Introduction to algebraic codings Lecture Notes for MTH 416
 Fall 2012

Ulrich Meierfrankenfeld

December 7, 2012

Preface

These are the Lecture Notes for the class MTH 416 in Fall 2012 at Michigan State University. The Lecture Notes will be frequently updated throughout the semester.

Contents

1 Coding 5
I. 1 Matrices 5
I. 2 Basic Definitions 8
I.3 Coding for economy 9
I. 4 Coding for reliability 10
I. 5 Coding for security 10
II Prefix-free codes 11
II. 1 The decoding problem 11
II. 2 Representing codes by trees 13
II. 3 The Kraft-McMillan number 17
II. 4 A counting principal 19
II. 5 Unique decodability implies $K \leq 1$ 20
III Economical coding 23
III. 1 Probability distributions 23
III. 2 The optimization problem 24
III. 3 Entropy 26
III. 4 Optimal codes - the fundamental theorems 28
III. 5 Hufman rules 31
IV Data Compression 35
IV. 1 The Comparison Theorem 35
IV. 2 Coding in pairs 36
IV. 3 Coding in blocks 38
IV. 4 Memoryless Sources 40
IV. 5 Coding a stationary source 41
IV. 6 Arithmetic codes 44
IV. 7 Coding with a dynamic dictionary 47
V Noisy Channels 51
V. 1 The definition of a channel 51
V. 2 Transmitting a source through a channel 53
V. 3 Conditional Entropy. 55
V. 4 Capacity of a channel 56
VI The noisy coding theorems 59
VI. 1 The probability of a mistake 59
VI. 2 Fano's inequality 61
VI. 3 A lower bound for the probability of a mistake 63
VI. 4 Extended Channels 63
VI. 5 Coding at a given rate 67
VI. 6 Minimum Distance Decision Rule 68
VII Error Correcting 71
VII. 1 Minimum Distance 72
VII. 2 The Packing Bound 74
VIII Linear Codes 79
VIII. 1 Introduction to linear codes 79
VIII. 2 Construction of linear codes using matrices 81
VIII. 3 Standard form of check matrix 83
VIII. 4 Constructing 1-error-correcting linear codes 87
VIII. 5 Decoding linear codes 90
IX Algebraic Coding Theory 95
IX. 1 Classification and properties of cyclic codes 95
IX. 2 Definition of a family of BCH codes 107
IX. 3 Properties of BCH codes 112
X Cryptography in theory and practice 117
X. 1 Encryption in terms of a channel 117
X. 2 Perfect secrecy 119
X. 3 The one-time pad 120
X. 4 Iterative methods 121
X. 5 The Double-Locking Procedure 122
XI The RSA cryptosystem 125
XI. 1 Public-key cryptosytems 125
XI. 2 The Euclidean Algorithim 125
XI. 3 Definition of the RSA public-key cryptosystem 128
A Rings and Field 131
A. 1 Basic Properties of Rings and Fields 131
A. 2 Polynomials 133
A. 3 Irreducible Polynomials 135
A. 4 Primitive elements in finite field 136
B Constructing Sources. 141
B. 1 Marginal Distributions on Triples 141
B. 2 A stationary source which is not memory less 142
B. 3 Matrices with given Margin 142
C More On channels 145
C. 1 Sub channels 145
D Examples of codes 147
D. 1 A 1-error correcting binary code of length 8 and size 20 147

Chapter I

Coding

I. 1 Matrices

Definition I.1. Let I and R be sets.
(a) An I-tuple with coefficients in R is a function $x: I \rightarrow R$. We will write x_{i} for the image of i under x and denote x by $\left(x_{i}\right)_{i \in I} . x_{i}$ is called the i-coefficient of x.
(b) Let $n \in \mathbb{N}$, where $\mathbb{N}=\{0,1,2,3, \ldots$,$\} denotes the set of non-negative integers. Then an n$-tuple is an $\{1,2, \ldots, n\}$-tuple.

Notation I.2. Notation for tuples.
1.

$$
x: \begin{array}{cccc}
a & b & c & d \\
\hline 0 & \pi & 1 & \frac{1}{3}
\end{array}
$$

denotes $\{a, b, c, d\}$-tuple with coefficients in \mathbb{R} such that

$$
x_{a}=0, x_{b}=\pi, x_{c}=1 \text { and } x_{d}=\frac{1}{3}
$$

We denote this tuple also by

$x:$| a | 0 | |
| :---: | :---: | :---: |
| b | π | |
| c | 1 | |
| | d | $\frac{1}{3}$ |

2.

$$
y=(a, a, b, c)
$$

denotes the 4-tuple with coefficients in $\{a, b, c, d, e, \ldots, z\}$ such that
$y_{1}=a, y_{2}=a, y_{3}=b$ and $y_{4}=c$

We will denote such a 4-tuple also by

$$
y=\left(\begin{array}{l}
a \\
a \\
b \\
c
\end{array}\right)
$$

Definition I.3. Let I, J and R be sets.
(a) An $I \times J$-matrix with coefficients in R is a function $M: I \times J \rightarrow R$. We will write $m_{i j}$ for the image of (i, j) under M and denote M by $\left[m_{i j}\right]_{\substack{i \in I \in J}} . m_{i j}$ is called the $i j$-coefficients of M.
(b) Let n.m $\in \mathbb{N}$. Then an $n \times m$-matrix is an $\{1,2, \ldots, n\} \times\{1,2, \ldots, m\}$-matrix.

Notation I.4. Notations for matrices

1. We will often write an $I \times J$-matrix as an array. For example

M	x	y	z
a	0	1	2
b	1	2	3
c	2	3	4
d	3	4	5

stands for the $\{a, b, c, d\} \times\{x, y, z\}$ matrix M with coefficients in \mathbb{Z} such that $m_{a x}=0, m_{a y}=1, m_{b x}=1$, $m_{c z}=4, \ldots$.
2. $n \times m$-matrices are denoted by an $n \times m$-array in square brackets. For example

$$
M=\left[\begin{array}{lll}
0 & 1 & 2 \\
4 & 5 & 6
\end{array}\right]
$$

denotes the 2×3 matrix M with $m_{11}=0, m_{12}=2, m_{21}=4, m_{23}=6, \ldots$.
Definition I.5. Let M be an $I \times J$-matrix.
(a) Let $i \in I$. Then row i of M is the J-tuple $\left(m_{i j}\right)_{j \in J}$. We denote row i of M by $\operatorname{Row}_{i}(M)$ or by M_{i}.
(b) Let $j \in J$. Then column j of J is the I-tuple $\left(m_{i j}\right)_{i \in I}$. We denote column j of M by $\operatorname{Col}_{j}(M)$

Definition I.6. Let A be $I \times J$-matrix, B an $J \times K$ matrix and x and $y J$-tuples with coefficients in \mathbb{R}. Suppose J is finite.
(a) AB denotes the $I \times K$ matrix whose ik-coefficient is

$$
\sum_{j \in J} a_{i j} b_{j k}
$$

(b) Ax denotes the I-tuple whose i-coefficient is

$$
\sum_{j \in J} a_{i j} x_{j}
$$

(c) $x B$ denotes the K-tuple whose k-coefficient is

$$
\sum_{j \in J} x_{j} b_{j k}
$$

(d) xy denotes the real number

$$
\sum_{j \in J} x_{j} y_{j}
$$

Example I.7. Examples of matrix multiplication.

1. Given the matrices \begin{tabular}{l|l|lll|llll}
A \& x \& y \& z

a \& 0 \& 1 \& 2

b \& 1 \& 2 \& 3

B \& α \& β \& γ \& δ

\hlinex \& 0 \& 0 \& 1 \& 0

y \& 1 \& 0 \& 0 \& 1

x \& 1 \& 1 \& 0 \& 0
\end{tabular}

Then $A B$ is the $\{a, b\} \times\{\alpha, \beta, \gamma, \delta\}$ matrix

$A B$	α	β	γ	δ
a	3	2	0	1
b	4	c	1	2

2. Given the matrix 2×3-matrix $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3\end{array}\right]$ and the 3-tuple $x=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ Then

Then $A x$ is the 2-tuple

$$
\binom{3}{5}
$$

3. Since we may represent tuples also as rows, (2) can be restated as:

Given the matrix 2×3-matrix $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3\end{array}\right]$ and the 3-tuple $x=(0,1,1)$. Then
Then $A x$ is the 2-tuple

4. Given the matrix \begin{tabular}{c|ccc}
A \& x \& y \& z

\hlinea \& 0 \& 1 \& 2

b \& 1 \& 2 \& 3

 and the tuple $u:$

a \& b

\hline 2 \& -1
\end{tabular}

Then $u A$ is the $\{x, y, z\}$-tuple

$$
\begin{array}{ccc}
x & y & z \\
\hline-1 & 0 & 1
\end{array}
$$

5. Given the 4-tuples $x=(1,1,2,-1)$ and $y=(-1,1,2,1)$. Then

$$
x y=3
$$

I. 2 Basic Definitions

Definition I.8. An alphabet is a finite set. The elements of an alphabet are called symbols.
Example I.9. (a) $\mathbb{A}=\{A, B, C, D, \ldots, X, Y, Z, \sqcup\}$ is the alphabet consisting of the regular 27 uppercase letters and a space (denoted by \sqcup).
(b) $\mathbb{B}=\{0,1\}$ is the alphabet consisting of the two symbols 0 and 1

Definition I.10. Let S be an alphabet and n a non-negative integer.
(a) A message of length n in S is an n-tuple $\left(s_{1}, \ldots, s_{n}\right)$ with coefficients in S. We denote such an n-tuple by $s_{1} s_{2} \ldots s_{n}$. A message of length n is sometimes also called a string of length n.
(b) \varnothing denote the unique message of length 0 in S.
(c) S^{n} is the set of all messages of length n in S.
(d) S^{*} is the set of all messages in S, so

$$
S^{*}=S_{0} \cup S_{1} \cup S_{2} \cup S_{3} \cup \ldots \cup S_{k} \cup \ldots
$$

Example I.11. 1. ROOM $\sqcup \mathrm{C} 206 \mathrm{WH} \sqcup \mathrm{IS} \sqcup \mathrm{NOW} \sqcup \mathrm{A} 216 \mathrm{WH}$ is a message in the alphabet \mathbb{A}.
2. 1001110111011001 is a message in the alphabet \mathbb{B}.
3. $\mathbb{B}^{0}=\{\varnothing\}, \mathbb{B}^{1}=\mathbb{B}=\{0,1\}$. $\mathbb{B}^{2}=\{00,01,10,11\}, \mathbb{B}^{3}=\{000,001,010,011.100,101,110,111\}$, and $\mathbb{B}^{*}=\{\varnothing, 0,1,00,01,10,11,000, \ldots, 111,0000 \ldots, 1111, \ldots\}$

Definition I.12. Let S and T be alphabets.
(a) A code c for S using T is a 1-1 function from S to T^{*}. So a code assigns to each symbol $s \in S$ a message $c(s)$ in T, and different symbols are assigned different messages
(b) The set $C=\{c(s) \mid s \in S\}$ is called the set of codewords of c. Often (somewhat ambiguously) we will also call C a code. To avoid confusion, a code which is function will always be denoted by a lower case letter, while a code which is a set of codewords will be denoted by an upper case letter.
(c) A code is called regular if the empty message \varnothing is not a codeword.

Example I.13. 1. The function $c: \mathbb{A} \rightarrow \mathbb{A}$ such that

$$
A \rightarrow D, B \rightarrow E, C \rightarrow F, \ldots, W \rightarrow Z, X \rightarrow A, Y \rightarrow B, Z \rightarrow C, \sqcup \rightarrow \sqcup
$$

is a code for \mathbb{A} using \mathbb{A}. The set of codewords is $C=\mathbb{A}$.
2. The function $c:\{x, y, z\} \rightarrow \mathbb{B}^{*}$ such that

$$
x \rightarrow 0, y \rightarrow 01, z \rightarrow 10
$$

is a code for $\{x, y, z\}$ using \mathbb{B}. The set of codewords is $C=\{0,01,10\}$.
Definition I.14. Let $c: S \rightarrow T^{*}$ be a code. Then the function $c^{*}: S^{*} \rightarrow T^{*}$ defined by

$$
c^{*}\left(s_{1} s_{2} \ldots s_{n}\right)=c\left(s_{1}\right) c\left(s_{2}\right) \ldots c\left(s_{n}\right)
$$

for all $s_{1} \ldots s_{n} \in S^{*}$ is called the concatenation of c. We also call c^{*} the extension of c. Often we will denote c^{*} by c rather than c. Since c is uniquely determined by c^{*} and vice versa, this ambiguous notation should not lead to any confusion.

Example I.15. 1. Let $c: \mathbb{A} \rightarrow \mathbb{A}^{*}$ be the code from I.13 I). Then $c(\mathrm{MTH})=\mathrm{PWK}$.
2. Let $c:\{x, y, z\} \rightarrow \mathbb{B}^{*}$ be the code from I.13|2). Then $c(x z z x)=010100$ and $c(y y x x)=010100$.

So $x z z x$ and $y x x$ are encoded to the same message in \mathbb{B}.
Definition I.16. A code $c: S \rightarrow T^{*}$ is called uniquely decodable (UD) if the extended function $c: S^{*} \rightarrow T^{*}$ is 1-1.

Example I.17. (a) The code from I.15, 1) is UD.
(b) The code from $\sqrt{I .15|2|}$ is not UD.

I. 3 Coding for economy

Example I.18. The Morse Alphabet \mathbb{M} has three symbols $\bullet,-$ and \odot, called dot, dash and pause. The Morse code is the code for \mathbb{A} using M defined by

A	B	C	D	E	F	G	H	I
$\bullet-\odot$	$-\bullet \bullet \bullet \odot$	$-\bullet-\bullet \odot$	$-\bullet \bullet \odot$	$\bullet \odot$	$\bullet \bullet-\bullet \odot$	$--\bullet \odot$	$\bullet \bullet \bullet \odot$	$\bullet \bullet \odot$
J	K	L	M	N	0	P	Q	R
$\bullet---\odot$	$-\bullet-\odot$	$\bullet-\bullet \bullet \odot$	$--\odot$	$-\bullet \odot$	---	$\bullet--\bullet \odot$	$--\bullet-\odot$	$\bullet-\bullet \odot$
S	T	U	V	W	X	Y	Z	\sqcup
$\bullet \bullet \bullet \odot$	$-\odot$	$\bullet \bullet-\odot$	$\bullet \bullet \bullet-\odot$	$\bullet--\odot$	$-\bullet \bullet-\odot$	$-\bullet--\odot$	$--\bullet \bullet$	$\odot \odot$

I. 4 Coding for reliability

Example I.19. Codes for $\{$ Buy, Sell $\}$ using $\{B, S\}$.

1. Buy $\rightarrow B$, Sell $\rightarrow \mathrm{S}$.
2. Buy $\rightarrow B B$, Sell $\rightarrow \mathrm{SS}$.
3. Buy $\rightarrow B B B$, Sell \rightarrow SSS.
4. Buy \rightarrow BBBBBBBBB, Sell \rightarrow SSSSSSSSS.

I. 5 Coding for security

Example 1.20. Let k be an integer with $0 \leq k \leq 25$. Then c_{k} is the code from $\mathbb{A} \rightarrow \mathbb{A}$ obtained by shifting each letter by k-places. \sqcup is unchanged. For example the code in I.13| [1), is c_{3}.

