D) JANA — - + (-D)"

1<i<n 1<i<j<n

n
ﬂAi‘.

i=1

Proof. An example illustrating the proof will be found after the demonstration. We
cannot take S = A since the same element of A is counted in many of the terms on the
right side of (2.5). To take care of these multiplicities, let

(2.6) S={(a,)eAx2"|aec A,

recalling the notation

(2.7) Ar={A:

iel
Notice how pairs come into play here even though they are not apparent from the orig-
inal statement of the result to be proved, just as in the case of the demonstration of
Theorem [[:9-3. Note that Ay = A. So (a,@) is a pair foralla € A, and ifa ¢ | A;, then

this is the only pair in which a appears. Since the signs in (.5) come from the number
of subsets in an intersection, we define

sgn(a,I) = (-1)*.

It follows that
ngns = Z (=D)*!
SeS (a,))es
-3 T
Ie2lnl aeA;
n
-3 %y
k=0 Ie([;‘]) aeA;
n
=2 (=DF > A
=)
as we wished.
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To construct an involution, define for each a € U A; the index
m(a) = max{i | a € A;}.

Finally, we let

(a,IA{m(a)}) ifae|JA;
(a,I) =
(a,I) otherwise.
It is clear from the definition that this is an involution whose fixed points are in bijec-
tion with the elements of A — | J A; and whose 2-cycles contain elements of opposite
signs. Since elements of A — | J A; each occur in exactly one pair, it follows that the

right side of (R.3) is just the cardinality of this set, as desired. O

To illustrate the proof, suppose A = {a, b, c,d}, A; = {a, b}, and A, = {b, c}. Then,
leaving out curly brackets and commas in the index sets I for readability,

S ={(a,9), (a,1), (b,9), (b,1), (b,2), (b,12), (c,D), (c,2), (d,D)}.

Also m(a) = 1 and m(b) = m(c) = 2 so that the involution creates the following
2-cycles:

(a,9) < (a,1), (b,8) < (b,2), (b,1) < (b,12), (c,d) « (c,2).
The only fixed point is (d, #) and A — (4, U A,) = {d}.

It would be nice to prove something we have not seen before using our new tech-
nique. Here is an identity involving Stirling numbers of the second kind.

Theorem 2.2.2. Forn > 0 we have

D (=DK1 S(n, k) = (1)

k>0

Proof. The first order of business will be to give a combinatorial interpretation to the
summands. A composition of a set T is a sequence of nonempty subsets p = (B, ..., By)
such that Lﬂi B; = T. In this case we write p F T. So the number of p E [n] with k blocks
is k! S(n, k) since we can start with any of the S(n, k) partitions in S([n], k) and order its
blocks in k! ways. The reader should have enough experience with signed sets at this
point to see that we are going to want to take S to be all p k [n] with sgnp = (=1) if p
has k blocks. Verifying that this gives the correct alternating sum andis easy and is left
as an exercise.

The involution will be more interesting. We will break it into two cases which
will be inverses of each other. As often, an example follows the proof. Given p =
(By, ..., By) F [n], we say that B; is splittable if #B; > 2. In this case the splitting map
applied to B; is defined by

O'(Bl,...,Bk) = (Bl’ ceey Bj—l’ {b}, B] —{b}, Bj+1’ ceey Bk)

where b = min B;. In other words B; is replaced by a pair of blocks, the first containing
its minimum element and the other all the rest of its elements. Although the notation
o does not indicate which block is to be split, this will be made clear from the context.
We will now define the part of the involution which will undo splitting. Given p, we
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say that B; can be merged with B; if
(1) B; = {b} for some element b € [n] and
(2) b<minBj,;.
In this case the merging map applied to B; is defined by
u(By,...,Bx) = (By, ..., Bj_y, BjUBj,1, Bjya, ..., By).

It should be clear that if B; can be split into B; and B; ;, then the primed blocks can be
merged back into B; and vice versa. To define the involution ¢, suppose we are given
p = (By,...,By). We scan p from left to right until we find the first index j, if any,
such that B; can either be split or merged with B; . (Clearly one cannot do both since

splitting implies that #B; > 2 and merging that #B; = 1.) Now define

(o) = o(p) if Bj can be split,
p)= u(p) if Bj can be merged.

If no such index exists, then p will be a fixed point of «.

We have some work to do to verify that ¢ is an involution. Specifically, we must
show that if i((p) = p’ is obtained from p by splitting at index j, then «(p") will be ob-
tained by merging at the same index and vice versa. We will do the first case and leave
the second to the reader. First note that since no B;, i < j, could be split in p we must
have B; = {b;} for some b; for each i in this range. Furthermore, since none of these
B; could be merged into B;,, we must also have by > b, > --- > b;_; > b; = min B;.
Now in p’ we have B; = {b;} for i < j with by > --- > b;. As a consequence, no Bj
can be split or merged for i < j and so «(p") will merge BJf into BJf +1- Thus ((p") = p as
desired.

It is clear that ¢ is sign reversing since (o) has one more or one fewer block than
p- So we just need to find the fixed points. But if p € Fixt, then all p’s blocks con-
tain a single element; otherwise one could be split. It follows that p = ({b,},...,{b,})-
Furthermore, none of the blocks can be merged and so b; > --- > b,,. But this forces
our set composition to be p = ({n},{n — 1},...,{1}) and sgn p = (—1)", completing the
proof. O

To illustrate, suppose n = 8. As we have done previously, we will dispense with
brackets and commas in sets. Consider p = (By,...,Bs) = (5,3,147,2,68). Then B;
is splittable and splitting it results in o(p) = (5,3, 1,47, 2, 68). Also, B, can be merged
into Bs in p since B, = {2} and 2 < minBs; = 6. Merging these two blocks gives
u(p) = (5,3,147,268). To decide which operation to use we start with B;. It cannot be
split, having only one element. And it cannot be merged with B, since 5 > min B, = 3.
Similarly B, cannot be split or merged with B;. But we have already seen that B; can
be split so that «(p) = (5,3,1,47,2,68) = p’. To check that ((p") = p is similar.

Involutions involving merging and splitting often come up when finding formulae
for antipodes in Hopf algebras. One can consult the papers of Benedetti-Bergeron [[7],
Benedetti-Hallam-Machacek [8], Benedetti-Sagan [9], or Bergeron-Ceballos [12] for ex-
amples.
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2.3. The Garsia-Milne Involution Principle

So far we have used sign-reversing involutions to explain cancellation in alternating
sums. Butcan they also furnish a bijection for proving that two given sets have the same
cardinality? The answer in certain cases is “yes” and the standard technique for doing
this is called the Garsia—-Milne Involution Principle. Garsia and Milne [B(Q] introduced
this method to give the first bijective proof of the Rogers-Remanujan identities, famous
formulas which involve certain sets of integer partitions. Since then the Involution
Principle has found a number of other applications. See, for example, the articles of
Remmel [73] or Wilf [100].

In order to prove the Garsia-Milne result, we will need a version of Lemma
which applies to a slightly wider class of digraphs. Since the demonstration of the next
result is similar to that of the earlier one, we leave the pleasure of proving it to the
reader.

Lemma 2.3.1. Let D = (V, A) be a digraph. We have odegv,idegv < 1 forallv € V if
and only if D is a disjoint union of directed paths and directed cycles. O

The basic idea of the Involution Principle is that, under suitable conditions, if one
has two signed sets each with their own sign-reversing involution, then we can use a
bijection between these sets to create a bijection between their fixed-point sets. So let
S and T be disjoint signed sets with sign-reversing involutions¢: S - Sandx: T —
T such that Fixt C S* and Fixx C T*. Furthermore, suppose we have a bijection
f: S — T which preserves signs in that sgn f(s) = sgns for all s € S. A picture of
this setup can be found in Figure P.3. Note that although all arrows are really double-
headed, we have only shown them in one direction because of what is to come. And
the circular arrows on the fixed points have been ignored. We now construct a map
F: Fixt — Fixx as follows. To define F(s) for s € Fix: we first compute f(s) € T*.
If f(s) € Fixx, then we let F(s) = f(s). If not, we apply the functional composition
¢ = foro f~loxto f(s). Remembering that we compose from right to left, this takes
f(s)toT—, 87, 8%, and T™ in that order. If this brings us to an element of Fix x, then
we let F(s) = ¢(f(s)). Otherwise we apply ¢ as many times as necessary, say m, to
arrive at an element of Fix x and define

(2.8) F(s) = ¢"(f(5)).

Continuing the example in Figure R.3 we see that f(s) = u ¢ Fixx. So we apply ¢,
which takes u to v, r, g, and ¢ in turn. Since t € Fixx we let F(s) = t. Of course, we
have to worry whether this is all well-defined; e.g., does m always exist? And we also
need to prove that F is a bijection. This is taken care of by the next theorem.

Theorem 2.3.2 (Garsia—Milne Involution Principle). With the notation of the previous
paragraph, the map F . Fixt — Fix x is a well-defined bijection.