This code is not very secure, in the sense that given an encoded message it is not very difficult to to determine the original message (even if one does not know what parameter was used).

Chapter II

Prefix-free codes

II. 1 The decoding problem

Definition II.1. Let C be a code using the alphabet T.
(a) Let $a, b \in T^{*}$. Then a is called a prefix of b if there exists a message r in T^{*} with $b=a r$.
(b) Let $a, b \in T^{*}$. Then a is called a parent of b if there exists $r \in T$ with $b=a r$.
(c) C is called prefix-free ($P F$) if no codeword is a prefix of a different codeword.

Remark II.2. T be an alphabet and $b=t_{1} \ldots t_{m}$ a message of length m in T.
(a) Any prefix of b has length less or equal to m.
(b) Let $0 \leq n \leq m$. Then $t_{1} \ldots t_{n}$ is the unique prefix of length n of b.
(c) If $m \neq 0$, then $t_{1} \ldots t_{m-1}$ is the unique parent of b.

Proof. Let $a=s_{1} \ldots s_{n}$ be a prefix of length n of b. Then $b=a r$ for some $r \in T^{*}$ or length say k. Let $r=u_{1} \ldots u_{k}$. Then $b=s_{1} \ldots s_{n} u_{1} \ldots u_{k}$. Thus $m=n+k$ and $n \leq m$ and (a) holds. Also $t_{i}=s_{i}$ for $1 \leq i \leq n$ and so $a=t_{1} \ldots t_{n}$ and (b) holds. If a is a parent then $r \in T$, that is $k=1$ and $n=m-1$. So (c) follows from (a).
Example II.3. Which of the following codes are PF? UD?

1. Let $C=\{10,01,11,011\}$. Since 01 is a prefix of $011, C$ is not prefix-free. Also

$$
011011=(01)(10)(11)=(011)(011)
$$

and so C is not uniquely decodable.
2. Let $C=\{021,2110,10001,21110\}$. Observe that C is prefix free.

This can be used to recover the sequence $c_{1}, c_{2} \ldots, c_{n}$ of codewords from their concatenation $e=c_{1} \ldots c_{n}$. Consider for example the string

$$
e=2111002110001
$$

We will look at prefixes of increasing length until we find a codeword:

Prefix	codeword?
\varnothing	no
2	no
21	no
211	no
2111	no
21110	yes

No longer prefix can be a codeword since it would have the codeword 21110 as a prefix.
So $c_{1}=21110$.
We now remove 21110 from e to get

02110001
The prefixes are

Prefix	codeword?
\varnothing	no
0	no
02	no
021	yes

So $c_{2}=021$. Removing 021 gives

10001
This is a codeword and so $c_{3}=10001$. Thus the only decomposition of e into codewords is

$$
2111002110001=(21110)(021)(1001)
$$

This example indicates that C is UD. The next theorem confirms this
Theorem II.4. Any regular PF code is UD.
Proof. Let $n, m \in \mathbb{N}$ and $c_{1}, \ldots, c_{n}, d_{1}, \ldots, d_{m}$ be codewords with

$$
c_{1} \ldots c_{n}=d_{1} \ldots d_{m}
$$

We need to show that $n=m$ and $c_{1}=d_{1}, c_{2}=d_{2}, \ldots, c_{n}=d_{n}$. The proof is by complete induction on $n+m$. Put $e=c_{1} \ldots c_{n}$ and so also $e=d_{1} \ldots d_{m}$.

Suppose first that $n=0$. Then $e=\varnothing$ and so $d_{1} \ldots d_{m}=\varnothing$, By definition of a regular code each d_{i} is not empty. Hence also $m=0$ and we are done in this case.

So we may assume that $n>0$ and similarly $m>0$. Let k and l be the lengths of c_{1} and d_{1} respectively.
We may assume that $k \leq l$. Since $e=c_{1} \ldots c_{n}, c_{1}$ is the prefix of length k of e. Also $e=d_{1} \ldots d_{m}$ implies that d_{1} is the prefix of length l of e. Since $k \leq l$ this shows that c_{1} is the prefix of length k of d_{1}. Since C is prefix free we conclude that $c_{1}=d_{1}$. Since $c_{1} c_{2} \ldots c_{n}=d_{1} d_{2} \ldots d_{m}$ this implies

$$
c_{2} \ldots c_{n}=d_{2} \ldots d_{m}
$$

From the induction assumption we conclude that $n-1=m-1$ and $c_{2}=d_{2}, \ldots, c_{n}=d_{m}$.
Lemma II.5. (a) All UD codes are regular.
(b) Let $c: S \rightarrow T^{*}$ be not regular. Then c is PF if and only if $|S|=1$ and $c(s)=\varnothing$ for $s \in C$.

Proof. Let $c: S \rightarrow T^{*}$ be non-regular code. Then there exists $s \in S$ with $c(s)=\varnothing$ for $s \in S$. Thus

$$
c^{*}(s s)=\varnothing \varnothing=\varnothing=c^{*}(s) .
$$

and so c is not UD and (a) holds.
If $|S|>1$, then c has at least two codewords. Since $c(s)=\varnothing$ is the prefix of any message we conclude that S is not PF. This proves the forward direction in (b).

Any code with only one codeword is PF and so the backwards direction in (b) holds.

II. 2 Representing codes by trees

Definition II.6. A graph G is a pair (V, E) such that V and E are sets and each elements e of E is a subset of size two of V. The elements of V are called the vertices of V. The elements of E are called the edges of V. We say that the vertex a is adjacent to b in G if $\{a, b\}$ is an edge.

Example II.7. Let $V=\{1,2,3,4\}$ and $E=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{3,4\}\}$. Then $G=(V, E)$ is a graph
It is customary to represent a graph by a picture: Each vertex is represented by a node and a line is drawn between any two adjacent vertices. For example the above graph can be visualized by the following picture:

Definition II.8. Let $G=(V, E)$ be a graph.
(a) Let a and b be vertices. A path of length n from a to b in G is a tuple $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ of vertices such that $a=v_{0}, b=v_{n}$ and v_{i-1} is adjacent to v_{i} for all $1 \leq i \leq n$.
(b) G is called connected if for each $a, b \in G$, there exists a path from a to b in G.
(c) A path is called a cycle if the first and the last vertex are the same.
(d) A cycle is called simple if all the vertices except the last one are pairwise distinct.
(e) A tree is a connected graph with no simple cycles of length larger than two.

Example II.9. Which of the following graphs are trees?
1.

is connect, but

is simple circle of length three in G. So G is not a tree.
2.

has no simple circle of length larger than two. But it is not connected since there is no path from 1 to 2 . So G is not a tree.
3.

is connected and has no simple circle of length larger than two. So it is a tree.
Example II.10. The infinite binary tree

How can one describe this graph in terms of pair (V, E) ?. The vertices are binary messages and a message a is adjacent to message b if a is the parent of b or b is the parent of a.

$$
V=\mathbb{B}^{*} \text { and } E=\left\{\{a, a s\} \mid a \in \beta^{*}, s \in \mathbb{B}\right\}=\left\{\{a, b\} \mid a, b \in \mathbb{B}^{*}, a \text { is the parent of } b\right\}
$$

So the infinite binary tree now looks like:

Definition II.11. Let C be a code. Then $G(C)$ is the graph (V, E), where V is the set of prefixes of codewords and

$$
E=\{\{a, b\} \mid a, b \in V, a \text { is a parent of } b\}
$$

$G(C)$ is called the graph associated to C.
Example II.12. Determine the tree associated to the code $C=\{0,10,110,111\}$.

Definition II.13. Let G be a tree. A leave of G is a vertex which is adjacent to at most one vertex of G.
Theorem II.14. Let C be a code and let $G(C)=(V, E)$ be the graph associate to C.
(a) Let $c \in V$ be of length n. For $0 \leq k \leq n$ let c_{k} be the prefix of length k of c. Then $\left(c_{0}, c_{1}, \ldots, c_{n}\right)$ is a path from \varnothing to c in $G(C)$.
(b) $G(C)$ is tree.
(c) Let c be a codeword. Then c is prefix of another codeword if and only if c is adjacent to at least two vertices of $G(C)$.
(d) C is prefix-free if and only if all codewords of C are leaves of $G(C)$.

Proof. (a) Just observe that $c_{i}=c_{i-1} t_{i}$ where t_{i} is the i-symbol of c. Hence c_{i-1} is adjacent to c_{i} and $\left(c_{0}, \ldots, c_{n}\right)$ is a path. Also $c_{0}=\varnothing$ and $c_{n}=c$.
(b) By (a) there exists a path from each vertex of $G(C)$ to \varnothing. It follows that G is connected.

We prove next:
$\mathbf{1}^{\circ}$. Let $\left(a_{0}, a_{1} \ldots, a_{m}\right)$ be path in $G(C)$ with pairwise distinct vertices of length at least 1 . Let l_{i} be length of a_{i} and suppose that $l_{0} \leq l_{1}$. Then for all $1 \leq i \leq m, a_{i-1}$ is the parent of a_{i}. In particular, $l_{i}=l_{0}+i$ for all $0 \leq i \leq m$ and a_{i} is a prefix of a_{j} for all $0 \leq i \leq j \leq m$.

Since a_{0} is adjacent to a_{1}, either one of a_{0} and a_{1} is the parent of the other. Since $l_{0} \leq l_{1}$ we conclude that a_{0} is parent of a_{1}. So if $m=1,1^{\circ}$ holds. Suppose $m \geq 2$. Since $a_{2} \neq a_{0}$ and a_{0} is the parent of a_{1}, a_{2} is not the parent of a_{1}. Since a_{2} is adjacent to a_{1} we conclude that a_{1} is the parent of a_{2}. In particular, $l_{1} \leq l_{2}$. Induction applied to the path $\left(a_{1}, \ldots, a_{m}\right)$ shows that a_{i-1} is a parent of a_{i} for all $2 \leq i \leq m$ and so the first statement in rf 1 is proved.

The remaining statements follow from the first.
Now suppose for a contradiction that there exists a simple circle $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ in $G(C)$ with $n \geq 3$. Let $l=\min _{0 \leq i \leq n} \mathrm{l}\left(v_{i}\right)$ and choose $0 \leq k \leq n$ such that $\mathrm{l}\left(v_{k}\right)=l$.

Assume that $0<k<n$. Then we can apply 1°) to the paths $\left(v_{k}, \ldots, v_{n}\right)$ and $\left(v_{k}, v_{k-1}, \ldots v_{0}\right)$. It follows that v_{k+1} is the prefix of length $l+1$ of v_{n} and v_{k-1} is the prefix of length $l+1$ of v_{0}. Since $\left(v_{0}, \ldots, v_{n}\right)$ is a
circle we have $v_{0}=v_{n}$ and we conclude that $v_{k-1}=v_{k+1}$. Thus implies $k-1=0$ and $k+1=n$. So $n=2$, a contradiction.

Assume next that $k=0$ or $k=n$. Since $v_{0}=v_{n}$ we conclude that v_{0} and v_{n} have length l. By 1^{0} applied to $\left(v_{0}, v_{1}\right), v_{1}$ has length $l+1$ and by 1° applied to $\left(v_{n}, v_{n-1}, \ldots, v_{1}\right)$. v_{1} has length $l+(n-1)$. Thus $n-1=1$ and again $n=2$.

So $G(C)$ has no simple circle of length at least three. We already proved that $G(C)$ is connected and so $G(C)$ is a tree.
(c): Suppose first that a, b are distinct codewords and a is the prefix of b. Let $l=1(a)$. Let c be the prefix of length $l+1$ of b. Then a is the parent of c. Since c is prefix of the codeword $b, c \in V$. So c is adjacent to a. By definition of a code, $a \neq \varnothing$ and so a has a parent d. Then d is in V, d is adjacent to a and $d \neq c$. So a is adjacent to at least two distinct vertices of $G(C)$.

Suppose next that a is a codeword and a is adjacent to two distinct vertices c and d in V. One of c and d, say c is not the parent of a. Since a is adjacent to c, this means that a is a parent of c. Since c is a V, c is the prefix of some codeword b. Since a is the parent of c, a is a prefix of b and $a \neq b$. So a is the prefix of another codeword.
(d) C is prefix free if and only if no codeword is a prefix of another codeword and so by (a) if and only if no codewords is adjacent two different vertices of $G(C)$, that is very codewords is adjacent to at most one vertex and so if and only if each codeword is a leave.

II. 3 The Kraft-McMillan number

Definition II.15. Let C be a code using the alphabet T.
(a) C is called a b-ary code, where $b=|T|$.
(b) Let i be a non-negative integer. Then C_{i} is the set of codewords of length i and $n_{i}=\left|C_{i}\right|$. So n_{i} is the number of codewords of length i.
(c) Let M be the maximal length of a codeword. (So $n_{M} \neq 0$ and $n_{i}=0$ for all $i>M$). The M-tuple $n=$ $\left(n_{0}, n_{1}, \ldots, n_{M}\right)$ is called the parameter of C. More generally if $N \geq M$ we will also call $\left(n_{0}, n_{1}, \ldots, n_{N}\right)$ the parameter of C.
(d) The number

$$
K:=\sum_{i=0}^{M} \frac{n_{i}}{b^{i}}=n_{0}+\frac{n_{1}}{b}+\frac{n_{2}}{b^{2}}+\ldots+\frac{n_{M}}{b^{M}}
$$

is called the Kraft-McMillan number associated to the parameter $\left(n_{0}, n_{1}, \ldots, n_{M}\right)$ and the base b, and also is called the Kraft-McMillan number of C.

Example II.16. Compute the Kraft-McMillan number of the binary code $C=\{10,01,11,011\}$.
We have $C_{0}=\{ \}, C_{1}=\{ \}, C_{2}=\{10,01,11\}$ and $C_{3}=\{011\}$. So the parameter is $(0,0,3,1)$ and

$$
K=0+\frac{0}{2}+\frac{3}{4}+\frac{1}{8}=\frac{6+1}{8}=\frac{7}{8}
$$

Lemma II.17. Let C be a code with Kraft-MacMillan number K using the alphabet T. Let M be a positive integer such that every code word has length less than N. Let D be the set message of length M in T which have a codeword as a prefix. Then
(a) $|D| \leq K b^{M}$.
(b) If C is $P F,|D|=b^{M} K$.
(c) If C is $P F$, then $K \leq 1$.

Proof. (a) Let c be a codeword of length i. Then any message of length M in T is of the from $c r$ where r is a message of length $M-i$. Note that where are b^{M-i} such messages and so there are exactly b^{M-i} message of length M which have c as a prefix. It follows that there are at most $n_{i} b^{M-i}$ message of length M which have a codeword of length i as a prefix. Thus

$$
|D| \leq \sum_{i=0}^{M} n_{i} b^{M-i}=b^{m} \sum_{i=1}^{M} n_{i} b^{-i}=b^{M} K
$$

(b) Suppose C is prefix-free. Then a message of length M can have at most one codeword as a prefix. So the estimate in (a) is exact.
(c) Note that the numbers of message of length M is b^{M}. Thus $|D| \leq b^{M}$ and so by b|, $b^{M} K \leq b^{M}$. Hence $K \leq 1$.

Theorem II.18. Let b and M be integers with $M \geq 0$ and $b \geq 1$. Let $n=\left(n_{0}, n_{1}, \ldots, n_{M}\right)$ be tuple of nonnegative integers such that $K \leq 1$, where K is the Kraft-McMillan number associated to parameter n and the base b. Then there exists a b-ary PF code C with parameter n.