Proof. Recall the notion of a functional digraph as used in the proof from Section [[.9
of Theorem [[.5.1. Define the following functions by restriction of their domains:

f="Fflst» 8=f"tr-» 1=tls-s *® =%+ Fixe
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re oV

f—l

Figure 2.3. An example of the Garsia-Milne construction

Consider D which is the union of the functional digraphs for f, g, L, and x. It is easy to
verify from the definitions that x € V(D) has in-degrees and out-degrees given by the
following table depending on the subset of S U T containing x:

subset ‘ odeg x ‘ ideg x
Fixt 1 0
Fixx 0 1
(S — Fix¢) U (T — Fixx) 1 1

For example, if x € Fix(, then the only arc containing x comes from ? andsoodegx =1
and ideg x = 0. On the other hand, if x € S* — Fix ¢, then x has an arc going out from
f and one coming in from i giving odeg x = idegx = 1.

Now D satisfies the hypothesis of the forward direction of Lemma .3.1. It follows
that D is a disjoint union of directed paths and directed cycles. Each directed path
must start at a vertex with out-degree 1 and in-degree 0 and end at a vertex with these
degrees switched. Furthermore, all other vertices have out-degree and in-degree both
1. From these observations and the chart, it follows that these paths define a 1-to-1
correspondence between the vertices of Fix ¢ and those of Fix x. Furthermore, from the
definition of D we see that each path corresponds exactly to a functional composition
¢ f(s) for s € Fixt and some m > 0. So F is the bijection defined by these paths. [

Before we give an application of the previous theorem, we should mention an ap-
proach which can be useful in setting up the necessary sets and bijections. Here is one
way to try to find a bijection F : X — Y between two finite sets X, Y.

(i) Aswith the PIE, construct a set A with subsets A;,...,A, suchthatX = A —
|JA;. Similarly construct B and By, ...,B, for Y.

(ii) Use the method of our second proof of the PIE to set up a sign-reversing in-
volution ¢ on the set S as given by (.6). Similarly construct x on a set T.
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(iii) Find a bijection f: S — T of the form

fla,1)=(b,1)

which is well-defined in that a € Ay if and only if b € B;.

Recall that Fixt = (a,#) where a € A — | J A;. Thus Fix: C ST as needed to apply the
Involution Principle, and there is a natural bijection between Fix: and X. Note also
that f is automatically sign preserving since sgn(a,I) = (=1)*I = sgn(b,I). So once
these three steps have been accomplished, Theorem guarantees that we have a
bijection X — Y.

As already remarked, the Involution Principle is useful in proving integer partition
identities. Say that partition 4 = (44, 4,,...,4;) has distinct parts if ; > A, > --- > A
(as opposed to the usual weakly decreasing condition). On the other hand, say that 4
has odd parts if all the 4; are odd. The next result is a famous theorem of Euler. As has
become traditional, an example follows the proof.

Theorem 2.3.3 (Euler). Let Py(n) be the set of partitions of n with distinct parts and let
P,(n) be the set of partitions of n with odd parts. For n > 0 we have

#P;(n) = #B,(n).

Proof. It suffices to show that there is a bijection P;(n) — E,(n). To apply the PIE to
P;(n) we can take A = P(n), the set of all partitions of n, with subsets 4, ..., A, where

A; = {1+ n| Ahas (at least) two copies of the part i}.

Note that A; = #if i > n/2, but this does no harm and keeps the notation simple. It
should be clear from the definitions that P;(n) = A — |J A;. Similarly, for ,(n) we let
B = P(n) with subsets

B; = {u F n | u has a part of the form 2i}

for 1 <i < n. Again, it is easy to see that B,(n) = B— | B;.

The construction of S, ¢, T, and x are now exactly the same as in the second proof of
the PIE. So it suffices to construct an appropriate bijection f : S — T. Given (1,I) € S,
we replace, foreachi € I, a pair ofi’sin A by a part 2i to form u. Soif A € A;,thenu € B;
foralli € I and the map f(4,1) = (u,I) is well-defined. It is also easy to construct f~!,
taking an even part 2i in ¢ and replacing it with two copies of i to form A as i runs over
I. Appealing to Theorem finishes the proof. O
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To illustrate this demonstration, suppose we start with (6,2,1) € P;4(9). For the
pairs in S and T, we will dispense with delimiters and commas as usual. So

(621, 0) A (621,0) & (621,3) N (3321,3) & (3321, )

-1
J, (3321,0) & (3321,1) L (33111,1) v (33111, 13)

<~

-1
L (621,13) &5 (621,1) > (6111,1) &> (6111, 9)

<~

-1
L (6111, 8) & (6111, 3) N (33111, 3) = (33111, )

N

(33111, §).

F
It follows that we should map (6,2,1) — (3,3,1,1,1). Clearly one might like to find a
more efficient bijection if one exists. This issue will be further explored in the exercises.

2.4. The Reflection Principle

The Reflection Principle is a geometric method for working with certain combinatorial
problems involving lattice paths. In particular, it will permit us to give a very simple
proof of the binomial coefficient formula for the Catalan numbers. It is also useful in
proving unimodality, an interesting property of real number sequences.

Consider the integer lattice 72 and northeast paths in this lattice. Suppose we are
given a line in the plane of the form L : y = x + b for some b € Z. Note that the
reflection in L of any northeast path is again a northeast path. If P is a path from u to

P
v, then we write P : u - voru — v. Suppose P : u — v intersects L and let x be its

L
[T N e N N 4
| | | | | | |
| | | | | | |
e A PR
| | | | | | |
| | | | | | |
I I I I I I I

i 774;—-00/
I I I I l ]
| | | x\ | |
L T o S So
o B
| | | | | |
| I R 777”777\7777\7777\
| | | | | |
I I I I I I
| I I
u bP77T777\7777\
I I I 141 I I I
I I I I I I I
[ T E |

Figure 2.4. The map Y,
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last (northeast-most) point of intersection. Then P can be written as the concatenation

P, P,
P:u—-x-v.

For example, on the left in Figure P.4 we have the path P = EEENNNNEN with B =

EEENN and B, = NNEN. We now define a new path

!

P, P,
Y.(P):u—->x->v

where B/ and v’ are the reflections of B, and v in L, respectively. Returning to our ex-
ample, B’ = EENE, which is obtained from B, by merely interchanging north and east
steps. So Y;(P) = EEENNEENE as on the right in Figure 4. This is the fundamental
map for using the Reflection Principle. To state it precisely, let N°E(u; v) denote the set
of northeast paths from u to v and let V'E (u; v) be the subset of paths which intersect
L. If u is omitted, then it is assumed that u = (0,0). Also, be sure to distinguish the
notation NE(u; v) for the northeast paths from u to v and VE(m, n) for the northeast
paths from (0,0) to (m,n). The former contains a semicolon where the latter has a
comma.

Theorem 2.4.1 (Reflection Principle). GivenL : y = x+bforb € Zandv € 72, we let
U’ be the reflection of v in L. Then the map Yy, : NEr(u;v) » NEL(u;v') is a bijection.

Proof. In fact, we can show that Y;, is an involution on N &y (u; v) U NEr(u; v’). This
follows from the fact that reflection in L is an involution and that the set of intersection
points does not change when passing from P N L to Y;.(P) N L. O

As a first application of Theorem P.4.1], we will give a simpler, although not as
purely combinatorial, proof of Theorem [[.I1.3. We restate the formula here for refer-

ence:
1 2n

C = .

() n+1<n)

Proof. Recall that C(n) counts the set D(n) of northeast Dyck paths from (0, 0) to
(n,n). From Theorem we know that the total number of all northeast paths
P from the origin to (n, n) is

#NE(n,n) = (2:>

Note that P does not stay weakly above y = x if and only if P intersects the line L :
y = x—1. And by the Reflection Principle, such paths are in bijection with NE((0, 0);
(n+1,n—1))since (n+1,n—1) is the reflection of (n, n) in L. But all paths from (0, 0)
to (n + 1,n — 1) cross L since these two points are on opposite sides of the line. Thus,
using Theorem again,

#NEL((0,0);(n+1,n—1) =#NEM+1,n—1) = (n2-:ll>.
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So subtracting the number of non-Dyck paths from the total number of paths in

NE(n,n) gives
co=(7)- ()

_ (n)! (2n)!
“anlnl (n+ ! (n—1)

(a5
- 3i(7)

as desired. O

The Reflection Principle can also be used to prove that certain sequences have a
property called unimodality. A sequence of real numbers ay, a4, ..., a, is said to be
unimodal if there is an index m such that

aOSals...SamZam_'_lZ...Zan'

So this is the next most complicated behavior after being weakly increasing or weakly
decreasing. In fact the latter are the special cases of unimodality where m = norm = 0.
Many sequences arising in combinatorics, algebra, and geometry are unimodal. See
the survey articles of Stanley [89], Brenti [20], or Brindén [19] for more details. The
term “unimodal” comes from probability and statistics where one thinks of the a; as
giving you the distribution of a random variable taking values in {0, 1, ...,n}. Then a
unimodal distribution has only one hump.

We have already met a number of unimodal sequences, although we have not re-
marked on the fact. Here is the simplest.

Theorem 2.4.2. Forn > 0 the sequence
n\ (n n
oP\1)"""’\n

Proof. Because the binomial coefficients are symmetric, Theorem [.3:3(b), it suffices
to prove that this sequence is increasing up to its halfway point. So we want to show

)=

for k < |n/2|. From Theorem [[.11.1], we know that

is unimodal.

k

So it suffices to find an injection i : NE(k,n —k) > NE(k+ 1,n—k—1). Let L be the
perpendicular bisector of the line segment from (k, n—k) to (k+1,n—k—1). Itis easy to

<”> = #N&(k,n—k) and (k Z 1) = #NEk+1,n—k—1).
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check that L has the form y = x + b for b € Z. From the Reflection Principle, we have
abijection Y; : NEr(k,n—k) > NE(k+1,n—k—1). Butsince k < |n/2] the lattice
points (0, 0) and (k, n—k) are on opposite sides of L so that N°E; (k, n—k) = N E(k, n—k).
Furthermore N€;(k+1,n—k—1) CNE(k + 1,n — k — 1). So extending the range of
Y; provides the desired injection. O

It turns out that the Stirling number sequences
¢(n,0),c(n,1),...,c(n,n) and S(n,0),S(n,1),...,S(n,n)

are also unimodal. But this is not so easy to prove directly. One reason for this is
that these sequences are not symmetric like the one for the binomial coefficients. And
there is no known simple expression for the index m where they achieve their maxima.
Instead it is better to use another property of real sequences, called log-concavity, which
can imply unimodality. This is one of the motivations for the next section.

2.5. The Lindstrom-Gessel-Viennot Lemma

The lemma in question is a powerful technique for dealing with certain determinan-
tal identities. It was first discovered by Lindstrom [57] and then used to great effect
by Gessel and Viennot [B1] as well as many other authors. Like the Reflection Prin-
ciple, this method uses directed paths. On the other hand, it uses multiple paths and
is not restricted to the integer lattice. In particular, when there are two paths, then
log-concavity results can be obtained.

A sequence of real numbers ay, ay, ..., a, is called log-concave if, for all 0 < k < n,
we have
(2.9) af > Qo1 Qpqr-

As usual, we can extend this to all k € Z by letting a;, = 0 for k < 0 or k > n. Log-
concave sequences, like unimodal ones, are ubiquitous in combinatorics, algebra, and
geometry. See the previously cited survey articles of Stanley, Brenti, and Brandén for
details. For example, a row of Pascal’s triangle or either of the Stirling triangles is log-
concave.

The name “log-concave” comes from the following scenario. Suppose that we have
a function f: R — R which is concave down. So if one takes any two points on the
graph of f, then the line segment connecting them lies weakly below f. Taking the
points to be (k — 1, f(k — 1)) and (k + 1, f(k + 1)) and comparing the y-coordinate
of the midpoint of the corresponding line segment with that coordinate on f gives
(f(k—1) + f(k+1))/2 < f(k). Now if f(x) > 0 for all x and the function log f(x) is
concave down, then substituting into the previous inequality and exponentiating gives
fk—1)f(k + 1) < f(k)? just like the definition of log-concavity for sequences.

It turns out that log-concavity and unimodality are related.

Proposition 2.5.1. Suppose that ay, a,, ..., a, is a sequence of positive reals. If the se-
quence is log-concave, then it is unimodal.
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Proof. To show a sequence is unimodal it suffices to show that after its first strict de-
crease, then it continues to weakly decrease. But a,_; > a; is equivalent to a;_;/a; >
1 for positive ai. Rewriting (2.9) as a/ax,1 > ai_1/a; we see thatif a;_;/a; > 1, then
a;_,/a; > 1for all I > k. So the sequence is unimodal. O

Even though log-concavity implies unimodality for positive sequences, it is para-
doxically often easier to prove log-concavity rather than proving unimodality directly.
This comes in part from the fact that the log-concave condition is a uniform one for
all k, as opposed to unimodality where one must know where the maximum of the
sequence occurs.

We can rewrite (29) as aZ — ax_,ax41 > 0, or in terms of determinants as

A Qg4

(2.10)
ag-1 Ak

> 0.

To prove that the determinant is nonnegative, we could show that it counts something
and that is exactly what the Lindstrom-Gessel-Viennot Lemma is set up to do. We will
first consider the case of 2 X 2 determinants and at the end of the section indicate how
to do the general case. As a running example, we will show how to prove log-concavity
of the sequence of binomial coefficients considered in Theorem P.4.7.

Let D be a digraph which is acyclic in that it contains no directed cycles. Given
two vertices of u, v € V(D), we let P(u; v) denote the set of directed paths from u to v.
We will assume that u, v are always chosen so that p(u; v) = #2(u;v) is finite even if
D itself is not. To illustrate, let D be the digraph with vertices Z? and arcs from (m, n)
to (m+ 1,n) and to (m, n + 1) for all m, n € Z. Then P(u;v) is just the set of northeast
lattice paths from u to v, denoted N'E(u; v) in the previous section. We will continue
to use the notation for general paths from that section for any acyclic digraph. We also
extend that notation as follows. Given a directed path P : u — v and vertices x coming

P
before y on P, we let x — y be the portion of P between x and y.

Continuing the general exposition, suppose we are given u;,u, € V called the
initial vertices and v,, v, € V which are the final vertices. We wish to consider determi-
nants of the form

p(ui;v1)  p(ug;vy)

(2.11) p(uz;v1)  p(up;vy)

= p(uy;01)p(uy; V) — p(ug; v2) p(us; vy).
Note that p(u;;v,)p(u,; v,) counts pairs of paths
(B, B) € P(uy;01) X P(up;v3) := Py
and similarly for p(u;;v,)p(u,;v;) and
P(uy; 02) X P(Uy;01) = Py

Returning to our example, if we wish to show
2
n n n
- >
) -Lhn) =
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lo

Figure 2.5. The Lindstrom-Gessel-Viennot Involution

then we could take
u; =(1,0), u, =(0,1), v, =(k+1,n—k), v, =(k,n—k +1).

It follows from Theorem [LTL1 that p(u; v1) = p(u,;v;) = (3), while p(uy;v;5) = ("))
and p(u,;v1) = (i},)- More specifically, if n = 7 and k = 3, then in Figure 2.3 we have
a pair of paths in %; counted by (7)(7) on the left and another pair in , counted by

(;)2 on the right. For readablity, the grid for the integer lattice has been suppressed,
leaving only the vertices of Z2.

To prove that the determinant (R.11]) is nonnegative, we will construct a sign-
reversing involution Q on the set P := P, U $; where

+1 if(R,B) € R,
sgn(R,B) =
-1 if(R,B) € Py.

We will construct Q so that every pair in %, is in a 2-cycle with a pair in ,,. Further-
more, the remaining fixed points in 7, will be exactly the path pairs in » which do not
intersect. It follows that (2.11) is just the number of nonintersecting path pairs in P
and therefore must be nonnegative.

To define Q, consider a path pair (B,B) € P. If B n B is empty, then this pair
is in 2,5, since every pair in %%; intersects. So in this case we let Q(B,B) = (B,B), a
fixed point. If B N B, # @, then consider the list of intersections x;, ..., x; in the order
in which they are encountered on B. We claim they must also be encountered in this
order on B. For if there were intersections x, y such that x comes before y on B, and y

P, P
comes before x on B, then one can show that the directed walk x = y 3 x contains
a directed cycle, as the reader will be asked to do in the exercises. This contradicts the
assumption that D is acyclic. So there is a well-defined notion of a first intersection
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X = x;. We now let Q(B, B) = (B, B)) where

, Py P,
R =u —x-u,

p, P
B =u; = x = vy,

if (B,B) € P, and similarly if (B, B) € P; with v; and v, reversed. An illustration

of this map is shown in Figure B.3.

Because the set of intersections in (B, B) is the same as in (B, B), the first in-
tersection remains the same and this makes Q an involution. It is also clear from its
definition that it changes sign. We have proved the following lemma and corollary.

Lemma 2.5.2. Let D be an acyclic digraph. Let u;,u,, 0,0, € V(D) be such that each
pair of paths (B, B) € P, intersects. Then

p(uy;v1)  p(ug;vy)

= number of nonintersecting pairs (B, B) € P,.
p(uz;v1)  p(ug;vz) / &b b 12

In particular, the determinant is nonnegative. O

Corollary 2.5.3. Forn > 0 the sequence
n\ (n n
0/\1)"""’\n

Lemma can be extended to n X n determinants as follows. Let u;,...,u, and
v1,..., Uy be n-tuples of distinct vertices in an acyclic digraph. For 7 € €,,, we let

is log-concave.

Pre={(B,...,B) | P; : u; = vy foralli € [n]}

and

?=J

€S,

To make 2 into a signed set, recall from abstract algebra that the sign of 7 € €,, is
sgnw = (-1)nk

if 7 has k cycles in its disjoint cycle decomposition. There are other ways to define
sgn 7, but they are all equivalent. One crucial property of this sign function is that if
A = [q; ] is a matrix, then

detA = 2 (sgn m)ay (12, 7(2) - - - A, ()
neS,
Now if (B,...,B,) € %, then we letsgn(B,...,B,) = sgnx.