Proof. The proof is by induction on M. Let T be any set of b-elements.
Suppose first that $M=0$. Then $n_{0}=K \leq 1$. If $n_{0}=0$ let $C=\{ \}$ and if $n_{0}=1$ let $C=\{\varnothing\}$. Then C is a PF code with parameter $n=\left(n_{0}\right)$.

Suppose next that $M \geq 1$ and that the theorem holds for $M-1$ in place of M.
Put $\tilde{K}=\sum_{i=0}^{M-1} \frac{n_{i}}{b^{i}}$. Then

$$
\tilde{K}+\frac{n_{M}}{b^{M}}=K \leq 1
$$

and so

$$
\begin{equation*}
\tilde{K}=K-\frac{n_{M}}{b^{M}} \leq 1-\frac{n_{M}}{b^{M}} \leq 1 \tag{*}
\end{equation*}
$$

By the induction assumption there exists a PF code \tilde{C} with parameter $\left(n_{0}, n_{1}, \ldots, n_{M-1}\right)$. Let \tilde{D} be the set of messages of length M in T which have a codeword from \tilde{C} as a prefix. By II.17 $|\tilde{D}|=b^{M} \tilde{K}$. Multiplying $\left({ }^{*}\right)$ with b^{M} gives $b^{M} \tilde{K} \leq b^{M}-n_{M}$. Thus $|\tilde{D}| \leq b^{M}-n_{m}$ and so $n_{m} \leq b^{M}-|D|$. Since b^{M} is the number of messages of length $b^{M}, b^{M}-|D|$ is the number of messages of length M which do not have a codeword as a prefix. Thus there exists a set D of message of length M such that $|D|=n_{M}$ and none of the messages has a codeword from \tilde{C} as a prefix. Put $C=\tilde{C} \cup D$.

We claim that C is prefix-free. For this let a and b be distinct elements of C.
Suppose that a and b are both in \tilde{C}. Since \tilde{C} is PF, a is not a prefix of b.
Suppose that a and b are both in D. Then a and b have the same length and so a is not a prefix of b.
Suppose that $a \in \tilde{C}$ and $b \in D$. Then the choice of D shows that a is not a prefix of b.
Suppose that $a \in D$ and $b \in \tilde{C} . a$ has larger length than b and so again a is not a prefix of b.
Thus C is indeed PF.
If a is a codeword of length i with $i<M$, then a is one of the n_{i} codewords of \tilde{C} of length i. If a is a codeword of length at least M, then a is one of the n_{m}-codewords in D and a has length M. Thus the parameter of C are $\left(n_{0}, n_{1}, \ldots, n_{M-1}, n_{M}\right)$ and so C has all the required properties.

II. 4 A counting principal

Lemma II.19. Let $c: S \rightarrow T^{*}$ and $d: R \rightarrow T^{*}$ be codes. Define the function $c d: S \times R \rightarrow T^{*}$ by

$$
(c d)(s, r)=c(s) d(r)
$$

for all $s \in S, r \in R$. Also let C and D be the set of codewords of c and d, respectively, and define

$$
C D=\{a b \mid a \in C, b \in D\}
$$

Then $c d$ is a code if and only for each $e \in C D$, there exists unique $a \in C$ and $b \in D$ with $e=c d$. In this case $C D$ is set of codewords of $c d$.

Proof. Let $s \in S$ and $r \in R$. Since c is a code, $c(s)$ is not the empty message and so also $c(s) d(r)$ is not the empty message. Hence $(c d)(r, s) \neq \varnothing$ for all $(s, r) \in S \times R$.

Thus $c d$ is a code if and only of $c d$ is $1-1$. We have

$$
\operatorname{Im} c d=\{(c d)(s, r) \mid(s, r) \in S \times R\}=\{c(s) d(r) \mid s \in S, r \in R\}=\{a b \mid a \in C, d \in D\}=C D
$$

In particular, $C D$ is the set of codewords of $c d$.
Moreover, $c d$ is 1-1 if and only if for each $e \in C D$ there unique $s \in S$ and $r \in R$ with $e=c(s) d(r)$. Since c and d are 1-1, this holds if and only if for each $e \in C D$ there exist unique $a \in C$ and $b \in D$ with $e=a b$.

Definition II.20. Let C be a code with parameter $\left(n_{0}, n_{1}, \ldots, n_{M}\right)$. Then

$$
Q_{C}(x)=n_{0}+n_{1} x+n_{2} x^{2}+\ldots+n_{M} x^{m}
$$

is called the generating function of c.
Example II.21. Compute the generating function of the code $C=\{01,10,110,1110,1101\}$.

$$
n_{0}=0, n_{1}=0, n_{2}=2, \quad n_{3}=1, \quad \text { and } n_{4}=2
$$

So

$$
Q_{C}(x)=2 x^{2}+x^{3}+2 x^{4}
$$

Theorem II. 22 (The Counting Principal). (a) Let c and d be codes using the same alphabet T such that $c d$ is a code. Then

$$
Q_{c d}(x)=Q_{c}(x) Q_{d}(x)
$$

(b) Let c be a UD-code. For positive integer r define c^{r} inductively by $c^{1}=c$ and $c^{r+1}=c^{r} c$. Then c^{r} is a code and

$$
Q_{c^{r}}(x)=Q_{c}^{r}(x)
$$

Proof. Let $\left(n_{0}, \ldots, n_{M}\right),\left(p_{0}, \ldots, p_{U}\right),\left(q_{0}, \ldots, q_{V}\right)$ be the parameter of c, d and $c d$ respectively.
Let $0 \leq i \leq V$. Let $a \in C$ and $b \in D$. Then $a b$ has length i if and only if a has length j for some $0 \leq j \leq i$ and b has length $i-j$. Given j, there are n_{j} choices for a and p_{i-j} choices for b. Since $c d$ is a code, a different choice for the pair (a, b) yields a different $a b$. So

$$
q_{i}=n_{0} p_{i}+n_{1} p_{i-1}+n_{2} p_{i-2}+\ldots+n_{i-1} p_{1}+n_{i} p_{0} .
$$

Note that this is exactly the coefficient of x^{i} in $Q_{c}(x) Q_{d}(x)$ and so is proved.

Since c is a UD code the extended function $c^{*}: S^{*} \rightarrow T^{*}$ is 1-1. Observe that c^{r} is just the restriction of c^{*} to S^{r}. So also c^{r} is 1-1 and thus c^{r} is a code. Applying (a) $r-1$ times gives

$$
Q_{c^{r}}(x)=Q_{r-\text { times }}^{c c \ldots c}(x)=\underbrace{Q_{c}(x) Q_{c}(x) \ldots Q_{c}(x)}_{r \text {-times }}=Q_{c}^{r}(x) .
$$

II. 5 Unique decodability implies $K \leq 1$

Lemma II.23. Let c be a b-ary code with maximal codeword length M and Kraft McMillan number K. Then
(a) $K \leq M+1$ and if c is regular, $K \leq M$.
(b) $K=Q_{c}\left(\frac{1}{b}\right)$.

Proof. (a) Since there are b^{i} messages of length $i, n_{i} \leq b^{i}$ and $\frac{n_{i}}{b_{i}} \leq 1$. So each summand in the Kraft McMillan number is bounded by 1 . Note that there are $M+1$ summand and so $K \leq M+1$. If c is regular, \varnothing is not a codeword and $n_{0}=0$. So $K \leq M$ in this case.
(b)

$$
K=\sum_{i=0}^{M} \frac{n_{0}}{b^{i}}=\sum_{i=0}^{M} n_{i}\left(\frac{1}{b}\right)^{i}=Q_{c}\left(\frac{1}{b}\right)
$$

Lemma II.24. (a) Let $c: S \rightarrow T^{*}$ and $d: R \rightarrow T^{*}$ be codes such that $c d$ is a code. Let K and L be the Kraft $M c M i l l a n ~ n u m b e r ~ o f ~ c a n d ~ d, ~ r e s p e c t i v e l y . ~ T h e n ~ K L ~ i s ~ t h e ~ K r a f t ~ M c M i l l a n ~ n u m b e r ~ o f ~ c d . ~$
(b) Let c be a UD-code with Kraft McMillan number K. Then the Kraft McMillan number of c^{r} is K^{r}.

Proof. (a) The Kraft McMillan number of $c d$ is

$$
Q_{c d}\left(\frac{1}{b}\right)=Q_{c}\left(\frac{1}{b}\right) Q_{d}\left(\frac{1}{b}\right)=K L
$$

(b) follows from (a) and induction.

Theorem II.25. Let C be a UD-code with Kraft McMillan number K. Then $K \leq 1$.
Proof. Let M be the maximal codeword length of C. Then the maximal codeword length of C^{r} is $r M$ and -by II.24 b) - the Kraft McMillan number of C^{r} is K^{r}. By II. 23 the Kraft-McMillan number is bounded by the maximal codeword length plus 1 and so

$$
K^{n} \leq r M+1
$$

for all $r \in \mathbb{Z}^{+}$. Thus

$$
r \ln K \leq \ln (r M+1) \text { and } \ln K \leq \frac{\ln (r M+1)}{r}
$$

The derivative of x is 1 and of $\ln (x M+1)$ is $\frac{M}{x M+1}$. L'Hôpital's Rule gives

$$
\lim _{r \rightarrow \infty} \frac{\ln (r M)}{r}=\lim _{r \rightarrow \infty} \frac{\frac{M}{r M+1}}{1}=0
$$

and so $\ln K \leq 0$ and $K \leq 1$.

Corollary II.26. Given a parameter $\left(n_{0}, \ldots, n_{M}\right)$ and a base b with Kraft-McMillan number K. Then the following statements are equivalent.
(a) Either $|S|=1$ and $\left(n_{0}, \ldots, n_{M}\right)=(1,0, \ldots, 0)$, or there exists a b-ary $U D$ code with parameter $\left(n_{0}, \ldots, n_{M}\right)$.
(b) $K \leq 1$.
(c) There exists a b-ary PF code with parameter $\left(n_{0}, \ldots, n_{M}\right)$.

Proof. By II.25, (a) implies (b). By II.18 (b) implies (c). Suppose c is a b-ary $P F$-code with parameter $\left(n_{0}, \ldots, n_{M}\right)$. If c is regular, II.4 shows that c is UD and (a) holds. If c is not regular, then \varnothing is a codeword and since c is prefix free, \varnothing is the only codeword. So the parameter of c is $(1,0, \ldots, 0)$ and again holds.

Chapter III

Economical coding

III. 1 Probability distributions

Definition III.1. Let S be an alphabet. Then a probabilty distribution on S is an S-tuple with coefficients in the interval $[0,1]$ such that

$$
\sum_{s \in S} p_{s}=1
$$

Notation III.2. Suppose S is an alphabet with exactly m-symbols $s_{1}, s_{2}, \ldots, s_{m}$ and that

$$
t: \begin{array}{llll}
s_{1} & s_{2} & \ldots & s_{m} \\
\hline t_{1} & t_{2} & \ldots & t_{m}
\end{array}
$$

is an S-tuple.
Then we will denote t by $\left(t_{1}, \ldots, t_{m}\right)$. Note that this is slightly ambiguous, since t does not only depended on the n-tuple $\left(t_{1}, \ldots, t_{m}\right)$ but also on the order of the elements s_{1}, \ldots, s_{m}.

Example III.3.

(a)

$$
p: \begin{array}{cccc}
w & x & y & z \\
\hline \frac{1}{2} & \frac{1}{3} & 0 & \frac{1}{6}
\end{array}
$$

is a probability distribution on $\{w, x, y, z\}$.
(b) Using the notation from III.2 Example bb can be stated as: $p=\left(\frac{1}{2}, \frac{1}{3}, 0, \frac{1}{6}\right)$ is a probability distribution on $\{w, x, y, z\}$. Note that $p_{x}=\frac{1}{3}$.
(c) $p=\left(\frac{1}{2}, \frac{1}{3}, 0, \frac{1}{6}\right)$ is a probability distribution on $\{x, w, z, y\}$. Note that $p_{x}=\frac{1}{2}$.
(d)

A	B	C	D	E	F	G	H	I
8.167%	1.492%	2.782%	4.253%	12.702%	2.228%	2.015%	6.094%	6.966%

| J | K | L | M | N | O | P | Q | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.153% | 0.747% | 4.025% | 2.406% | 6.749% | 7.507% | 1.929% | 0.095% | 5.987% |
| S | T | U | V | W | X | Y | Z | \sqcup |
| 6.327% | 9.056% | 2.758% | 1.037% | 2.365% | 0.150% | 1.974% | 0.074% | 0 |

is a probability distribution on \mathbb{A}. It lists how frequently a letter is used in the English language.
(e) Let S be a set with m elements and put $p=\left(\frac{1}{m}\right)_{s \in S}$. Then $p_{s}=\frac{1}{m}$ for all $s \in S$ and p is probability distribution on $S . p$ is called the equal probability distribution on S.

III. 2 The optimization problem

Definition III.4. Let $c: S \rightarrow T^{*}$ be a code and p a probability distribution on S.
(a) For $s \in S$ let y_{s} be length of the codeword $c(s)$. The S-tuple $y=\left(y_{s}\right)_{s \in S}$ is called the codeword length of c.
(b) The average length codeword length of c with respect to p is the number

$$
L=p \cdot y=\sum_{s \in S} p_{s} y_{s}
$$

To emphasize the depends of L on p and c we will sometimes us the notations $L(c)$ and $L_{p}(c)$ for L
Note that the average codeword length only depends of the length of the codewords with non-zero probability. So we will often assume that p is positive, that is $p_{s}>0$ for all $s \in S$.
Example III.5. Compute L if $S=\left\{s_{1}, s_{2}, s_{3}\right\}, p=(0.2,0.6,0.2)$ and c is the binary code with

$$
s_{1} \rightarrow 0, \quad s_{2} \rightarrow 10, \quad s_{3} \rightarrow 11
$$

Does there exist a code with the same codewords but smaller average codeword length?
We have $y=(1,2,2)$ and so

$$
L=p \cdot y=(0.2,0.6,0.2)(1,2,2)=0.2 \cdot 1+0.6 \cdot 2+0.2 \cdot 2=0.2+1.2+0.4=1.8
$$

To improve the average length, we will assign the shortest codeword, 0 , to the most likeliest symbol, s_{2} :

$$
s_{1} \rightarrow 01, \quad s_{2} \rightarrow 0, \quad s_{3} \rightarrow 11
$$

Then $y=(2,1,2)$ and

$$
L=p \cdot y=(0.2,0.6,0.2)(2,1,2)=0.2 \cdot 2+0.6 \cdot 1+0.2 \cdot 2=0.4+0.6+0.4=1.4
$$

Definition III.6. Given an alphabet S, a probability distribution p on S and a class \mathcal{C} of codes for S. A code c in \mathcal{C} is called an optimal \mathcal{C}-code with respect to p if

$$
L_{p}(c) \leq L_{p}(\tilde{c})
$$

for all codes \tilde{c} in \mathcal{C}.

Definition III.7. Let y be an S-tuple of non-negative integers and b a positive integer.
(a) Let $M=\max _{s \in S} y_{s}$ and for $0 \leq i \leq M$ let n_{i} be the number of $s \in S$ with $y_{s}=i$. Then $\left(n_{0}, \ldots, n_{m}\right)$ are called the parameter of the codewords length y.
(b) $\sum_{s \in S} \frac{1}{b^{y_{s}}}$ is called the Kraft McMillan numbers for the codeword length y to the base b.