To extend the involution Q, call P = (B,..., B,) intersecting if there is some pair
P, P; which intersects. Given an intersecting P, we find the smallest i such that P;
intersects another path of P and let x be the first intersection of P; with another path.
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Now take the smallest j > i such that P; goes through x. We now let Q(P) = P’ where

P’ is P with P, P; replaced by

P P, P

i = WX U

(2.12) , b
B= 4= x= ),

respectively. One now needs to check that Q is a sign-reversing involution. As before,
nonintersecting path families P are fixed points of Q. Modulo the details about Q, we
have now proved the following.

Lemma 2.5.4 (Lindstrom-Gessle-Viennot). Let D be an acyclic digraph. Consider two
sequences of vertices Uy, ..., Uy, U1, ..., 0, € V(D) such that every P € P, is intersecting
for 7 # id, the identity permutation. We have

det[p(u;;vj)]1<i, j<n = number of nonintersecting P € P;q.

In particular, the determinant is nonnegative. O

This theorem also has something to say about real sequences. Any sequence ay, ...,
a, has a corresponding Toeplitz matrix which is the infinite matrix A = [a;_;]; j>o- SO

a a, a, - a, 0 0 O
A= 0 a a a - a, 0 O

0 0 a a4 a - a, O

The sequence is called Pélya frequency, or PF for short, if every square submatrix of
A has a nonnegative determinant. Notice that, in particular, we get the determinants
in (2.10) so that PF implies log-concave. Lemma can be used to prove that a se-
quence is PF in much the same way that Lemma can be used to prove that it is
log-concave. The reader should now have no difficulty in proving the following result.

Theorem 2.5.5. Forn > 0 the sequence

b))

is PF. 0

2.6. The Matrix-Tree Theorem

We end this chapter with another application of determinants. There are many places
where these animals abide in enumerative combinatorics and a good survey will be
found in the articles of Krattenthaler [54,55]. Here we will be concerned with counting
spanning trees using a famous result of Kirchhoff called the Matrix-Tree Theorem.

A subgraph H C G is called spanning if V(H) = V(G). So a spanning subgraph is
completely determined by its edge set. A spanning tree T of G is a spanning subgraph
which is a tree. Clearly for a spanning tree to exist, G must be connected. Let ST(G)
be the set of spanning trees of G. If one considers the graph G on the left in Figure P.4,
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Figure 2.6. A graph G, its spanning trees, and an orientation

then the list of its eight spanning trees is in the middle of the figure (shrunk to half size
so they will fit and without the vertex and edge labels). To develop the tools needed
to prove our main theorem, we first need to make some remarks about combinatorial
matrices.

We will often have occasion to create matrices whose rows and columns are in-
dexed by sets rather than numbers. If S, T are sets, then an S X T matrix M is con-
structed by giving a linear order to the elements of S and to those of T and using them
to index the rows and columns of M, respectively. So if (s,t) € S X T, then my, is the
entry in M in the row indexed by s and the column indexed by ¢. The reader may have
noted that such a matrix depends not just on S, T, but also on their linear orderings.
However, changing these orderings merely permutes rows and columns in M which
will usually have no effect on the information we wish to extract from it.

If G = (V,E) is a graph, then there are several important matrices associated with
it. The adjacency matrix of G is the V X V matrix A = A(G) with

_{ 1 ifvw €E,

a .
v,w 0 otherwise.

Using the ordering v, w, x, y, the graph on the left in Figure P.§ has adjacency matrix

vV W X Yy
v 01 1 1
A= w 1 01 0
X 1 1 01
y 1010

The adjacency matrix is always symmetric since vw and wv denote the same edge. It
also has zeros on the diagonal since our graphs are (usually) loopless.
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A second matrix associated with G is its incidence matrix, B = B(G), which is the
V X E matrix with entries

b = 1 ifvisan endpoint of e,
e 0 otherwise.

Returning to our example, the graph has

e f g h i

v 111 00
B= w 1 0 01 O
X 0 01 11
y 0100 1

By construction, row v of B contains deg v ones, and every column contains 2 ones. We
will also need the diagonal V x V matrix C(G) which has diagonal entries ¢, , = degv.
These three matrices are nicely related.

Proposition 2.6.1. For any graph G we have

BB =A+C.
Proof. The (v, w)entry of BB! is the inner product of rows v and w of B. If v = w, then
this is, using the notation ([.9),

D b3, =Y 8(vis an endpoint of e)* = degv = ¢y,
e e

since 0 = 0 and 12 = 1. Similarly, if v # w, then the entry is

Z byebye = Z d(v is an endpoint of e) - §(w is an endpoint of e)
e e

=6(vw € E)

= Qyws

which completes the proof. O

Interestingly, to compute the number of spanning trees of G we will have to turn
G into a digraph. An orientation of G is a digragh D with V(D) = V(G) and, for each
edge vw € E(G), either the arc vw or the arc wo in A(D). In this case G is called the
underlying graph of D. The digraph on the right in Figure P.§ is an orientation of our
running example graph G. The adjacency matrix of a digraph is defined just as for
graphs and will not concern us here. But we will need the directed incidence matrix,
B = B(D), defined by

—1 ifa = 0w for some w,
byo =1 1 ifa= wd forsome w,

0 otherwise.
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For the digraph in Figure P.q we have

e f g h i

v -1 -1 1 0 0

B= w 1 0 0 1 0
b 0 0 -1 -1 1

y 0 1 0 0 -1

Here are the two properties of B(D) which will be important for us.
Proposition 2.6.2. Let D be a digraph and let B = B(D).
(a) Iftherowsof Bareb,,...,b,, then
b+:--+b,=0
where 0 is the zero vector.
(b) If D is an orientation of a graph G, then
(2.13) BB' = C(G) — A(G).

Proof. For (a), just note that every column of B contains a single 1 and a single —1,
which will cancel in the sum. The proof of (b) is similar to that for Proposition
and so is left to the reader. O

It is interesting to note that although the matrix B on the left-hand side of (£.13)
depends on D, the right-hand side only depends on the underlying graph G. The matrix
L(G) = C(G) — A(G) is called the Laplacian of G and controls many combinatorial
aspects of the graph. Returning to our example, we have

3 -1 -1 -1
-1 2 -1 0
-1 -1 3 -1
-1 0 -1 2

L(G) =

Note that the sum of the rows of L = L(G) is zero since, for all v € V, column v
contains deg v on the diagonal and then deg v other nonzero entries which are all —1.
So det L = 0. But removing the last row and column of the previous displayed matrix
and taking the determinant gives

3 -1 -1
det| —1 2 -1 |=8.
-1 -1 3

The reader may recall that 8 was also the number of spanning trees of G. This is not a
coincidence! But before we can prove the implied theorem, we need one more result.

Let M be an S X T matrixand letI C S and J C T. Let M; ; denote the submatrix
of M whose rows are indexed by I and columns by J. In B(G) for our example graph G
with I = {v,x}and J = {f, g, i} we would have

110
B”’:[o 1 1]'
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IfI = S—{s}forsome s € SandJ = T—{t} forsome ¢ € T, then we use the abbreviation
M ; for My ;. In this case when S = T = [n], the (i, j) cofactor of M is

mi’j = (—1)i+j detMi,j.
We will need the following famous result about determinants called the Cauchy-

Binet Theorem. Since this is really a statement about linear algebra rather than com-
binatorics, we will just outline a proof in the exercises.

Theorem 2.6.3 (Cauchy-Binet Theorem). Let Q be an [m] X [n] matrix and let R be
[n] x [m]. Then

det QR = Z det Q[m],K . detRK,[m]. U

ke(in)

Note that in the special case m = n this reduces to the well-known statement that
det QR = det Q - detR.

Theorem 2.6.4 (Matrix-Tree Theorem). Let G be a graph with V = [n], E = [m], and
let L = L(G). We have forany i, j € [n]

#ST(G) = ¢; ;.

Proof. We will do the case when i = j = n as the other cases are similar. So
€ﬁ,ﬁ = (_1)n+n detLﬁﬁ = detLﬁ’ﬁ.

Let D be any orientation of G and B = B(D). By Proposition 2.6.2(b), we have that
L = C(G) — A(G) = BB. It follows that

L u = By g(Byw g)

where W = [n — 1]. Applying the Cauchy-Binet Theorem we get

€ﬁ’ﬁ = Z detBW,F . det(BW’F)t = Z (detBW’F)z.
re(.5) Fe(5)

So the theorem will be proved if we can show that

+1 if the edges of F are a spanning tree of G,

(2.14) det By ={ 0 otherwise.

Note that By g is the incidence matrix of the digraph D having V(Dp) = V and
A(Dg) = F but with the row of vertex n removed. We say that D is a tree if its under-
lying graph is one.

We first consider the case when Dy, is not a tree. We know #F = n—1 so, by Theo-
rem [[.10.7, Dy must be disconnected. Thus there is a component of Dy not containing
the vertex n. And the sum of the row vectors of By,  corresponding to that component
is 0 by Proposition P.6.4(a). Thus det By, r = 0 in this case.
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Now suppose that D is a tree. To prove this case of (R.14), it suffices to permute
the rows and columns of By, i so that the matrix becomes lower triangular with =1 on
the diagonal. Such a permutation corresponds to a relabeling of the vertices and edges
of Dp. If n = 1, then By, f is the empty matrix which has determinant 1. If n > 1,
then, by Lemma [[.10.1, D has at least two leaves. So in particular there is a leaf in
W = [n — 1]. By relabeling Dr we can assume that v = 1 is the leaf and a = 1 is the
sole arc containing v. It follows that the first row of By,  has +1 in the (1, 1) position
and zeros elsewhere. Now we consider Dr — v and recurse to finish constructing the
matrix. (]

We can use this theorem to rederive Cayley’s result, Theorem [[.10.3, enumerating
all trees on a given vertex set. To do so, consider the complete graph K,, with vertex
set V = [n]. Clearly the number of trees on n vertices is the same as the number of
spanning trees of K,,. The Laplacian L(K,,) consists of n — 1 down the diagonal with
—1 everywhere else. So L, ;, is the same matrix but with dimensions (n — 1) x (n — 1).
Add all the rows of this matrix to the first row. The result is a first row which is all ones
since every column consists of an n — 1 as well as n — 2 minus ones in some order. Next
add the first row to each of the other rows. This will cancel all the minus ones in those
rows as well as changing each diagonal entry from n — 1 to n. Now the matrix is upper
triangular and, since elementary row operations do not change the determinant, we
have that £}, ; is the product of the diagonal entries which consist of a one and n — 2
copies of n. Cayley’s Theorem follows.

.|
Exercises

(1) Let n be a positive integer and let p,..., py be distinct primes. Prove that the
number of integers between 1 and n not divisible by any of the p; is

n n n
Ol - [ O [ ey [
152,-;,( bi 1§§5k biDj b1Pz2--- Pk

(2) Let A(n) be the number of p I [n] such that i and i + 1 never occur in the same
block of p for anyi € [n — 1].
(a) Show that

n—1
A=Y (—1)i<” ; 1)B(n —i
i=0

where B(n) is the nth Bell number.

(b) Find and prove a similar identity involving the Stirling numbers of the second
kind.

(c) Show that part (a) follows from part (b).

(3) Fix positive integers k < n. Use the Principle of Inclusion and Exclusion to find
a formula for the number of compositions a = [«, ..., ;] F n with the property
that a; > 2 for all i € [k].
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(4) Prove that for n > 3 we have
D(n)=(n—1)(D(n—1)+ D(n —2))

in two ways:
(a) by using Theorem R.1.7,
(b) by a combinatorial argument.

(5) Prove that for n > 1 we have
D(n) =nD(n—-1) + (—1)".

(6) Call two positive integers k, n relatively prime if gcd(k,n) = 1 where gcd is the
greatest common divisor. The Euler totient function, also called the Euler phi func-
tion, is

¢(n) = #{k € [n] | ged(k,n) = 1}.
Using the PIE, show that

¢(n)=n H(l - %)
P

where the product is over all primes p dividing n.
(7) Given another proof of Lemma when S is finite by using Theorem [.5.1.
(8) Fixaset A and subsets A;,...,A4, C A. Define A; for I C [n] by (2.7). Show that

Ay = A.

(9) Prove that for the (signed) Stirling numbers of the first kind

1 ifn=0orl,
Zkls(”’k)_{o ifn>2,

using a sign-reversing involution.
(10) Fill in the details of the proof of Theorem P.2.2.

(11) Consider permutations 7 € P(S) and o € P(T) where SNT = @. The set of shuffles
of 7 and o is

nwo={rtePSWT)| mand o are subwords of 7}.
For example
31 w24 = {3124, 3214, 3241, 2314, 2341, 2431}.
We take linear combinations of permutations as if they were vectors. For example
6(3124) — 7(3241) — 9(3124) + (3241) = —3(3124) — 6(3241).

And a set of permutations represents the sum of all the elements in the set with
coefficient one. So we would also write

31 w24 = 3124 + 3214 + 3241 + 2314 + 2341 + 2431

and let the context determine whether 31 w 24 means the set or the sum. Show
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that
Z(—l)k 2 Wy W w, w - wwg =(=1)"n...21),
k>1 Wy Wy... . Wr=12...n
where the sum is over all concatenations w; - w, - ... wy = 12...n. For example,

when n = 3, then the concatenations are
123=1-2-3=1-23=12-3 =123.

Hint: Consider a permutation v contained in a shuffle w; w w, w -+ w wy. Find
the largest index j > 0, if any, such that

(1) |w;] = |w;y| = --» = |wj| = 1 (which implies that w; =i for i € [j]) and

(ii) j...21is a subword of v.
Use the relative positions of j and j + 1 in v together with merging and splitting to
find a copy of v in another shuffle of opposite sign.

(12) Prove Lemma P.3.1].

(13) Here is a way to obtain a direct bijection g : P;(n) — B,(n). Consider 1 € P;(n).
Each part p of 1 can be uniquely written as p = q2" for some odd q and integer
r > 0. Replace p by 2" copies of q to get a partition u = g(1). For example, if
1=(6,4,1),then6=3-2'=3+4+3,4=1-22=14+1+4+1+1,and1=1-2°=1.

Sog(6,4,1) = (3,3,1,1,1,1,1).

(a) Prove that g is a bijection.
(b) Prove that g is the same as the bijection obtained using the Involution Princi-

ple in the proof of Theorem P.3.3.

(14) Call a graph G rooted if each component has a distinguished vertex called the root
of that component. Say that two unlabled, rooted graphs G; = (V;,E;) and G, =
(W5, E,) are equal if there is a bijection f : V; — V, which preserves both the roots
(r is a root of G; if and only if f(r) is a root of G,) and edges (vw € E; if and only
if f(v)f(w) € E,). Call arooted tree T even if there is some edge rv, where r is the
root, such that removing this edge from T and making v the root of its component
results in a graph with two equal components. Call a rooted forest distinct if all of
its component trees are not equal.

(a) Use the Garsia-Milne Involution principle to find a bijection between the
rooted forests on n vertices with no component tree being even and the rooted
forests on n vertices which are distinct.

(b) Describe a bijection for (a) using the ideas from Exercise [[3.

(c) Show that the bijections in (a) and (b) are actually the same.

(15) One can generalize Theorem in the following way. Fix a positive integer m.
Let P.,,,(n) be the set of 1 - n where each part is repeated fewer than m times. Let
B:p(n) be the set of 1 F n such that none of the parts is divisible by m.

(a) Show that P.,(n) = P4(n) and B, (n) = B (n).

(b) Prove that #P.,,(n) = #R,(n) by generalizing the bijection of the previous
exercise.

(c) Reprove that #P_,,,(n) = #RB,(n) using the Involution Principle.

(d) Show that the bijections in (b) and (c) are the same.
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(16) Let 8 = (S;Sy,...,S,) where S is a finite set and S,...,S,, are subsets. Similarly
define 7" = (T; Ty, ..., T,,). Call S and T sieve equivalent if #S; = #T; forallI C [n].
(a) Use the PIE to show that if § and J are sieve equivalent, then

n
Q-
i=1

(b) Show that if S and J are sieve equivalent, then the Involution Principle can
be used to construct a bijection proving (a).

n

T-Jn

i=1

(17) (a) Check that the line L used in the proof of Theorem has the correct form.

Use this equation to verify that (0,0) and (k, n — k) are on opposite sides of L.

(b) Give asecond proof of this theorem using the factorial expression for binomial
coefficients.

(c) Give a third proof of this theorem using induction.

(18) Consider lattice paths of length n, starting at the origin and ending at (x, y) and
using steps N, E, S, W where S = [0,—1] and W = [-1,0]. Letr = (n — x — y)/2
and s = (n+ x — y)/2.
(a) Show that the number of such paths is given by

n\(n

ri\s/)
Hint: Find a bijection with pairs of EW-lattice paths which are defined in
Exercise B3 of Chapter [l

(b) Show that the number of such paths staying weakly above the x-axis is

P26

(c) Show that for integers n,r > 0 the sequence
is unimodal.

6 (20 66

(a) Show that any directed walk from u to v with u # v contains a directed path
from u to v.

(b) Show that any directed walk of length at least 2 from u to v with u = v contains
a directed cycle.

(20) Show that for n € N the sequence

b2} (o)

is log concave by using the formula for a binomial coefficient in terms of factorials.
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(21) Let ag,q,,...,a, be a sequence of positive reals. Show that the sequence is log-
concave if and only if for all 0 < k < I < n we have

Ara) 2 Ag_1a141-

Hint: Use the ideas in the proof of Proposition R.5.1].

(22) (a) Let t(n, k) be a triangular array of real numbers for 0 < k < n. Call the ar-
ray log-concave in k if the sequence t(n,0), ..., t(n, n) is log-concave for all n.
Suppose that the t(n, k) satisfy the recursion

tin,k) = a(n,k)t(n — 1,k —1) + b(n,k)t(n — 1, k)

for n > 1 where a(n, k), b(n, k), t(n, k) are nonnegative reals and a(n, k) =
b(n,k) = t(n,k) = 0 for k < 0 or k > n. Also assume that
(i) a(n,k) and b(n, k) are log-concave in k and
(i) a(n,k—1)b(n,k+ 1)+ a(n,k+1)b(n,k—1) < 2a(n, k)b(n, k) forn > 1.
Prove that t(n, k) is log-concave in k.
(b) Use part (a) to prove that (Z) c(n, k) (unsigned Stirling numbers of the first
kind), and S(n, k) (Stirling numbers of the second kind) are all log-concave in

k.
(23) Suppose 0 < k < n. Prove in two ways that

2
n n—1\(n+1
>
) =0
by using the expression for binomial coefficients in terms of factorials and by using
lattice paths.