Lemma III.8. Let S be an alphabet, b a positive integer and y an S-tuple with coefficients in \mathbb{N}. Let K be the Kraft-McMillan number and $\left(n_{0}, \ldots, n_{M}\right)$ the parameter for the codeword length y.
(a) Let c be a b-ary code on the set S with codeword length y. Then $\left(n_{0}, \ldots, n_{M}\right)$ is the parameter of c.
(b) K is the Kraft McMillan number of $\left(n_{0}, \ldots, n_{M}\right)$.
(c) Suppose there exists a b-ary code C with parameter $\left(n_{0}, \ldots, n_{M}\right)$. Then there exist a b-ary code c for S with codeword length y such that C is the set of codewords of c. codewords.

Proof. (a) Note that $c(s)$ has length i if and only if $y_{s}=i$. So n_{i} is the number of codewords of length i. So $\left(n_{0}, \ldots, n_{M}\right)$ are the parameter of c.
(b)

We compute

$$
K=\sum_{s \in S}^{n} \frac{1}{b^{y_{s}}}=\sum_{i=0}^{M} \sum_{\substack{s \in S \\ y_{s}=i}} \frac{1}{b^{y_{j}}}=\sum_{i=0}^{M} \sum_{\substack{s \in S \\ y_{j}=i}} \frac{1}{b^{i}}=\sum_{i=0}^{M} n_{i} \frac{1}{b^{i}}
$$

and so K is the Kraft McMillan number of $\left(n_{0}, \ldots, n_{M}\right)$.
(c) For $0 \leq i \leq M$ define

$$
D_{i}=\{d \in D \mid d \text { has length } i\}
$$

Also put

$$
S_{i}=\left\{s \in S \mid y_{s}=i\right\}
$$

Since $\left(n_{0}, \ldots, n_{M}\right)$ are the parameter of $c^{\prime},\left|D_{i}\right|=n_{i}$.
By definition of $n_{i},\left|S_{i}\right|=n_{i}$. Thus $\left|D_{i}\right|=\left|S_{i}\right|$ and there exists a 1-1- and onto function $\alpha_{i}: S_{i} \rightarrow D_{i}$. Define a code c for S as follows:

Let $s \in S$ and put $i=y_{s}$. Then $s \in S_{i}$ and we define $\left.c(s)=\alpha_{i}(s)\right)$. Since $\alpha_{i}(s) \in D_{i}, \alpha_{i}(s)$ has length $i=y_{s}$. So y_{s} is exactly the length of $c(s)$ and thus y is the codeword length of c. By construction, the set of codewords of c is C.

Lemma III.9. Let S be an alphabet, b a positive integer and y an S-tuple with coefficients in \mathbb{Z}^{+}. Let K be the Kraft-McMillan number of the codeword length y. Then there exists a b-ary PF code with codeword length y if and only if $K \leq 1$.

Proof. This follows from III. 8 and II. 18
In view of the preceding lemma, the optimization problem for b-ary UD codes with respect to the probability distribution $\left(p_{1}, \ldots, p_{m}\right)$ can be restated as follows:

Find non-negative integers y_{1}, \ldots, y_{m} such that

$$
p_{1} y_{1}+p_{2} y_{2}+\ldots+p_{m} y_{m}
$$

is minimal subject to

$$
\frac{1}{b^{y_{1}}}+\frac{1}{b^{y_{2}}}+\ldots+\frac{1}{b^{y_{m}}} \leq 1
$$

III. 3 Entropy

Notation III.10. (a) Let S, I and J be sets, $f: I \rightarrow J$ be a function and t an S tuple with coefficients in I. Then $f(t)$ denotes the S-tuple $(f(s))_{s \in S}$ with coefficients in J.
(b) Let S be alphabet. Then $\mathbb{1}_{S}$ is the S tuple all of whose coefficients equal to 1 . We will often just write $\mathbb{1}$ for $\mathbb{1}_{S} . \mathbb{1}$ is called the all one tuple on S.

Note that if t is an S-tuple of real numbers, $\mathbb{1} t=\sum_{s \in S} t_{s}$. Also $\frac{1}{b^{y}}=\left(\frac{1}{b^{y s}}\right)_{s \in S}$ and so we have

$$
\mathbb{1} \cdot \frac{1}{b^{y}}=\sum_{s \in S} \frac{1}{b^{y_{s}}}
$$

This notation is elegant, but can be confusing. So we will use it sparsely.
Theorem III.11. S be an alphabet, p a probability distribution on S and b a real number larger than 1 . Let y be an S tuple of real numbers with $\sum_{s \in S} \frac{1}{b^{y s}} \leq 1$.

Then

$$
\sum_{\substack{s \in S \\ p_{s} \neq 0}} p_{s} \log _{b}\left(\frac{1}{p_{s}}\right) \leq \sum_{s \in S} p_{s} y_{s}
$$

with equality if and only if $p_{s} \neq 0$ and $y_{s}=\log _{b}\left(\frac{1}{p_{s}}\right)$ for all $s \in S$.
Moreover, $\sum_{s \in S} \frac{1}{b^{y_{s}}}=1$ in case of equality.
Proof. Let $\tilde{S}=\left\{s \in S \mid p_{s} \neq 0\right\}$ and let \tilde{p} and \tilde{y} be the restriction of p and y to \tilde{S}. Suppose we proved the theorem holds for \tilde{p} and \tilde{y}. Then the inequality also holds for p and y. In case of equality we get

$$
1=\sum_{s \in \tilde{S}} \frac{1}{b^{y_{s}}} \leq \sum_{s \in S} \frac{1}{b^{y_{s}}} \leq 1
$$

Since $\frac{1}{b^{y s}}>0$ for all $s \in S$, this implies $S=\tilde{S}$ and so the theorem also holds for p and y.
We may assume from now on that $p_{s} \neq 0$ for all $s \in S$. We will present two proofs for this case.

Proof 1 (Using Lagrange's Multipliers)

If $\sum_{s \in S} \frac{1}{b^{y_{s}}}<1$ we can replace one of the y_{s} by a smaller real number to get an S-tuple y^{*} with

$$
\sum_{s \in S} \frac{1}{b^{y_{s}^{*}}}=1 \quad \text { and } \sum_{s \in S} p_{s} y_{s}^{*}<\sum_{s \in S} p_{s} y_{s}
$$

So we only have to consider y 's with $\sum_{s \in S} \frac{1}{b^{y s}}=1$. Since $\sum_{s \in S} p_{s} \cdot y_{s} \rightarrow \infty$ as $\sum_{s \in S} y_{s}^{2} \rightarrow \infty, \sum_{s \in S} p_{s} \cdot y_{s}$ must obtain a minimum value on the region $\sum_{s \in S} \frac{1}{b^{y_{s}}}=1$. From Calculus we know that an extrema for the function $f(y)$ subject to the condition $g(y)=k, k$ a constant, occurs at a point where $\nabla f=\lambda \nabla g$ for some $\lambda \in \mathbb{R}$. Since

$$
\frac{\partial}{\partial y_{s}}\left(\sum_{s \in S} p_{s} y_{s}\right)=p_{s} \quad \text { and } \quad \frac{\partial}{\partial y_{s}}\left(\sum_{s \in S} \frac{1}{b^{y_{s}}}\right)=(-\ln b) \frac{1}{b^{y_{s}}}
$$

we see that minimum occur at points y such that $p_{s}=\mu \frac{1}{b^{y s}}$ for some all $s \in S$ and some $\mu \in \mathbb{R}$. Since $\sum_{s \in S} y_{s}=1$ and $\sum_{s \in S} \frac{1}{b^{y s}}=1$ we get $\mu=1$ and so $p_{s}=\frac{1}{b^{y s}}$. Thus $y_{s}=\log _{b}\left(\frac{1}{p_{s}}\right)$ and the minimum value is

$$
\sum_{s \in S} p_{s} y_{s}=\sum_{s \in S} p_{s} \log _{b}\left(\frac{1}{p_{s}}\right) .
$$

Proof 2 (Using basic Calculus to show that $\ln x \leq x-1$)
We will first show that

1. Let x be a positive real number. Then $\ln x \leq x-1$ with equality if and only $x=1$

Put $f=x-1-\ln x$. Then $f^{\prime}=1-\frac{1}{x}=\frac{x-1}{x}$. Thus $f^{\prime}(x)<0$ for $x<1$ and $f^{\prime}(x)>0$ for $x>1$. So f is strictly decreasing on $(0,1]$ and strictly increasing on $[1, \infty)$. So $f(1)=0$ is the minimum value for f. Hence $x-1-\ln x \leq 0$ with equality if and only if $x=1$.
$\mathbf{2}^{\circ}$. Let $s \in S$. Then $p_{s} \log _{b}\left(\frac{1}{p_{s}}\right)-p_{s} y_{s} \leq \frac{1}{\ln b}\left(\frac{1}{b^{\gamma_{s}}}-p_{s}\right)$ with equality if and only if $y_{s}=\ln \left(\frac{1}{p_{s}}\right)$.
Using $x=\frac{1}{p_{s} b^{v s}}$ in 1^{1} we get

$$
\ln \left(\frac{1}{p_{s} b^{y_{s}}}\right) \leq \frac{1}{p_{s} b^{y_{s}}}-1
$$

with equality if and only of $\frac{1}{p_{s} b^{y_{s}}}=1$, that is $y_{s}=\log _{b}\left(\frac{1}{y_{s}}\right)$.
Hence

$$
\ln \left(\frac{1}{p_{s}}\right)-(\ln b) y_{s} \leq \frac{1}{p_{s} b^{y_{s}}}-1
$$

Multiplying with $\frac{p_{s}}{\ln b}$ gives

$$
p_{s} \log _{b}\left(\frac{1}{p_{s}}\right)-p_{s} y_{s} \leq \frac{1}{\ln b}\left(\frac{1}{b^{y_{s}}}-p_{s}\right)
$$

and so 2° holds.
Summing 2° over all $s \in S$ gives

$$
\sum_{s \in S} p_{s} \log _{b}\left(\frac{1}{p_{s}}\right)-\sum_{s \in S} p_{s} y_{s} \leq \frac{1}{\ln b}\left(\sum_{s \in S} \frac{1}{b^{y_{s}}}-\sum_{s \in S} p_{s}\right)
$$

with equality if and only of $y_{s}=\log _{b}\left(\frac{1}{p}\right)_{s}$ for all $s \in S$.
Since $\sum_{s \in S} \frac{1}{b^{y s}} \leq 1$ and $\sum_{s \in S} p_{s}=1$ we get

$$
\sum_{s \in S} p_{s} \log _{b}\left(\frac{1}{p_{s}}\right)-\sum_{s \in S} p_{s} y_{s} \leq 0
$$

with equality if and only if $y_{s}=\log _{b}\left(\frac{1}{p_{s}}\right)$ and $\sum_{s \in S} \frac{1}{b^{y_{s}}}=1$. For $y_{s}=\log _{b}\left(\frac{1}{y_{s}}\right), \frac{1}{b^{y_{s}}}=p_{s}$ and so $\sum_{s \in S} \frac{1}{b^{y_{s}}}=1$. Thus

$$
\sum_{s \in S} p_{s} \log _{b}\left(\frac{1}{p_{s}}\right) \leq \sum_{s \in S} p_{s} y_{s}
$$

with equality if and only if $y_{s}=\log _{b}\left(\frac{1}{p}\right)_{s}$ for all $s \in S$.
Definition III.12. Let p be a probability distribution on the set S and b a positive integer. The entropy of p to the base b is defined as

$$
H_{b}(p)=\sum_{\substack{s \in S \\ p_{s} \neq 0}} p_{s} \log _{b}\left(\frac{1}{p_{s}}\right)
$$

If no base is mentioned, the base is assumed to be 2. $H(p)$ means $H_{2}(p)$ and $\log (a)=\log _{2}(a)$
We will usually interpret the undefined expression $\left.0 \log _{b}\left(\frac{1}{0}\right)\right)$ as 0 and just write

$$
H_{b}(p)=\sum_{s \in S} p_{s} \log _{b}\left(\frac{1}{p_{s}}\right)=p \cdot \log _{b}\left(\frac{1}{p}\right)
$$

Example III.13. Compute the entropy to the base 2 for $p=(0.125,0.25,0.5,0.125)$.

$$
\begin{gathered}
\frac{1}{p}=(8,4,2,8) \\
\log _{2}\left(\frac{1}{p}\right)=(3,2,1,3)
\end{gathered}
$$

and

$$
H_{2}(p)=p \cdot \log _{2}\left(\frac{1}{p}\right)=0.375+0.5+0.5+0.375=1.75
$$

III. 4 Optimal codes - the fundamental theorems

Theorem III. 14 (Fundamental Theorem, Lower Bound). Let p be probability distribution on the set S and c a b-ary PF code for S. Let y the codewords length of c and L the average codeword length of c with respect to p. Then

$$
H_{b}(p) \leq L
$$

with equality if and only if $p_{s} \neq 0$ and $y_{s}=\log _{b}\left(\frac{1}{p_{s}}\right)$ for all $s \in S$.
Proof. Let K be the Kraft-McMillan number of c. By II.25, $K \leq 1$ and by III. $8 K=\sum_{s \in S} \frac{1}{b^{y s}}$. Thus $\sum_{s \in S} \frac{1}{b^{y s}} \leq$ 1 and the conditions of III.11 are fulfilled. Since $L=p \cdot y$ and $H_{b}(p)=p \cdot \log _{b}\left(\frac{1}{y}\right)$ the theorem now follows from III.11

By the Fundamental Theorem a code with $y=\log _{b}\left(\frac{1}{p}\right)$ will be optimal. Unfortunately, $\log _{b}\left(\frac{1}{p_{s}}\right)$ need not be an integer. Choosing y_{s} too small will cause K to be larger than 1 . This suggest to choose $y_{s}=\left\lceil\log _{b}\left(\frac{1}{p_{s}}\right)\right]$, where $\lceil r\rceil$ is the smallest integer larger or equal to r. In our compact notation this means $y=\left\lceil\log _{b}\left(\frac{1}{p}\right)\right\rceil$.

Definition III.15. Let c be a b-ary code for the set S with codeword lengths y and let p be positive probability distribution on $S . c$ is called a b-ary Shannon-Fano (SF) code with respect to p if c is a PF-code and $y_{s}=\left\lceil\log _{b}\left(\frac{1}{p_{s}}\right)\right]$ for all $s \in S$ with $p_{s} \neq 0$.
Theorem III. 16 (Fundamental Theorem, Upper Bound). Let S be a set, p a probability distribution on S and $b>1$ and integer.
(a) Let c be any b-ary SF code. Then p.

$$
L_{p}(c)<H_{b}(p)+1
$$

(b) There exists b-ary SF code with respect to p, unless p is not positive and $\log _{b}\left(\frac{1}{p_{s}}\right)$ is an integer for all $s \in S$ with $p_{s} \neq 0$.
(c) Suppose $\log _{b}\left(\frac{1}{p_{s}}\right)$ is an integer for all $s \in S$ with $p_{s} \neq 0$. Then there exists a b-ary PF code c for S such that

$$
L_{p}(c) \leq H_{b}(p)+\min _{\substack{s \in S \\ p_{s} \neq 0}} p_{s}
$$

In particular, $L_{p}(c)<H_{b}(p)+1$ unless $p_{s}=1$ for some $s \in S$.
Proof. Put $\tilde{S}=\left\{s \in S \mid p_{s} \neq 0\right\}$.
a) Let $s \in \tilde{S}$. Then $y_{s}=\left\lceil\log _{b}\left(\frac{1}{p_{s}}\right)\right]$ and $y_{s}<\log _{b}\left(\frac{1}{p_{s}}\right)+1$. Thus

$$
L_{p}(c)=p \cdot y=\sum_{s \in \tilde{S}} p_{s} \log _{b}\left(\frac{1}{p_{s}}\right)<\sum_{s \in \tilde{S}} p_{s}\left(\log _{b}\left(\frac{1}{p_{s}}\right)+1\right)=\sum_{s \in \tilde{S}} p_{s} \log _{b}\left(\frac{1}{p_{s}}\right)+\sum_{s \in S} p_{s}=H_{b}(p)+1
$$

(b) Let $s \in \tilde{S}$ and define $y_{s}=\left\lceil\log _{b}\left(\frac{1}{p}\right)\right\rceil$. Then

$$
\begin{equation*}
y_{s} \geq \log _{b}\left(\frac{1}{p_{s}}\right) \tag{*}
\end{equation*}
$$

and so $b^{y_{s}} \geq \frac{1}{p_{s}}$. Then $p_{s} \geq \frac{1}{b^{y_{s}}}$ and so

$$
\begin{equation*}
\tilde{K}:=\sum_{s \in \tilde{S}} \frac{1}{b^{y_{s}}} \leq \sum_{s \in \tilde{S}} p_{s}=1 \tag{**}
\end{equation*}
$$

Suppose now that $\tilde{K}<1$ or $S=\tilde{S}$. Then we can choose $y_{s} \in \mathbb{Z}^{+}$for $s \in S \backslash \tilde{S}$ such that

$$
K:=\sum_{s \in S} \frac{1}{b^{y_{s}}}=\tilde{K}+\sum_{s \in S \backslash \tilde{S}} \frac{1}{b^{y_{s}}} \leq 1
$$

Let $\left(n_{0}, \ldots, n_{M}\right)$ be the parameters for the codeword length $y=\left(y_{s}\right)_{s \in S}$. By III.8, K is the Kraft McMillan number of $\left(n_{0}, \ldots, n_{M}\right)$. Since $K \leq 1, I I .18$ shows that there exists a b-ary PF code with parameter $\left(n_{0}, \ldots, n_{M}\right)$. Thus by III.8 there also exists b-ary PF code c for S with codewords length y. Then c is a SF code and so $\square \square$ holds.

Suppose that $\tilde{K}=1$ and $S \neq \tilde{S}$. Then p is not positive. Also equality holds in (**) and so also in (*). Thus $\log _{b}\left(\frac{1}{p_{s}}\right)=y_{s}$ is an integer for each $s \in \tilde{S}$. So the exceptional case in bolds.
c) Suppose that $\log _{b}\left(\frac{1}{p_{s}}\right)$ is an integer for all $s \in \tilde{S}$. We will use a slight modification of the arguments in (b) :

Choose $t \in \tilde{S}$ with p_{t} minimal. Define $y_{s}=\log _{b}\left(\frac{1}{p_{s}}\right)$ if $s \in \tilde{S}$ with $s \neq t$ and $y_{t}=\log _{b}\left(\frac{1}{p_{t}}\right)+1$. Then (**) is a strict inequality again. So we can choose $y_{s}, s \in S \backslash \tilde{S}$ and a b-ary PF-code with codeword lengths y, just as in (b). Moreover,

$$
L_{p}(c)=\sum_{s \in \tilde{S}} p_{s} y_{s}=p_{t}+\sum_{s \in \tilde{S}} p_{s} \log _{b}\left(\frac{1}{p_{s}}\right)=p_{t}+H_{b}(p)
$$

and (c) is proved.
Example III.17. Find a binary SF code c with respect to the probability distribution $p=(0.1,0.4,0.2,0.1,0.2)$. Verify that $L<H_{2}(p)+1$.

We have

$$
\begin{gathered}
\frac{1}{p}=(10,2.5,5,10,5) \\
\log _{2}\left(\frac{1}{p}\right)
\end{gathered} \approx(3.3,1.3,2.3,3.3,2.3)
$$

and so

$$
y=\left\lceil\log _{2}\left(\frac{1}{p}\right)\right\rceil=(4,2,3,4,3)
$$

Hence there are zero codewords of length 1 , one length 2 , two of length 3 and 2 of length 4. We now use the tree method to construct a tree with these parameters

Since $y=(4,2,3,4,3)$ we can choose the code c as follows

$$
(1000,00,010,1001,011)
$$

We have
$H_{2}(p)=p \cdot \log _{2}\left(\frac{1}{p}\right) \approx(0.1,0.4,0.2,0.1,0.2) \cdot(3.3,1.3,2.3,3.3,2.3)=0.33+0.52+0.46+0.33+0.46=2.08 \approx 2.1$
and

$$
L=p \cdot y=(0.1,0.4,0.2,0.1,0.2) \cdot(4,2,3,4,3)=0.4+0.8+0.6+0.4+0.6=2.8
$$

Since $2.8<2.1+1$, the inequality $L<H_{2}(p)$ does indeed hold.
Theorem III. 18 (Fundamental Theorem). Let p be a probability distribution on the set S and c an optimal b-ary PF code for S with respect to p. Let L be the average codeword length of c. Then

$$
H_{b}(p) \leq L \leq H_{b}(p)+1
$$

Moreover, the second inequality is strict unless $|S|>1$ and there exists $s \in S$ with $p_{s}=1$.
Proof. ByIII.14, $H_{b}(p) \leq L$.
By III.16 there exists a b-ary PF code d with $L_{p}(d) \leq H_{p}(d)+1$, where the inequality is strict, unless $|S|>1$ and there exists $s \in S$ with $p_{s}=1$. Since c is optimal we have $L \leq L_{p}(d)$ and so the Theorem is proved.

III. 5 Hufman rules

Lemma III.19. Let p be a positive probability distribution on the set S and c on optimal b-ary PF-code for S with respect to p. Suppose $|S| \geq 2$.
(a) Let y be the codeword length of c. If $d, e \in S$ with $y_{d}<y_{e}$, then $p_{d} \geq p_{e}$.
(b) Among the codewords of maximal length there exist two which have the same parent.

Proof. (a): Suppose that $p_{d}<p_{e}$. Then

$$
\left(p_{e} y_{e}+p_{d} y_{d}\right)-\left(p_{e} y_{d}+p_{d} y_{e}\right)=\left(p_{e}-p_{d}\right)\left(y_{e}-y_{d}\right)<0
$$

Hence $p_{e} y_{e}+p_{d} y_{d}>p_{e} y_{d}+p_{d} y_{e}$ and so interchanging the codewords for d and e gives a code with smaller average length, a contradiction.
(b): Let M be the maximal length of a codeword.

Suppose that $M=1$. Then any codeword has length 1 and so has the empty message \varnothing as its parent. So any two codewords are codewords of maximal length and have the same parent. Since $|S| \geq 2$ we see that that (b) b holds in this case.

Suppose next tat $M>1$ and by way of contradiction, assume that no two codewords of length M have the same parent. Let x be a codeword of maximal length, let y be the parent of x and let z be any codeword. Suppose that y is a prefix of z. If $z=y$, then z would be a prefix x and $x \neq z$, a contradiction. Thus $z \neq y$ and since y has length $M-1$, we conclude that z has length at least M. Since M is the maximal codeword length
this means that z has length M and y is the parent of z. Since no two codewords of maximal length have the same parent, this means $z=x$.

We proved that x is the only codeword with y as a prefix. Hence, replacing each codewords of maximal length by its parent, gives a PF code of smaller average codeword length than c. Since c is an optimal code, this is a contradiction. So $\sqrt{b}]$ is proved.

Theorem III.20. Let p a positive probability distribution on the alphabet S with $|S| \geq 2$. Let d, e be distinct symbols in S such that $p_{d} \leq p_{e} \leq p_{s}$ for all $s \in S$ with $s \neq d$. Let $\tilde{S}=S \backslash\{d\}$ and let $\tilde{c}: \tilde{S} \rightarrow \mathbb{B}^{*}$ be a binary PF-code.

Define a probability distribution \tilde{p} on \tilde{S} by
(H1)

$$
\tilde{p}_{\tilde{s}}= \begin{cases}p_{\tilde{s}} & \text { if } \tilde{s} \neq e \\ p_{d}+p_{e} & \text { if } \tilde{s}=e\end{cases}
$$

Also define the code $c: S \rightarrow T^{*}$ by

$$
c(s)= \begin{cases}\tilde{c}(e) 0 & \text { if } s=d \tag{H2}\\ \tilde{c}(e) 1 & \text { if } s=e \\ \tilde{c}(s) & \text { otherwise }\end{cases}
$$

Then
(a) c is a binary prefix free code for S.
(b) $L(c)=L(\tilde{c})+\tilde{p}_{e}$, where $L(x)$ is the codeword length of a code x.
(c) c is an optimal binary PF code for S with respect to p if and only if \tilde{c} is a optimal binary PF code for \tilde{S} with respect to \tilde{p}.

Proof. (a) Since \tilde{c} is prefix free it is readily verified that also c is prefix free.
(b) Put $\hat{S}=S \backslash\{d, e\}$. Then $\tilde{S}=\hat{S} \cup\{e\}$ and $S=\hat{S} \cup\{d, e\}$. Let y and \tilde{y} be the codeword length for c and \tilde{c}, respectively. Then

$$
y_{s}=\tilde{y}_{s} \text { and } p_{s}=\tilde{p}_{s} \text { for all } s \in \hat{S}
$$

and

$$
\tilde{p}_{e}=p_{d}+p_{e}, \quad y_{d}=\tilde{y}_{e}+1, \quad y_{e}=\tilde{y}_{e}+1
$$

Hence

$$
\begin{aligned}
L(c) & =\sum_{s \in S} p_{s} y_{s} \\
& =p_{d} y_{d}+p_{e} y_{e}+\sum_{s \in \hat{S}} p_{e} y_{e} \\
& =p_{d}\left(\tilde{y}_{e}+1\right)+p_{e}\left(\tilde{y}_{e}+1\right)+\sum_{s \epsilon \hat{S}} p_{s} y_{s} \\
& =\left(p_{d}+p_{e}\right)+\left(p_{d}+p_{e}\right) \tilde{y}_{e}+\sum_{s \in \hat{S}} p_{s} y_{s} \\
& =\tilde{p}_{e}+\tilde{p}_{e} \tilde{y}_{e}+\sum_{s \in \hat{S}} \tilde{p}_{s} \tilde{y}_{s} \\
& =\tilde{p}_{e}+\sum_{s \in \tilde{S}} \tilde{p}_{s} \tilde{y}_{s} \\
& =\tilde{p}_{e}+L(\tilde{c})
\end{aligned}
$$

So (b) holds.
$(\mathrm{C}) \Longrightarrow$: Suppose c is an optimal binary PFcode. Let \tilde{a} be an optimal binary PF code for \tilde{p} and let a be the code constructed from \tilde{a} using rule H 2 with \tilde{a} in place of \tilde{c}.

Since c is an optimal, $L(c) \leq L(a)$. Hence also $L(c)-\tilde{p}_{e} \leq L(a)-\tilde{p}_{e}$. Applying (b) twice (once to c and once to a) gives $L(\tilde{c}) \leq L(\tilde{a})$. Since \tilde{a} is optimal, $L(\tilde{a}) \leq L(\tilde{c})$. Thus $L(\tilde{a})=L(\tilde{c})$. Since \tilde{a} is optimal, it follows that \tilde{c} is optimal.
$(\mathrm{C}) \Longleftarrow$: Suppose \tilde{c} is an optimal binary PF code. Let a be a optimal binary PF code for \tilde{p}. Let M be the maximal length of a codeword of a.

Suppose that there exists $f \in\{d, e\}$ with such that $a(f)$ as length less than M. By III.19bb there exists at least two codewords of length M and so we can choose $g \in \hat{S}$ such that $a(g)$ has length l. Then $a(l)$ has larger length than $a(g)$ and III.19 a shows that $p_{g} \leq p_{f}$. By choices of e and $d, p_{f} \leq p_{g}$ and so $p_{f}=p_{g}$. Thus interchanging the codewords for f and g does not change the average length of a. We therefore may assume that both $a(d)$ and $a(e)$ have maximal length.

By III.19 b there exists two codewords of a of maximal length with a common parent. Permuting codewords of equal length does not change the average codeword length. So we may and do choose a such that $a(d)$ and $a(e)$ have a common parent u and that $a(d)=u 0$ and $a(e)=u 1$. Let \tilde{a} be the code for \tilde{S} defined by

$$
\tilde{a}(s)= \begin{cases}u & \text { if } s=e \\ a(s) & \text { if } s \in \hat{S}\end{cases}
$$

Since a is PF, u is not a codeword of a. Hence any codeword of a with u as a prefix must have length M and since a is binary code must be $u 0$ or $u 1$. Hence u is not the prefix of any $a(s), s \in \hat{S}$. It follows that \tilde{a} is PF-code for \tilde{S}.

Note that a is the code constructed from \tilde{a} via Rule H2. Since a is optimal, the already proven forward direction of (c) shows that \tilde{a} is optimal. Since \tilde{c} is optimal this gives $L(\tilde{a})=L(\tilde{c})$. Thus also $L(\tilde{a})+\tilde{p}_{e}=$ $L(\tilde{c})+\tilde{p}_{e}$. From applied to a and c we conclude that $L(a)=L(c)$. Since a is optimal, this means that also c is optimal.

Example III.21. Use Hufman's Rules H1 and H2 to construct an optimal code with respect to the probability distribution ($0.3,0.2,0.2,0.15,0.1,0.05$)

Chapter IV

Data Compression

IV. 1 The Comparison Theorem

Theorem IV. 1 (The comparison theorem). Let p and q probability distributions on the alphabet S and let b a real number larger than 1 . Then

$$
H_{b}(p) \leq \sum_{s \in S} p_{s} \log _{b}\left(\frac{1}{q_{s}}\right)
$$

with equality and only if $p=q$.
(If $p_{s}=q_{s}=0$ we interpret $p_{s} \log _{b}\left(\frac{1}{q_{s}}\right)$ as 0 . If $p_{s} \neq 0$ and $q_{s}=0$ we interpret $p_{s} \log _{b}\left(\frac{1}{q_{s}}\right)$ as ∞ and so also $\sum_{s \in S} p_{s} \log _{b}\left(\frac{1}{q_{s}}\right)=\infty$.)

Proof. If $q_{s}=0$ for some $s \in S$ with $p_{s} \neq 0$, the sum on the right sides is ∞. Thus $H_{b}(p)<\sum_{s \in S} p_{s} \log _{b}\left(\frac{1}{q_{s}}\right)$ and $q \neq p$ in this case.