(24) Check that Q as defined for general path families P = (B, ..., B,) is a sign-reversing
involution.

(25) Prove Theorem R.5.5.
(26) Consider the sequence c(n,0),...,c(n, n) of signless Stirling numbers of the first
kind.
(a) Use Lemma to prove that this sequence is log-concave. Hint: Try to con-
struct D with V' = Z2 such that the number of paths from (0, 0) to (n, k) is
c(n, k). It will be helpful to use multiple, but distinguishable, arcs.
(b) Use Lemma to show that, in fact, this is a PF sequence.

(27) (a) Find a sequence of positive reals which is unimodal but not log-concave.
(b) Find a sequence of positive reals which is log-concave but not PF.

(28) (a) Show that the (v, w) entry of A(G)" is the number of walks going from v to w
of length n.
(b) Show that a similar result holds for digraphs.

(29) Use the matrix B(G) to prove the Handshaking Lemma, Theorem [[.9.3.
(30) Prove Proposition R.6.2(b).
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2 4
1

5

3 6

Figure 2.7. The graph G

(31) Give two proofs of Theorem as follows.
(a) Give one proof using the Lindstrom-Gessle-Viennot Lemma.
(b) Give a second demonstration based on the outline below.
(i) Show that if m > n, then both sides are zero.
(ii) Assume that m < n, write out the entries of QR, and expand about the
columns of the product using multilinearity to show that
detQR = Z (det Q. e 1,2 -+ Frppom
neP(([nl,m))
where Q.  is the matrix whose jth column is the 7; column of Q.
(iii) Show that in the previous sum, detQ. , = 0 if 7 contains a repeated
entry.
(iv) Show that if K € ([y’r‘l]), then det Q[ x can be factored out of all the
terms in the sum where 7 is a permutation of K and that what remains
sums to det Rg ]

(32) Prove the case of Theorem wherei =1and j = 2.
(33) Let G,, be the graph with vertex set V' = [n] and edge set
E={12, 13, 14, ..., 1n, 23}.

Graph Gy is displayed in Figure P.7. Find the number of spanning trees of G, in
two ways: by a direct count and by using the Matrix-Tree Theorem.

(34) The complete bipartite graph, K, ,, has V = {vy,...,V;, wy,...,w,} and edge set
consisting of v;w; for all i, j (and no other edges). Show that

#ST(K ) = m"~n™~1.
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Chapter 3

Counting with Ordinary
Generating Functions

This chapter introduces one of the most powerful techniques in the enumerator’s tool-
kit: generating functions. Wilf [101] wrote a whole book devoted to their properties.
There are several types of generating functions and we will start with the simplest,
which are called ordinary generating functions. In Chapters [, [j, and § we will deal
with other types. The basic idea in all cases is to take a sequence of numbers in which
we are interested and replace it by an algebraic object, namely a polynomial or power
series. The advantage of doing this is that one can then bring a host of algebraic tech-
niques to bear in order to study the original sequence. This makes it possible to give
proofs of results about the sequence which have the following advantages:

(1) The proofs can be very short.

(2) Many demonstrations can be done by straightforward manipulations which
do not require the cleverness of other approaches.

(3) Sometimes no other method is known for obtaining a given result.

3.1. Generating polynomials

Let x be a variable. A sequence
(31) ap,a1,043,...,04y

of complex numbers has ordinary generating polynomial
n
fO) =ag+ ax + ax? + -+ a,x" = Y apxk.
k=0
Here, “ordinary” is to distinguish this generating polynomial from other types. Since
we will only be dealing with the ordinary case in this chapter, we will usually drop
the adjective. Note that f(x) is an element of the algebra C[x] of polynomials in x

71
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72 3. Counting with Ordinary Generating Functions

with complex coefficients. We will also often call f(x) the generating function for the
sequence (B.T)) since it is a special case of the generating function for a sequence with
a countable, but perhaps not finite, number of terms. This more general setting will be
discussed in Section B.3.

To begin with a simple example, consider the sequence of binomial coefficients
found in a row of Pascal’s triangle

o) () () 2}

The corresponding generating function is

n
=3 (Z)xk.
=0
In particular, when n = 4 we get
f(x)=1+4x+6x2+4x3 +x* =1+ x)*~.

The power of this generating function is that it can be expressed as a product which
is just the well-known Binomial Theorem. We will give two proofs of this result, one
combinatorial and one using algebraic manipulations.

Theorem 3.1.1 (Binomial Theorem). For n € N we have

i (Z)xk =1+ x)"

k=0

Proof (Combinatorial). Consider expanding the product

n

A+x)"=0+x)Q+x)---(1+x)

using the distributive law. One obtains a term x¥ in the expansion by picking the x in
k of the factors and picking the 1 in the remaining n — k. But the number of ways of
choosing k objects from n objects is (Z) So that is the coefficient of x¥ in the product
and we are done. O

Proof (Algebraic). We will induct on n. The result is clearly true for n = 0 so assume
n > 1. Note that, because of our conventions for binomial coefficients, we can write

k=—

The advantage of doing this is that we will not have to worry about boundary cases
when k = 0 or k = n and so we will suppress the limits. Now using the binomial
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recursion in Theorem [[.3.3(a), reindexing, and induction
n\ . (n—l)k (n—l)k
X< = X<+ x
Zp =22l
_ n—1) k1 n—1\
=Bl

k

=xz(”;1)xk+;<”;1)xk

k

=x(1+x)" 1+ (1 +x)!

=1 +x)"

as desired. O

The first proof illustrates the use of the Product Rule for weight-generating func-
tions which will be discussed in Section B.4. The second proof is an example of the
point made in the chapter introduction about how proofs involving generating func-
tions can be based on routine manipulations. And the trick of extending the domain of
summation is one which we will often use to simplify demonstrations. We now wish
to give an illustration of how a generating function, once derived, can be used to give
simple proofs of other results. In particular, setting x = 1 in the Binomial Theorem we
immediately get

Zn: (Z) = (1+1)"=2",

k=0
which is part (c) of Theorem [[.3.3. Similarly, letting x = —1 in Theorem gives
n
Z(—l)"(';) =(1-1"=0" =5,
k=0
which is Theorem [[.3.3(d).

We end this section by stating the generating function for the Stirling numbers of
the first kind. This result can be proved similarly to the algebraic proof of the Binomial
Theorem so its demonstration will be left as an exercise. Finding a generating func-
tion for the Stirling numbers of the second kind will have to wait until after we have
discussed formal power series in Section B.3.

Theorem 3.1.2. Forn € N we have

D e(n k)xk = x(x + D)(x +2)...(x + n—1). O
k=0

Note that by setting x = 1 in the previous displayed equation we obtain the special
case

#P([n]) = D c(n,k) = n!.

k
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So this proposition can be considered a generalization of Theorem [.2.7. Such exten-
sions are called g-analogues and will be discussed in the next section.

3.2. Statistics and g-analogues

One way of constructing generating functions is through the use of statistics and g-
analogues. Because of connections with the theory of hypergeometic series, the vari-
able q is usually used for these generating functions. This is a mnemonic choice since
sometimes, as we will see below, g stands for the power of a prime p. There is no for-
mal definition of a g-analogue, so we will start with an example which will illustrate
the meta-definition we will eventually give.

A statisticon a set S is a function st: S — N. Because the range of a statistic is N
we can define, for finite S, a corresponding generating polynomial

fl@=) ¢
seS
This generating function is sometimes called the distribution of st over S because it can
also be written
f@ =) aq*
k>0
where ay, is the number of s € S satisfying st s = k and this parallels the distribution of
a random variable in probability theory. One of the most famous statistics on permu-
tations is the inversion number. A permutation 7 = 7, ...7, € P([n]) has inversion
set
Inve ={@i,j) | i <jand7m; > 7;}.

One can think of this as the set of pairs of indices where the corresponding elements
of 7 are out of their natural increasing order. Note that one uses pairs of indices rather
than the elements of 7 because this makes it easier to generalize this concept to words
where repetitions are allowed. For example, if 7 = 7, 7,m37,7m5 = 41532, then

Invr ={(1,2), (1,4), (1,5), (3,4), (3,5), (4,5)}.
The inversion number of 7 is just
invr = #Invr.

We will often use the convention of beginning functions having to do with sets with
uppercase letters and their corresponding cardinalities with lowercase. Continuing
our example, inv41532 = 6. Clearly inv: P([n]) — N is a statistic and it has a very
interesting generating polynomial.

Theorem 3.2.1. Forn > 0 we have

D VT T=MA+QU+qg+g) A +qg+ g+ + g,
meP([n])

Proof. We will induct on n, omitting the trivial base case. Every 7 € P([n]) can be
obtained uniquely from a o € P([n—1]) by inserting n into one of the n spaces between
the elements of ¢ (including the space before o; and the space after o,_;). Let o’ be
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the result of placing » in the ith space from the right where the space after o,_; is
considered space zero. Then clearly

invel =i +invo.

Using this equation and induction we see that

Z qinvn — Z nz_:l qinv ol

meP([n]) ogeP([n—1]) i=0

n—1
qlnva . Z ql
ogeP([n—1]) i=0

=1+ +q+q) - A+q+g+-+q")

as we wished to prove. O

Note that by plugging q = 1 into this result one obtains
#P((n)= Y 1=nl,
meP([n])
which is the second statement in Theorem [.2.1].

Now that we have met some g-analogues (although they have not been named as
such), their meta-definition should make more sense. A g-analogue of a combinatorial
object O is an object O(q) such that

lim O(q) = O.
q-1

Note that O could be many things: a number, a definition, or a theorem. For example,
one of the standard g-analogues of n € N is the polynomial
(3.2) [nlg=1+q+¢+-+q" "

Clearly [n]; = n. Another possible g-analogue of n is the rational function (1 — q")/
(1 — @). In this case one cannot just substitute ¢ = 1 but must take a limit. Of course,
this quotient and [n], are equal when q # 1. Another g-analogue is the g-factorial

[nlg! = [1]g[2]g - [nlg-
So Theorem can be restated as
qinvn — [n]q! .
meP([n])

Note that we will sometimes write [n], as just [r]. This could cause confusion with the
use of [n] as a set, so we will only use this simplification if it is clear which of the two
possible meanings is meant. Similarly, we will often drop the q subscript from other
g-analogues when convenient.

There is another famous statistic which has [n],! as its distribution. The descent
setof 7 € P([n]) is

(3.3) Desz ={i| 7m; > w1}
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with corresponding descent number desm = # Desz. Equivalently i € Des if and
only if (i, i+ 1) € Inv . We also define the ascent set, Asc 7, and ascent number, asc ,
analogously by reversing the inequality in definition (B.3). Using our previous example
we have Des41532 = {1, 3,4} and des 41532 = 3. The major index of 7 is
majm = Z I
ieDesm

So maj41532 = 1+ 3 + 4 = 8. The term “major index” was coined by Dominique
Foata [26] in honor of Percy MacMahon who first studied this statistic [61] and was a
major in the British army.

Theorem 3.2.2. Forn > 0 we have

Z qmAT = [n],!.

meP([n])

Proof. We start as in the proof of Theorem but now number the spaces of ¢
differently. First number the spaces between o; and o;,; where i is a descent, as
well as the space after o,,_;, from right to left starting with zero. Now number the
remaining spaces, including the one before o, from left to right with the numbers
descg + 1,deso + 2,...,n — 1. An example follows this proof.

Let () denote the result of placing n in space j with this maj labeling. We claim
that

(3.4) majoc) = j + majo.

Indeed, if space j is in a descent or at the end of o, then inserting n just moves the j
descents to the right of and including the given descent one position to the right. By
definition of major index, this adds a total of j to majo. If space j is in an ascent or at
the beginning of o, then inserting n creates a new descent as well as moving descents
to the right of the space one position to the right. It is easy to check for these j that
if inserting n in space j caused maj o to increase by j, then inserting n in place j + 1
increases majo by j + 1. So, by induction, equation (B.4) continues to hold in this
range of j. The completion of the proof is now done exactly as in the demonstration of

Theorem B.2.1]. O

Continuing on with ¢ = 41532 having majo = 8, the spaces are labeled using
subscripts as follows:
44‘315523120'
Inserting 6 into each space in turn gives

j 0 1 2 3 4 5

o) 415326 | 415362 | 415632 | 461532 | 641532 | 416532

maj o(/) 8 9 10 11 12 13

It turns out that there are many permutation statistics whose distribution is [r],!
and these statistics were dubbed Mahonian by Foata. One can consult the article of
Babson and Steingrimsson [B] for a list of Mahonian statistics.
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Having found g-analogues involving permutations, the reader may suspect that
they also exist for combinations. For integers 0 < k < n, define the g-binomial coeffi-
cients or Gaussian polynomials to be

[ n ] _ [n]q'
k :  [klg! [n—k]g!

As usual, we let this function be zero if k < 0 or k > n. For example

47 [4)
[ 2 ]‘ [2]! [2]!
_[4i3
[2][1
_(0+q+@+)0+q+ )
- 1+q)

(3.5) =14+q+2¢*+¢ +q*

—_—

It is not at all clear from the definition just given that this is actually a polynomial in
q rather than just a rational function. But this follows easily using induction and our
next result. Note that this theorem gives two g-analogues for the ordinary binomial re-
cursion. This illustrates a general principle that g-analogues are not necessarily unique
as we have also seen in the inv and maj interpretations of [n],!.

0
2] -
q

Theorem 3.2.3. We have

and, forn > 1,

Proof. The initial condition is trivial. We will prove the first recursion for the g-
binomial, leaving the other as an exercise. Using the definition in terms of g-factorials
and finding a common denominator gives

LR N F g

[k]! [n — k]!
_ [n—1]!
BN
n
- i
as desired. [l
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Figure 3.1. The Young diagrams for (5,5,2,1) 2 (3,2,2)

We will now give a g-analogue of the Binomial Theorem (Theorem B.1.1)). Let q, ¢
be two variables.

Theorem 3.2.4. Forn > 0 we have
n . n
(3.6) A+00+q)1+¢0 A +q )= q(z)[ . ] £k,
k=0 q

Proof. We will induct on n where the case n = 0 is easy to check. For n > 0 we can
use the second recursion in the previous result and the induction hypothesis to write

;q(';)[ " La«:;q(s)[ ol ]qtk+§k;q(s)+n_k[ no Ltk
=D +a) (g0 4 Y 5) [ ol L et

=Q+0)A+q) - Q+q"2)+q" A+ ) A +qt) - Q1 +q" %)

=1+)A+qt)---1+qg" 1),

which is what we wished to prove. O

There are many combinatorial interpretations of the g-binomial coefficients. We
will content ourselves with presenting two of them here. If A = (4,,...,4;) and u =
(41, ..., M) are integer partitions, then we say that A contains u, written 1 2 p, if k > 1
and A; > y; fori < . Equivalently, the Young diagram of A contains the Young diagram
of u if they are placed so that their northwest corners align. As an example, (5, 5,2,1) 2
(3,2,2) and Figure B.1 shows the diagram of 1 with the squares of 1 shaded inside. The
notation u C A should be self-explanatory. Given u C A, one also has the corresponding
skew partition

(3.7) Mu =A@ j) € 11 J) & K-
The cells of the skew partition in Figure B.] are white.
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The k x I rectangle is the integer partition whose multiplicity notation is (k!). Con-
sider the set of partitions contained in this rectangle

Rk, D) = {212 € (Kh)}.

Recalling that || is the sum of the parts of 1, we consider the generating function
Z/lege(k D q"”. For example, if k = | = 2, then we have

which gives

> M =1+q+2¢ + ¢ +q"
AeR(2,2)

The reader will have noticed the similarity to (B.3), which is not an accident.

Theorem 3.2.5. Fork,l > 0 we have

k+1
s a5
Aer(k,D) q

Proof. We induct on k where the case k = 0 is left to the reader. If k > 0 and A C (k),
then there are two possibilities. Either A, < k in which case A C (k—1)))or 4; = k
so that A can be written as 4 = (k,1') where A’ is the partition containing the parts of
A other than 1;. So X C (k'=!). Notice that in this case |1] = || + k. We now use
induction and Theorem to obtain

S ogt= Y qiHe Y gk

AeRr(k,l) AeRr(k—1,1) AMeRr(k,l-1)
_[ k=1, ] ki
=l k-1 q k

=[5t

which finishes the proof. O

For our second combinatorial interpretation of the Gaussian polynomials we will
need some linear algebra. Let q be a prime power and let [, be the Galois field with q
elements. Let V be a vector space of dimension dim V' = n over F,. We willuse W <V
to indicate that W is a subspace of V. Let

[Z]:{WﬁVIdimW:k}.

The subspaces of dimension k are in bijective correspondence with k X n row-reduced
echelon matrices of full rank, that is, with no zero rows. For example, if n = 4 and
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k = 2, then the possible matrices are

0 0 1 0 01 % O 0 1 0 =
00 o0 1)1Pl0o0 o0 111’001 x|
1 % % O 1 = 0 = 1 0 % =%
00 011’001 =[]0 1 % %]

where the stars represent arbitrary elements of [F;. So the number of subspaces corre-
sponding to one of these star diagrams is g° where s is the number of stars. Thus

I]:4
#[ 5 ]=1+q+2q2+q3+q4,

which should look very familiar at this point! Note however that, in contrast to previ-
ous cases, this actually represents an integer rather than a polynomial since g is a prime
power. Of course, this example generalizes. Because of this result people sometimes
talk half-jokingly about sets being vector spaces over the (nonexistent) Galois field with
one element.