So we may assume that $q_{s} \neq 0$ for all $s \in S$ with $p_{s} \neq 0$. We also may remove all s from S for which $p_{s}=q_{s}=0$. So $q_{s} \neq 0$ for all $s \in S$ and we can define $y_{s}=\log _{b}\left(\frac{1}{q_{s}}\right)$. Then $\frac{1}{b^{y_{s}}}=q_{s}$ and so

$$
\sum_{s \in S} \frac{1}{b^{y_{s}}}=\sum_{s \in S} q_{s}=1
$$

Thus by Theorem III.11 $\sum_{s \in S} p_{s} \log _{b}\left(\frac{1}{p_{s}}\right) \leq \sum_{s \in S} p_{s} y_{s}$ with equality if and only if $y_{s} \neq 0$ and $y_{s}=$ $\log _{b}\left(\frac{1}{p_{s}}\right)$ for all $s \in S$. Hence $H_{b}(p) \leq \sum_{s \in S} p_{s} \log _{b}\left(\frac{1}{q_{s}}\right)$ with equality if and only if $\log _{b}\left(\frac{1}{q_{s}}\right)=\log _{b}\left(\frac{1}{p_{s}}\right)$ for all $s \in S$, that is if and only if $q_{s}=p_{s}$, for all $s \in S$

Theorem IV.2. Let p be a probability distribution on the alphabet S with m symbols. Let $b>1$. Then

$$
H_{b}(p) \leq \log _{b} m
$$

with equality if and only if p is the equal probability distribution.
Proof. Let $q=\left(\frac{1}{m}\right)_{s \in S}$ be the equal probability distribution on S. Then

$$
\sum_{s \in S} p_{s} \log _{b}\left(\frac{1}{q_{s}}\right)=\sum_{s \in S} p_{s} \log _{b}\left(\frac{1}{\frac{1}{m}}\right)=\sum_{s \in S} p_{s} \log _{b} m=\left(\sum_{s \in S} p_{s}\right) \log _{b} m=\log _{b} m
$$

and so by the comparison theorem

$$
H_{b}(p) \leq \log _{b} m
$$

with equality if and only if $p=q$.

IV. 2 Coding in pairs

Lemma IV.3. Let I be an alphabet and p an I-tuple with coefficients in \mathbb{R}. Then p is a probabilty distribution if and only if
(i) $p_{i} \geq 0$ for all $i \in I$.
(ii) $\sum_{i \in I} p_{i}=1$.

Proof. If p is a probabilty distribution, then p is a function from I to $[0,1]$ with $\sum_{i \in I} p_{i}=1$. So (i) and (ii] holds.

Suppose now that (i) and (ii) holds. Then $p_{j} \geq 0$ for all $j \in I$ and so

$$
p_{i} \leq p_{i}+\sum_{\substack{j \in I \\ j \neq i}} p_{j}=\sum_{j \in I} p_{j}=1
$$

Thus $0 \leq p_{i} \leq 1$ and so $p_{i} \in[0,1]$. Hence p has coefficients in $[0,1]$ and by (iii) p is a probability distribution.

Corollary IV.4. Let I be an alphabet and p an I-tuple with coefficients in \mathbb{R}. Suppose that $p_{i} \geq 0$ for all $i \in I$ and $t=\sum_{i \in I} p_{i} \neq 0$. Then $\left(\frac{p_{i}}{t}\right)_{i \in I}$ is a probability distribution on I.
Proof. Since $p_{i} \geq 0$ for all $i \in I$ also $t \geq 0$ and $\frac{p_{i}}{t} \geq 0$. Also

$$
\sum_{i \in I} \frac{p_{i}}{t}=\frac{\sum_{i \in I} p_{i}}{t}=\frac{t}{t}=1
$$

and so by IV.3. $\left(\frac{p_{i}}{t}\right)_{i \in I}$ is a probability distribution on I.
Definition IV.5. Let I and J be alphabets and fan $I \times J$-matrix with coefficients in \mathbb{R}. Define the I-tuple f^{\prime} by

$$
f_{i}^{\prime}=\sum_{j \in J} f_{i j}
$$

for all $i \in I$ and the J-tuple $f^{\prime \prime}$ by

$$
f_{j}^{\prime \prime}=\sum_{i \in I} f_{i j}
$$

for all $j \in J$. Then f^{\prime} is called the (first) marginal tuple of f an I. $f^{\prime \prime}$ is called the (second) marginal tuple of f on J.

Note that $f^{\prime}=\sum_{j \in J} \operatorname{Col}_{j}(f)$ is the sum of the columns of f, while $f^{\prime \prime}=\sum_{i \in I} \operatorname{Row}_{i}(f)$ is the sum of the rows of f.
Lemma IV.6. Let I and J be alphabets and p be a $I \times J$-matrix with coefficients in \mathbb{R}^{+}and marginal tuples p^{\prime} and $p^{\prime \prime}$. Then p is a probablity distribution if and only if p^{\prime} is a probability distribution and if and only if $p^{\prime \prime}$ is a probality distribution.

Proof. Since $p_{i j} \geq 0$ we also have $p_{i}^{\prime} \geq 0$ and $p_{j}^{\prime \prime} \geq 0$ for all $i \in I, j \in J$. Also

$$
\sum_{i \in I} p_{i}^{\prime}=\sum_{i \in I}\left(\sum_{j \in J} p_{i j}\right)=\sum_{(i, j) \in I \times J} p_{i j}=\sum_{j \in J}\left(\sum_{i \in I} p_{i j}\right)=\sum_{j \in J} p_{j}^{\prime \prime}
$$

If one p, p^{\prime} and $p^{\prime \prime}$ is a probability distributions, then this sum is equal to 1 and so by IV.3 all of $p, p^{\prime}, p^{\prime \prime}$ are probability distributions.

Definition IV.7. Let I and J be alphabets.
(a) Let f^{\prime} and $f^{\prime \prime}$ be I and J-tuples, respectively, with coefficients in \mathbb{R}. Then $f^{\prime} \otimes f^{\prime \prime}$ is the $I \times J$-matrix defined by

$$
\left(f^{\prime} \otimes f^{\prime \prime}\right)_{i j}=f_{i}^{\prime} f_{j}^{\prime \prime}
$$

for all $i \in I, j \in J$.
(b) Let p be a probability distribution on $I \times J$ with marginal distribution p^{\prime} and $p^{\prime \prime}$. Then p^{\prime} and $p^{\prime \prime}$ are called independent with respect to p if

$$
p=p^{\prime} \otimes p^{\prime \prime}
$$

Lemma IV.8. Let p^{\prime} and $p^{\prime \prime}$ be probability distributions on I and J, respectively.
(a) p^{\prime} and $p^{\prime \prime}$ are the marginal tuples of $p^{\prime} \otimes p^{\prime \prime}$.
(b) $p^{\prime} \otimes p^{\prime \prime}$ is a probability distribution on $I \times J$.
(c) p^{\prime} and $p^{\prime \prime}$ are independent with respect to $p^{\prime} \otimes p^{\prime \prime}$.

Proof. (a) We have

$$
\sum_{j \in J}\left(p^{\prime} \otimes p^{\prime \prime}\right)_{i j}=\sum_{j \in J} p_{i}^{\prime} p_{j}^{\prime \prime}=p_{i}^{\prime}\left(\sum_{j \in J} p_{j}^{\prime \prime}\right)=p_{i}^{\prime} \cdot 1=p_{i}^{\prime}
$$

and so p^{\prime} is the marginal tuple of $p^{\prime} \otimes p^{\prime \prime}$ on I. Similarly, $p^{\prime \prime}$ is the marginal tuple of $p^{\prime} \otimes p^{\prime \prime}$ on I.
(b) By (a) the marginal tuples of $p^{\prime} \otimes p^{\prime \prime}$ are probability distributions and so by IV.6 also $p^{\prime} \otimes p^{\prime \prime}$ is a probability distribution.
(c) Follows immediately from the definition of independent.

Theorem IV.9. Let I and J be alphabets and p be a probability distribution on $I \times J$ with marginal distributions p^{\prime} and $p^{\prime \prime}$. Then

$$
H(p) \leq H\left(p^{\prime}\right)+H\left(p^{\prime \prime}\right)
$$

with equality if and only if p^{\prime} and $p^{\prime \prime}$ are independent with respect to p.
Proof. We have

$$
\begin{aligned}
H\left(p^{\prime}\right)+H\left(p^{\prime \prime}\right) & =\sum_{i \in I} p_{i}^{\prime} \log \left(\frac{1}{p_{i}^{\prime}}\right)+\sum_{j \in J}^{\prime \prime} p_{j}^{\prime \prime} \log \left(\frac{1}{p_{j}^{\prime \prime}}\right) \\
& =\sum_{i \in I}\left(\sum_{j \in J} p_{i j}\right) \log \left(\frac{1}{p_{i}^{\prime}}\right)+\sum_{j \in J}\left(\sum_{i \in I} p_{i j}\right) \log \left(\frac{1}{p_{j}^{\prime \prime}}\right) \\
& =\sum_{i \epsilon I, j \in J} p_{i j}\left(\log \left(\frac{1}{p_{i}^{\prime}}\right)+\log \left(\frac{1}{p_{j}^{\prime \prime}}\right)\right) \\
& =\sum_{i \in I, j \in J} p_{i j} \log \left(\frac{1}{p_{i}^{\prime} p_{j}^{\prime \prime}}\right) \\
& =\sum_{s \in I \times J} p_{s} \log \left(\frac{1}{\left(p^{\prime} \otimes p^{\prime \prime}\right)_{s}}\right)
\end{aligned}
$$

Thus the comparison theorem shows that $H(p) \leq H\left(p^{\prime}\right)+H\left(p^{\prime \prime}\right)$ with equality if and only if $p=p^{\prime} \otimes p^{\prime \prime}$, that is if and only if p^{\prime} and $p^{\prime \prime}$ are independent with respect to p^{\prime} and $p^{\prime \prime}$.

IV. 3 Coding in blocks

Definition IV.10. A source is a pair (S, P) where S is an alphabet and P is a function

$$
P: S^{*} \rightarrow[0,1]
$$

such that
(i) $P(\varnothing)=1$, and
(ii) for all $a \in S^{*}$,

$$
P(a)=\sum_{s \in S} P(a s)
$$

We interpret a source as a device which emits an infinite stream $\xi_{1} \xi_{2} \ldots, \xi_{n}, \ldots$ of symbols from S. $P\left(a_{1} a_{2} \ldots a_{n}\right)$ is the probability that $\xi_{1}=a_{1}, \xi_{2}=a_{2}, \ldots, \xi_{n-1}=a_{n-1}$ and $\xi_{n}=a_{n}$.

Definition IV.11. Let (S, P) be a source and let $r \in \mathbb{N}$.
(a) p^{r} is the restriction of P to S^{r}, so p^{r} is the function from S^{r} to the interval $[0,1]$ with $p^{r}(a)=P(a)$ for all $a \in S^{r}$.
(b) $p=p^{1}$, so p is the restriction of P to S.
(c) P^{r} is the restriction of P to $\left(S^{r}\right)^{*}$. Note here that if $x=x_{1} x_{2} \ldots x_{n}$ is a string of length n in the alphabet S^{r}, then each x_{i} is a string of length rin the alphabet S, and so x is a string of length $n r$ in the alphabet S, so $\left(S^{r}\right)^{*}=\bigcup_{n=0}^{\infty} S^{n r} \subseteq S^{*}$.
(d) Let $l=\left(l_{1}, l_{2}, \ldots l_{r}\right)$ be an increasing r-tuple of positive integers, that is $l_{i} \in \mathbb{Z}^{+}$and $l_{1}<l_{2}<\ldots<l_{r}$. Put $u=l_{r}$. For $y=y_{1} y_{2} \ldots y_{u} \in S^{u}$ define

$$
y_{l}:=y_{l_{1}} y_{l_{2}} \ldots y_{l_{r}}
$$

and note that $y_{l} \in S^{r}$. Define the function p^{l} from S^{r} to \mathbb{R} via

$$
p^{l}(x)=\sum_{\substack{y \in S^{u} \\ y_{l}=x}} P(y)
$$

for all $x \in S^{r}$.
We interpret $p^{l}\left(s_{1} s_{2} \ldots s_{r}\right)$ as the probabilty that $\xi_{l_{1}}=s_{1}, \xi_{l_{2}}=s_{2}, \ldots, \xi_{l_{r}}=s_{r}$.
Note also that

$$
p^{\left(l_{1}, \ldots, l_{r}\right)}\left(x_{1} x_{2} \ldots x_{r}\right)=\sum_{\substack{\left(y_{1} y_{2}, \ldots y_{u}\right) \in S^{u} \\ y_{1}=x_{1}, y_{2}=x_{2}, \ldots, y_{r}=x_{r}}} P\left(y_{1} y_{2} \ldots y_{u}\right)
$$

Lemma IV.12. Let (S, P) be a source, $r \in \mathbb{N}$ and $l=\left(l_{1}, \ldots, l_{r}\right)$ be an increasing r-tuple of positive integers.
(a) Let $a \in S^{*}$. Then

$$
P(a)=\sum_{x \in S^{r}} P(a x)
$$

(b) $\sum_{x \in S^{r}} P(x)=1$ and p^{r} is a probability distribution on S^{r}.
(c) p is a probability distribution on S.
(d) Put $t=l_{r}-r\left(\right.$ and so $\left.l_{r}=r+t\right)$ and let $k=\left(k_{1}, \ldots, k_{t}\right)$ be the increasing t-tuple of positive integers with $\{1, \ldots, t+r\}=\left\{l_{1}, \ldots, l_{l}, k_{1}, \ldots, k_{t}\right\}$. Then we can identify S^{t+r} with $S^{t} \times S^{r}$ via the map

$$
S^{t+r} \rightarrow S^{t} \times S^{r}, d \rightarrow\left(d_{k}, d_{l}\right)
$$

and, after this identification, p^{l} is the marginal tuple of p^{t+r} on S^{r}.
(e) p^{l} is a probability distribution on S^{r}.

Proof. (a) We will prove (a) by induction on r. If $r=0$, then the empty message \varnothing is the only element of S^{r}. Hence

$$
\sum_{x \in S^{r}} P(a x)=P(a \varnothing)=P(a)
$$

and (a) holds in this case. Now suppose that (a) holds for r. Since every $x \in S^{r+1}$ can be uniquely written as $x=y s$ with $y \in S^{r}$ and $s \in S$ we get

$$
\sum_{x \in S^{r+1}} P(a x)=\sum_{y \in S^{r}, s \in S} P(a(y s))=\sum_{y \in S^{r}}\left(\sum_{s \in S} P((a y) s)\right)=\sum_{y \in S^{r}} P(a y)=P(a)
$$

where the third equality holds by the definition of the source and the last by the induction assumption.
(b) Using $a=\varnothing$ in (a) we get $1=P(\varnothing)=\sum_{x \in S^{r}} P(\varnothing x)=\sum_{x \in S^{r}} P(x)$. Hence by IV.3 is probability distribution on S^{r}.
(c) This is the special case $r=1$ in (b).
(d) Let $a=a_{1} \ldots a_{t} \in S^{t}$ and $b=b_{1} \ldots b_{r} \in S^{r}$. Define $d \in S^{t+r}$ by $d_{i}=a_{j}$ if $i=k_{j}$ for some $1 \leq j \leq t$ and $d_{i}=b_{j}$ if $i=l_{j}$ for some $1 \leq j \leq r$. Then $d_{k}=a$ and $d_{l}=b$. So the map

$$
\rho: S^{t} \times S^{r} \rightarrow S^{t+r},(a, b) \rightarrow d
$$

is inverse to the map

$$
S^{t+r} \rightarrow\left(S^{t}, S^{r}\right), d \rightarrow\left(d_{k}, d_{l}\right)
$$

Let $y \in S^{t+r}$ and $x \in S^{r}$. Then $y=\rho(a, b)$ for some $a \in S^{t}$ and $b \in S^{a}$. Then $y_{l}=x$ if and only if $b=x$ and so if and only if $y=\rho(a, x)$ for unique $a \in S^{t}$. Thus

$$
p^{l}(x)=\sum_{\substack{y \in S^{t+r} \\ y_{l}=x}} P(y)=\sum_{a \in S^{t}} p^{t+r}(\rho(a, x))
$$

So p^{l} is the marginal tuple of p^{t+r} on S^{r}.
(c) By b, p^{r+t} is a probability distribution on S^{r+t} and by (d), p^{l} is a marginal tuple of p^{t+r}. So by IV. 6 p^{l} is a probability distribution on S^{r}.

Lemma IV.13. Let (S, P) be a source and $r \in \mathbb{N}$. Then $\left(S^{r}, P^{r}\right)$ is a source.
Proof. Let $a \in\left(S^{r}\right)^{*}$. Then by IV.12 a

$$
P^{r}(a)=P(a)=\sum_{b \in S^{r}} P(a b)=\sum_{b \in S^{r}} P^{r}(a b) .
$$

Moreover, $P^{r}(\varnothing)=P(\varnothing)=1$ and so P^{r} is a source on S^{r}.

IV. 4 Memoryless Sources

Definition IV.14. A source (S, P) is called memoryless if

$$
P(a s)=P(a) P(s)
$$

for all $a \in S^{*}$ and $s \in S$.
Lemma IV.15. Let p be a probability distribution on the alphabet S. Define

$$
P: S^{*} \rightarrow[0,1]
$$

inductively by

$$
P(\varnothing)=1
$$

and

$$
P(a s)=P(a) p_{s}
$$

for all $a \in S^{*}, s \in S$. So

$$
P\left(s_{1} \ldots s_{n}\right)=p_{s_{1}} p_{s_{2}} \ldots p_{s_{n}}
$$

Then (S, P) is the unique memoryless source with $P(s)=p_{s}$ for all $s \in S$.
Proof. Since $0 \leq p_{s} \leq 1$ for all $s \in S$, also $0 \leq P(a) \leq 1$ for all $a \in S^{*}$. So P is indeed a function from S^{*} to $[0,1]$. By definition of $P, P(\varnothing)=1$. Let $a \in S^{*}$. Then

$$
\sum_{s \in S} P(a s)=\sum_{s \in S} P(a) p_{s}=P(a) \sum_{s \in S} p_{s}=P(a) 1=P(a)
$$

so P is source.

Now let Q be any memoryless source with $Q(s)=p_{s}$ for all $s \in S$. We need to prove that $Q(a)=P(a)$ for all $a \in S^{*}$. The proof is by induction on the length n of a. If $n=0$, then $a=\varnothing$ and $Q(a)=1=P(a)$. Suppose now $Q(a)=P(a)$ holds for all messages a of length n and let b be a message of length $n+1$. Then $b=a s$ for some message a of length n and some $s \in S$. Thus

$$
Q(b)=Q(a s)=Q(a) Q(s)=P(a) p_{s}=P(b)
$$

Thus $Q=P$ and Q is uniquely determined by p.
Lemma IV.16. Let (S, P) be a memoryless source and let $r, t \in \mathbb{N}$. Then $p^{t+r}=p^{t} \otimes p^{r}$ and so p^{t} and p^{r} are independent with respect to p^{t+r}.

Proof. Let $a=s_{1} \ldots s_{r} \in S^{t}$ and $b=s_{t+1} \ldots s_{t+r} \in S^{r}$. Then

$$
\begin{aligned}
p^{t+r}(a b) & =p^{t+r}\left(s_{1} \ldots s_{r} s_{r+1} \ldots s_{r+t}\right) \\
& =p_{s_{1}} \ldots p_{s_{r}} p_{s_{r+1}} \ldots p_{t+r} \\
& =\left(p_{s_{1}} \ldots p_{s_{r}}\right)\left(p_{s_{r+1}} \ldots p_{t+r}\right) \\
& =p^{t}\left(s_{1} \ldots s_{r}\right) p^{r}\left(s_{r+1} \ldots s_{r+t}\right) \\
& =\quad p^{t}(a) p^{r}(b)
\end{aligned}
$$

IV. 5 Coding a stationary source

Definition IV.17. A source (S, P) is called stationary if

$$
p^{r}=p^{(1+t, \ldots, r+t)}
$$

for all $r, t \in \mathbb{N}$.
Since $p^{r}=p^{(1, \ldots, r)}$ we can rewrite the conditions on a stationary source as follows:

$$
p^{(1, \ldots, r)}=p^{(r+1, \ldots, t+r)}
$$

Inductively, this means that the probability of a string $s_{1} \ldots s_{r}$ to appears at the positions $1,2 \ldots, r$ of the stream $\xi_{1} \xi_{2} \ldots, \xi_{n} \ldots$ is the same as the probability of the string appear to appear at positions $t+1, \ldots t+r$.

Lemma IV.18. Let (S, P) be a source. Let $r, t \in \mathbb{N}$.
(a) p^{t} and $p^{(t+1, \ldots, t+r)}$ are the marginal distributions of p^{t+r} on S^{t} and S^{r}.
(b) Suppose P is stationary, then p^{t} and p^{r} are the marginal distributions of p^{r+t} on S^{t} and S^{r}.

Proof. (a) By IV.12 a,

$$
p^{t}(a)=P(a)=\sum_{b \in S^{r}} P(a b)=\sum_{b \in S^{r}} p^{t+r}(a b)
$$

Hence p^{t} is the marginal distribution of p^{t+r} on S^{t}. The special case $l=(t+1, r+2, \ldots, t+r)$ and $k=(1, \ldots . t)$ in IV.12 d) shows that $p^{(t+1, \ldots, t+r)}$ is the the marginal distributions of p^{t+r} on S^{r}.
(b) Since P is stationary, $p^{r}=p^{(t+1, \ldots, t+r)}$ and so (a) implies (b).

Lemma IV.19. A memoryless source is stationary.
Proof. Let (S, P) be a memoryless source and $r, t \in \mathbb{N}$. By IV. $16 p^{t+r}=p^{t} \times p^{r}$ and so by IV.8 c. , p^{r} is the marginal distribution of p^{t+r} on p^{r}. By IV.18, a), $p^{(t+1, \ldots, t+r)}$ is also the marginal distribution of p^{t+r} on S^{r}. Thus $p^{r}=p^{(t+1, \ldots, t+r)}$ and P is stationary.

Theorem IV.20. Let (S, P) be a source and let $r, t \in \mathbb{Z}^{+}$and let $b>1$.
(a)

$$
H_{b}\left(p^{t+r}\right) \leq H_{b}\left(p^{t}\right)+H_{b}\left(p^{(t+1, \ldots, t+r)}\right)
$$

with equality if and only if p^{t} and $p^{(t+1, \ldots, t+r)}$ are independent with respect to p^{t+r}.
(b) Suppose P is stationary. Then

$$
H_{b}\left(p^{t+r}\right) \leq H_{b}\left(p^{t}\right)+H_{b}\left(p^{r}\right)
$$

with equality if and only if p^{t} and p^{r} are independent with respect to p^{r+t}.
(c) Suppose (S, P) is stationary, and r divides t. Then

$$
\frac{H_{b}\left(p^{t}\right)}{t} \leq \frac{H_{b}\left(p^{r}\right)}{r}
$$

(d) Supppose (S, P) is memoryless. Then

$$
\frac{H_{b}\left(p^{t}\right)}{t}=H_{b}(p)
$$

Proof. By IV.18 b p^{r} and $p^{\left(t+1, \ldots, p^{t+r}\right)}$ are the marginal distributions of p^{t+r} on S^{t} and S^{r}. Thus follows fromIV. 9
(b) Since P is stationary, $p^{r}=p^{(t+1, \ldots, t+r)}=p^{t}$. So b) follows from (a).

Before proving (c) and (d) we first show:
(*) Let $q \in \mathbb{Z}^{+}$. Then $H_{b}\left(p^{q r}\right) \leq q H_{b}\left(p^{r}\right)$, with equality if (S, P) is memoryless.
For $q=1,(*)$ is obviously true. Suppose now that $\left({ }^{*}\right)$ holds for q. Then by (b)

$$
H_{b}\left(p^{(q+1) r}\right)=H_{b}\left(p^{q r+r}\right) \leq H_{b}\left(p^{q r}\right)+H_{b}\left(q^{r}\right) \leq q H_{b}\left(p^{r}\right)+H_{b}\left(p^{r}\right)=(q+1) H_{b}\left(p^{r}\right)
$$

with equality if (S, P) is memoryless. (Note here that by IV.16 $p^{q r}$ and p^{r} are independent with respect to $p^{q r+r}$ for memoryless sources.) So $(*)$ holds for $q+1$ and hence by the Principal of induction, for all $q \in \mathbb{Z}$.
(c) Since r divides $t, t=q r$ for some $q \in \mathbb{Z}^{+}$. Thus using (*)

Dividing by $q r$ gives

$$
\frac{H_{b}\left(p^{t}\right)}{t}=\frac{H_{b}\left(p^{q r}\right)}{q r} \leq \frac{q H_{b}\left(p^{r}\right)}{q r}=\frac{H_{b}\left(p^{r}\right)}{r}
$$

(d) Suppose (S, P) is memoryless. By $\left({ }^{*}\right)$ applied with $q=t$ and $r=1$.

$$
H_{b}\left(p^{t}\right)=H_{b}\left(p^{t .1}\right)=t H_{b}\left(p^{1}\right)=H_{b}(p)
$$

and so $\frac{H_{b}\left(p^{t}\right)}{t}=H_{b}(p)$.

Definition IV.21. Let (S, P) be a source and $b>1$. Then the entropy of P to the base b is the real number

$$
H_{b}(P):=\liminf _{m \rightarrow \infty} \frac{H_{b}\left(p^{m}\right)}{m}
$$

Recall here that the limit inferior of a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ of real numbers is defined as

$$
\liminf _{m \rightarrow \infty} a_{m}=\lim _{m \rightarrow \infty}\left(\inf _{n=m}^{\infty} a_{n}\right)
$$

Lemma IV.22. Let (S, P) be a stationary source. Then

$$
H_{b}\left(p^{n}\right)=\inf _{n=1}^{\infty} \frac{H_{b}\left(p^{n}\right)}{n}
$$

Proof. Let $m \in \mathbb{Z}^{+}$. If $1 \leq n<m$ we have $\frac{H_{b}\left(p^{n m}\right)}{n m} \leq \frac{H_{b}\left(p^{n}\right)}{n}$ and so

$$
\inf _{n=m}^{\infty} \frac{H_{b}\left(p^{n}\right)}{n}=\inf _{n=1}^{\infty} \frac{H_{b}\left(p^{n}\right)}{n}
$$

Lemma IV.23. Let (S, P) be a memoryless source and $b>1$. Then $H_{b}(P)=H_{b}(p)$.
Proof. Just recall that by IV.20 c) we have $\frac{H_{b}\left(p^{r}\right)}{r}=H_{b}(p)$ for all $r \in \mathbb{Z}^{+}$.
Theorem IV. 24 (Coding Theorem for memoryless sources). Let (S, P) be a memoryless source, b an integer with $b>1$ and $\epsilon>0$. Let n be an integer with $n>\frac{1}{\epsilon}$. Then there exists a b-ary prefix-free code for S^{n} for which the average codeword length L with respect to p^{n} satisfies

$$
\frac{L}{n}<H_{b}(p)+\epsilon
$$

Proof. Note that $\frac{1}{n}<\epsilon$. Also since P is memoryless, $\frac{H_{b}\left(p^{n}\right)}{n}=H_{b}(p)$.
By the Fundamental Theorem, there exists a prefix-free code b-ary code c for S^{n} with average length L respect to p^{n} satisfying $L \leq H_{b}\left(p^{n}\right)+1$. Then

$$
\frac{L}{n} \leq \frac{H_{b}\left(p^{n}\right)+1}{n}=\frac{H_{b}\left(p^{n}\right)}{n}+\frac{1}{n}<H_{b}(p)+\epsilon
$$

Theorem IV. 25 (Coding Theorem for Sources). Let (S, P) be a source, $b>1$ an integer and $\epsilon>0$. Then there exists a positive integer n and a b-ary prefix-free code for S^{n} for which the average codeword length L with respect to p^{n} satisfies

$$
\frac{L}{n}<H_{b}(P)+\epsilon
$$

Proof. Since $H_{b}(P)=\lim _{m \rightarrow \infty}\left(\inf _{n=m}^{\infty} \frac{H_{b}\left(p^{n}\right)}{n}\right)$ there exists a positive integer r such that

$$
\inf _{n=m}^{\infty} \frac{H_{b}\left(p^{n}\right)}{n}<H_{b}(P)+\frac{\epsilon}{2}
$$

for all $m \geq r$. Thus for all $m \geq r$ there exists $n \geq m$ with

$$
\begin{equation*}
\frac{H_{b}\left(p^{n}\right)}{n}<H_{b}(P)+\frac{\epsilon}{2} \tag{1}
\end{equation*}
$$

Choose an integer m such that $m \geq r$ and $m>\frac{2}{\epsilon}$. Choose $n \geq m$ as in (1). Then

$$
\begin{equation*}
\frac{1}{n} \leq \frac{1}{m}<\frac{1}{\frac{2}{\epsilon}}=\frac{\epsilon}{2} \tag{2}
\end{equation*}
$$

By the Fundamental Theorem, there exists a prefix-free code b-ary code c for S^{n} with average length L respect to p^{n} satisfying

$$
\begin{equation*}
L \leq H_{b}\left(p^{n}\right)+1 \tag{3}
\end{equation*}
$$

Combining (1), (2) and (3) we obtain

$$
\frac{L}{n} \leq \frac{H_{b}\left(p^{n}\right)+1}{n}=\frac{H_{b}\left(p^{n}\right)}{n}+\frac{1}{n}<H_{b}(P)+\frac{\epsilon}{2}+\frac{\epsilon}{2}=H_{b}(P)+\epsilon
$$

IV. 6 Arithmetic codes

Definition IV.26. Let S be set. Then an ordering on S is a relation '<' on S such that for all $a, b, c \in S$:
(i) Exactly one of $a<b, a=b$ and $b<a$ holds; and
(ii) if $a<b$ and $b<c$, then $a<c$.

An ordered alphabet is an alphabet together with an ordering '<' on S.
Example IV.27. Suppose $S=\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}$ is an alphabet of size m. Then there exists a unique ordering on S with $s_{i}<s_{i+1}$ for all $1 \leq i<n$. Indeed we have $s_{i}<s_{j}$ if and only if $i<j$.

Notation IV.28. In the following, "Let $S=\left\{s_{1}, \ldots, s_{m}\right\}$ be an ordered alphabet" will mean that the ordering is given by $s_{i}<s_{j}$ if and only if $i<j$.