Theorem 3.2.6. If V is a vector space over [, of dimension n, then

|4 n
Lel=lE],
q
Proof. Given W < V with dim W = k, we first count the number of possible ordered
bases (vy,Va,...,vy) for W. Note that since dim V' = n we have #V = #Fg = q". We
can pick any nonzero vector for v; so the number of choices is g" — 1. For v, we can

choose any vector in V which is not in the span of v, which gives q" — q possibilities.
Continuing in this way, the total count will be

@ -D@G" - @ —¢)...(q" — ¢~ ).

By a similar argument, the number of different ordered bases which span a given W of
dimension k is

(@ - 1(G* - d* - ¢)...(¢° — ¢*).

So the number of possible W’s is

(qn - 1)(q" - q)...(q" — qk_l) _ q(’z()(q" — 1)(qn—1 _ 1)‘”(qn—k+1 _ 1)
i @ -1 = 1...(q= 1)

_(q- D¥[nln—=1]...[n—k+1]
~ (q—DKKI[k—1]...[1]

as advertised. O
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There is a beautiful proof of this result due to Knuth [50] using row-reduced eche-
lon matrices as in the previous example. The reader will be asked to supply the details
in the exercises.

3.3. The algebra of formal power series

We now wish to generalize the concept of generating function from finite to count-
ably infinite sequences. To do so, we will have to use power series. But we wish to
avoid the questions of convergence which come up when using analytic power series.
Instead, we will work in the algebra of formal power series. This will mean that we
have to be careful since, in an algebra, one is only permitted to apply an operation like
addition or multiplication a finite number of times. But there is another concept of
convergence which will take care of this issue. We should note that there is a whole
branch of combinatorics which uses analytic techniques to extract useful information
about a sequence, such as its rate of growth, from the corresponding power series. For
information about this approach, see the book of Flajolet and Sedgewick [25].

A formal power series is an expression of the form
[So]
fX)=ag+ax+ax>+ - = Z a,x",
n=0

where the a, are complex numbers. We also say that f(x) is the ordinary generating
function or ogf for the sequence a,, n > 0. Often we will leave out the adjective “ordi-
nary” in this chapter since we will not have met any other type of generating function
yet.

Note that these series are considered formal in the sense that the powers of x are
just place holders and we are not permitted to substitute a value for x. Because of this
rule, analytic convergence is not an issue and we can happily talk about formal power
series such as »; _ n!x" which converge nowhere except at x = 0. We will use the
notation

Cl[x]] = %Z a,x" | a, € Cforalln > 0}.
n>0

The set is an algebra, the algebra of formal power series, under the three operations of
addition, scalar multiplication, and multiplication defined by

Z a,x" + Z b,x" = Z(an + b,)x",

n>0 n>0 n>0
c Z a,x" = Z(can)x”,
n>0 n>0
3 o 3 by = 3 e
n>0 n>0 n>0

where ¢ € C and

n
Ch = Z akbn_k.
k=0
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The reader may object that, as mentioned earlier, in an algebra one is only permit-
ted a finite number of additions yet the very elements of C[[x]] seem to involve infin-
itely many. But this is an illusion. Remember that x is a formal parameter so that the
expression )} a,x" is only meant to be a mnemonic device which gives intuition to the
definitions of the three algebra operations, especially that of multiplication. We could
just as easily have defined C[[x]] to be the set of all complex vectors (ay, a;,a,,...)
subject to the operation of vector addition

(ag, a1, ay,...) + (bo, b1, by, ...) = (ag + bg, a1 + by,a, + by,...)

and similarly for the other two. What is true is that one is only permitted to add or
multiply a finite number of elements of C[[x]]. So one can only perform operations
which will alter the coefficient of a given power of x a finite number of times.

Now given a sequence of complex numbers ay, a;, a,, ..., we associate with it the
ordinary generating function

f(x) =ag + a;x + ax* + -+ € C[[x]].

We will sometimes say that this series counts the objects enumerated by the a,, if appro-
priate. As with generating polynomials, the reason for doing so is to exploit properties
of C[[x]] to obtain information about the original sequence. We will often write this
generating function as ), , @nXx", assuming the that range of indices is n > 0.

Let us start with a simple example. Consider the sequence 1,1, 1, ... with generat-
ing function )] x". We would like to simplify this as a geometric series to

3 1

(3.8) 1+x+x +---_1_x.

But what does the right-hand side even mean since 1/(1 — x) appears to be a rational
function and so not an element of C[[x]]? The way out of this conundrum is to re-
member that given an element a in an algebra A, it is possible for a to have an inverse,
namely an element a~! such that a - a=! = 1 where 1 is the identity element of A. So
to prove (B-8) in this setting we must show that ), o X" and 1 — x are inverses. This is
easily done by using the distributive law:

A=-x)A+x+x*+-)=Q+x+x*+-)—x(L+x+x>+-)
=Q+x+x>+-)—(x+x*+x3+-)
=1

This example illustrates a general principle that often well-known results about
analytic power series carry over to their formal counterparts, although some work may
be required to check that this is true. For the most part, we will assume the truth of a
standard formula in this setting without further comment. But it would be wise to also
give a couple of examples to show that caution may be needed. One illustration is that
the expression 1/x has no meaning in C[[x]] because x does not have an inverse. For
suppose we have xf(x) = 1 for some formal power series f(x). Then on the left-hand
side the constant coefficient is 0 while on the right it is 1, a contradiction.

The preliminary version made available with permission of the publisher, the American Mathematical Society



3.3. The algebra of formal power series 83

As another example, consider the sequence 1/n! for n > 0. We would like to write
xn

eX = Z —
!
n>0 n
for the corresponding generating function but, again, run into the problem that e* is
not a priori an element of C[[x]]. The solution this time is to define e* to be a formal
symbol which stands for this power series. Then, of course, to be complete we would
need to verify formally that all the usual rules of exponents hold such as e?* = (e*)2.
We will not take the time to do this. But we will point out a case where the rules do not

hold. In particular, in C[[x]] one cannot write

el+x = ee”.

This is because the left-hand side is not well-defined. Indeed, when expanding
2.,(1+x)"/n! there are infinitely many additions needed to compute the coefficient of
any given power of x which, as we have already noted, is not permitted.

Although we will not verify every specific analytic identity needed for formal power
series in this text, it would be good to have some general results about which operations
are permitted in C[[x]]. First we deal with the issue of when a formal power series is
invertible.

Theorem 3.3.1. If f(x) = 3, a,x", then f(x)~" exists in C[[x]] if and only if ay # 0.

Proof. For the forward direction, suppose f(x)g(x) = 1 where g(x) =}’ b,x". Tak-
ing the constant coefficient on both sides gives ayby, = 1. So @y # 0.

Now assume a, # 0. We will construct an inverse g(x) = »; b,x". We want
f(x)g(x) = 1. Comparing coefficients of x" on both sides we see that we wish to have
agbg = 1and, forn > 1,

aobn + albn_l + -+ anbo = 0

Since ay # 0 we can take by = 1/a,. By the same token, when n > 1 we can solve for
b,, in the previous displayed equation giving a recursive formula for its value. Thus we
can construct such a g(x) and are done. O

Our example with e* shows that we also need to be careful about substitution. We
wish to define the substitution of g(x) into f(x) = ),  GnX" to be

f@(x0) = D ang)™.
n>0

But now the right-hand side is an infinite sum of formal power series, not just formal
variables. To be able to talk about such sums, we need to introduce a notion of conver-
gence in C[[x]].

It will be convenient to have the notation that for a formal power series f(x)
[x"]f(x) = the coefficient of x" in f(x),

which we have usually been calling a,,. Suppose that we have a sequence f,(x), f(x),
f2(x), ... of formal power series. We say that this sequence converges to f(x) € C[[x]]
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and write
,}g{}c fi(x) = f(x),

if, for any n, the coefficient of x" in the sequence is eventually constant and equals the
coefficient of X" in f(x). Formally, given n, there exists a corresponding K such that
[x"]fr(x) = [x"]f(x) for all k > K. Otherwise we say that the sequence diverges or
that the limit does not exist.

As an illustration, consider the sequence
fo) =1, i(x)=14+x, fLlx)=1+x+x?% ...
so that fi(x) = 1+ x + --- + x*. Then this sequence has a limit; namely

1
1-—x"

lim fi(x) = Y, x" =

n=0

To prove this, note that given n we can let K = n. So for k > n we have [x"]f, =
[x"™]f, = 1. On the other hand, consider the sequence

foG) =1+x, fi(x) =1/2+x/2, fo(x) =1/4+ x/4, ...

and in general f)(x) = 1/2% + x/2k. This sequence does not converge in C[[x]] since
for any n we have that [x]f(x) is always different for different k. This is in contrast to
the analytic situation where this sequence converges to zero.

As in analysis, we now use convergence of sequences to define convergence of
series. Given fy(x), fi(x), f2(x), ..., we say that their sum exists and converges to f(x),
written Zkzo fr(x) = f(x),if

lim () = /()
where

(3.9) 8k () = fo(xX) + fi(x) + -+ + fie(x)

is the kth partial sum. Divergence is defined as expected. Note that this definition
is consistent with our notation for formal power series since given a sequence ay, a;,
a,, ..., we can let fi(x) = a;x* and then prove that Yo f1(X) = f(x) where f(x) =

P apxk.
To s