Definition IV.29. Let S be an ordered alphabet and p a positive probability distribution in S. Fix $s \in S$ and define:

$$
\alpha=\alpha(s)=\sum_{\substack{t \in S \\ t<s}} p_{t},
$$

where $\alpha=0$ if s is the smallest element in S;

$$
\begin{gathered}
n^{\prime}=n^{\prime}(s)=\left\lceil\log _{2}\left(\frac{1}{p_{s}}\right)\right\rceil ; \\
n=n(s)=n^{\prime}+1 \\
c^{\prime}=c^{\prime}(s)=\left\lceil 2^{n} \alpha\right\rceil ;
\end{gathered}
$$

$$
c(s)=z_{1} z_{2} \ldots z_{n} \in \mathbb{B}^{*}
$$

where

$$
z_{1}, \ldots, z_{n} \in \mathbb{B} \text { with } c^{\prime}=\sum_{i=1}^{n} z_{i} 2^{n-i}
$$

Then $c: S \rightarrow \mathbb{B}^{*}, s \rightarrow c(s)$ is called the arithmetic code for S with respect to p.
Example IV.30. Determine the arithmetic code for the order alphabet $S=\{a, d, e, b, c\}$ with respect to the probability distribution $p=(0.1,0.3,0.2,0.15,0.25)$.

s	p	α	$\frac{1}{p}$	n^{\prime}	n	$2^{n} \alpha$	c^{\prime}	$\sum_{i=1}^{n} z_{i} 2^{n-i}$	c
a	0.1	0	10	4	5	0	0	$0 \cdot 16+0 \cdot 8+0 \cdot 4+0 \cdot 2+0$	00000
d	0.3	0.1	$3.3 \ldots$	2	3	0.8	1	$0 \cdot 4+0 \cdot 2+1$	001
e	0.2	0.4	5	3	4	6.4	7	$0 \cdot 8+1 \cdot 4+1 \cdot 2+1$	0111
b	0.15	0.6	$6.3 \ldots$	3	4	9.6	10	$1 \cdot 8+0 \cdot 4+1 \cdot 2+0$	1010
c	0.25	0.75	4	2	3	6	6	$1 \cdot 4+1 \cdot 2+0$	110

In the remainder of the section we will prove that arithmetic codes are prefix-free and find an upper bound for their average codeword length.

Definition IV.31. Let $z=z_{1} z_{2} \ldots z_{n} \in \mathbb{B}^{n}$. Then the rational number

$$
\sum_{i=1}^{n} \frac{z_{i}}{2^{i}}
$$

is called the rational number associated to z and is denoted by $0_{*} z$.
Observe that $0_{*} z \leq \sum_{i=1}^{n} \frac{1}{2^{i}}<\sum_{i=1}^{\infty} \frac{1}{2^{i}}=1$. So $0 \leq 0_{*} z<1$.
Lemma IV.32. Let $n \in \mathbb{Z}^{+}$and α a real number such that $0 \leq \alpha<\alpha+\frac{1}{2^{n}}<1$.
(a) There exists a unique $z \in \mathbb{B}^{n}$ with $0_{\star} z \in\left[\alpha, \alpha+\frac{1}{2^{n}}\right)$.
(b) If $c=\left\lceil 2^{n} \alpha\right\rceil$ and $z=z_{1} \ldots z_{n}$, then $c=\sum_{i=1}^{n} z_{i} 2^{n-i}$.
(c) $0_{*} z y=0_{*} z+\frac{1}{2^{n}} 0_{*} y \in\left[\alpha, \alpha+\frac{1}{2^{n-1}}\right)$ for all $y \in \mathbb{B}^{*}$.

Proof. (a) and b]: Let $z=z_{1} \ldots z_{n} \in \mathbb{B}^{n}$ and put $d=\sum_{i=1}^{n} z_{i} 2^{n-i}$. Then $d \in \mathbb{N}$ and

$$
\frac{d}{2^{n}}=\sum_{i=1}^{n} \frac{z_{i}}{2^{i}}=0_{*} z
$$

Hence

$$
\begin{array}{cc}
& 0_{*} z \in\left[\alpha, \alpha+\frac{1}{2^{n}}\right) \\
\Longleftrightarrow & d \in\left[2^{n} \alpha, 2^{n} \alpha+1\right) \\
\Longleftrightarrow & 2^{n} \alpha \leq d \text { and } d<2^{n} \alpha+1 \\
\Longleftrightarrow & d=\left\lceil 2^{n} \alpha\right\rceil
\end{array}
$$

This proves (a) and (b).
(c) Let $y=y_{1} y_{2} \ldots y_{m}$. Then y_{i} is the $n+i$-coefficient of $z y$ and so

$$
\begin{aligned}
\alpha \leq 0_{\star} z \leq 0_{\star} z y & =0_{\star} z+\sum_{i=1}^{m} \frac{y_{i}}{2^{n+i}}=0_{\star} z+\frac{1}{2^{n}} \sum_{i=1}^{m} \frac{y_{i}}{2^{i}} \\
& =0_{\star} z+\frac{1}{2^{n}} 0_{\star} y<0_{\star} z+\frac{1}{2^{n}} \\
& <\left(\alpha+\frac{1}{2^{n}}\right)+\frac{1}{2^{n}}=\alpha+\frac{1}{2^{n-1}} .
\end{aligned}
$$

Thus (c) holds.
Theorem IV.33. Let c be the arithmetic code for the ordered alphabet S with respect to the positive probability distribution p.
(a) For $s \in S$ put $I_{s}=\left[\alpha(s), \alpha(s)+p_{s}\right)$. Then $\left(I_{s}\right)_{s \in S}$ is a partition of $[0,1)$, that is for each $r \in[0,1)$, there exists a unique $s \in S$ with $r \in I_{s}$.
(b) $0_{*} c(s) y \in I(s)$ for all $s \in S$ and $y \in \mathbb{B}^{*}$.
(c) c is a prefix-free code.

Proof. (a) Let $S=\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}$ with $s_{1}<s_{2}<\ldots<s_{m-1}<s_{m}$. Observe that $\alpha\left(s_{i}\right)+p_{s_{i}}=\alpha\left(s_{i+1}\right)$ for all $1 \leq i<m$ and $\alpha\left(s_{m}\right)+p_{s_{m}}=\sum_{s \in S} p_{s}=1$. Since $p_{s_{i}}>0$ we have

$$
0=\alpha\left(s_{1}\right)<\alpha\left(s_{2}\right)<\ldots<\alpha\left(s_{m-1}\right)<1
$$

and for each $r \in[0,1)$ there exists a unique $1 \leq i \leq m$ with $\alpha\left(s_{i}\right) \leq r<\alpha\left(s_{i+1}\right)$ (if $i<m$) and $\alpha\left(s_{i}\right) \leq r<1$ (if $i=m)$. Then $s=s_{i}$ is the unique element of S with $r \in I_{s}$.
(b) Note that $\alpha+\frac{1}{2^{n}}<\alpha+\frac{1}{2^{n^{\prime}}} \leq \alpha+p_{s} \leq 1$ and so we can apply IV. 32 It follows that

$$
0_{\star} c(s) y \in\left[\alpha, \alpha+\frac{1}{2^{n-1}}\right)=\left[\alpha, \alpha+\frac{1}{2^{n^{\prime}}}\right) \subseteq\left[\alpha, \alpha+p_{s}\right)=I_{s}
$$

for all $s \in S, y \in \mathbb{B}^{*}$.
(c) Let $s, t \in S$ with $s \neq t$ and let $y \in \mathbb{B}^{*}$. By b), $0_{\star} c(t) \in I(t)$ and $0_{*} c(s) y \in I(s)$. Hence by (a) $c(t) \neq c(s) y$ and so $c(s)$ is neither equal to $c(t)$ nor to a prefix of $c(t)$. Hence c is a prefix-free code.

Theorem IV.34. Let c be the arithmetic code for the ordered alphabet S with respect to the positive probability distribution p. Then

$$
L_{p}(c)<H_{2}(p)+2
$$

Proof. Let $s \in S$. Then $c(s)$ has length

$$
n(s)=n^{\prime}(s)+1=\left\lceil\log _{2}\left(\frac{1}{p_{s}}\right)\right\rceil+1<\log _{2}\left(\frac{1}{p_{s}}\right)+2
$$

So

$$
L_{p}(c)<\sum_{s \in S} p_{s}\left(\log _{2}\left(\frac{1}{p_{s}}\right)+2\right)=\sum_{s \in S} p_{s}\left(\log _{2}\left(\frac{1}{p_{s}}\right)\right)+\sum_{s \in S} 2 p_{s}=H_{2}(p)+2
$$

Corollary IV. 35 (Coding Theorem for Arithmetic codes). Let (S, P) be a source with p positive. Let $\epsilon>0$. Then there exists an integer n with the following property:

$$
\frac{L_{p^{n}}(c)}{n}<H_{2}(P)+\epsilon
$$

for every arithmetic code c for S^{n} with respect to p^{n}.
Moreover, if P is memoryless, any integer $n>\frac{2}{\epsilon}$ has this property.
Proof. Follow the proof for Coding Theorem for Sources (IV.25) with the following modifications:
After Equation (1): Choose m such that $m \geq r$ and $m>\frac{4}{\epsilon}$. So (2) becomes:

$$
\begin{equation*}
n>\frac{4}{\epsilon} \tag{2*}
\end{equation*}
$$

After Equation (2): Let c be an arithmetic code on S^{n} with respect to p^{n}. By IV.34 we get

$$
\begin{equation*}
L_{p^{n}}(c)<H\left(p^{n}\right)+2 \tag{3*}
\end{equation*}
$$

The changes in (2) and (3) cancel in the last computation in the proof of the Coding Theorem.
A similar change in the proof of the Coding Theorem for Memoryless sources gives the extra statement on memoryless sources.

IV. 7 Coding with a dynamic dictionary

Definition IV.36. An dictionary D based on the alphabet S is a 1-1 N-tuple $D=\left(d_{1}, \ldots, d_{N}\right)$ with coefficients in S^{*}. (Here 1-1 means D is 1-1 as a function from $\{1, \ldots, N\}$ to S^{*}, that is $d_{i} \neq d_{j}$ for all $1 \leq i<j \leq N$).

Let $d \in S^{*}$. If $d=d_{i}$ for some $1 \leq i \leq N$, we say that d appears in D and call i the index of d in D.
Example IV.37. Let $S=\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}$ be an ordered alphabet. Then $D=\left(s_{1}, \ldots, s_{m}\right)$ is a dictionary based on S.

Algorithm IV. 38 (LZW encoding). Let $S=\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}$ be an ordered alphabet and X be a non-empty message in S. Define

* a positive integer n;
* non-empty message $Y_{k}, 1 \leq k \leq n$ in S;
* positive integer $c_{k}, 1 \leq k \leq n$;
* non-empty messages $X_{k}, 0 \leq k<n$ in S;
* symbols $z_{k}, 1 \leq k<n$ in S; and
* dictionaries $D_{k}, 0 \leq k<n$, based on S
inductively as follows:
For $k=0$ define

$$
D_{0}=\left(s_{0}, s_{1} \ldots, s_{m}\right) \quad \text { and } \quad X_{0}=X
$$

Suppose $k \geq 1$ and that D_{k-1} and X_{k-1} have been defined.

- Y_{k} is the longest prefix of X_{k-1} such that Y_{k} appears in $D_{k-1} \cdot{ }^{1}$
- c_{k} is the index of Y_{k} in D_{k-1}.

If $Y_{k}=X_{k-1}$, put $n=k$ and terminate the algorithm. If $Y_{k} \neq X_{k-1}$:

- X_{k} is the (non-empty) message in S with $X_{k-1}=Y_{k} X_{k}$.
- z_{k} is the first symbol of X_{k}.
- $D_{k}=\left(D_{k-1}, Y_{k} z_{k}\right) \cdot{ }^{2}$

Put $c(X)=c_{1} c_{2} \ldots c_{n}$. Also define $c(\varnothing)=\varnothing$. The function

$$
c: S^{*} \rightarrow \mathbb{N}^{*}, X \rightarrow c(X)
$$

is called the LZW-encoding function for S
Example IV.39. Given the ordered set $\{a, b, c, d, e\}$. Determine the LZW encoding of bdddaad.

$$
\begin{array}{ccccccccccc}
& 10 & & \\
2 & d & d & d & 7 & a & a & a & d & & \\
4 & 1 & & & & \\
m+k & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
d_{m+k} & a & b & c & d & e & b d & d d & d d a & a a & a d
\end{array}
$$

So the encoding is 247114 .
Lemma IV.40. With the notation as in the LZW encoding algorithm:
(a) $X_{k}=Y_{k+1} Y_{k+2} \ldots Y_{n}$ for all $0 \leq k<n$.
(b) $X=Y_{1} \ldots Y_{n}$.
(c) D_{k} has length $m+k$ and D_{k} is a prefix of D_{l} for all $0 \leq k \leq l<n$.
(d) Y_{k} is the element of index c_{k} in D_{l} for all $k-1 \leq l<n$.
(e) $y_{k} z_{k}$ is the element appearing with index $m+k$ in D_{k} for all $1 \leq k<n$.
(f) z_{k} is the first symbol of Y_{k+1} for all $1 \leq k<n$.

Proof. (a) By construction $X_{n-1}=Y_{n}$. So (a) holds for $k=n-1$. By construction $X_{k-1}=Y_{k} X_{k}$ and (a) holds by downwards induction.
(b) Since $X=X_{0}$, this is the case $k=0$ in (a).
(c) By construction, D_{0} has length m and D_{k-1} is the parent of D_{k}. So (c) holds by induction.
(d) By construction, this holds for $l=k-1$. Since D_{k-1} is a prefix of D_{l} for all $k-1 \leq l<n$, (c) follows.
(e) By construction, $y_{k} z_{k}$ is the last element of D_{k}. Since D_{k} has length $m+k$, (d) holds.
(f) By construction, z_{k} is the first symbol of X_{k}. So by (a), z_{k} is the first symbol of Y_{k+1}.

Algorithm IV. 41 (LZW decoding). Let $S=\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}$ be an ordered alphabet and let $u=c_{1} \ldots c_{n}$ be a message in \mathbb{N}. If $u \neq \varnothing$ and $c_{k}<m+k$ for all $1 \leq k \leq n$ define

[^0]* a message $Y_{k}, 1 \leq k \leq n$ in S;
* symbols $z_{k}, 1 \leq k<n$ in S; and
* $m+k$-tuples $D_{k}, 0 \leq k<n$, with coefficients in S
inductively as follows:
For $k=0$ define

$$
D_{0}=\left(s_{1}, \ldots, s_{m}\right)
$$

Suppose $k \geq 1$ and that D_{k-1} already has been defined.

- Y_{k} is the the message with index c_{k} appearing in D_{k-1}.

If $k=n$, the algorithm stops. If $k<n$:

- \diamond If $c_{k+1}<m+k$, let Y_{k+1} be the message with index c_{k+1} in D_{k-1} and let z_{k} be the first symbol of Y_{k+1}.
\diamond If $c_{k+1}=m+k$, let z_{k} be the first symbol of $Y_{k}{ }^{3}$
- $D_{k}=\left(D_{k-1}, Y_{k} z_{k}\right)$.

Put e $(u)=Y_{1} \ldots Y_{n}$.
If $u=\varnothing$ or $c_{k} \geq m+k$ for some $1 \leq k \leq n$, define $e(u)=\varnothing$
The function $e: \mathbb{N}^{*} \rightarrow S^{*}, u \rightarrow e(u)$ is called the LZW-decoding for S.
Example IV.42. Find the LZW decoding of the message 4.7.4.3.9.11 for the ordered alphabet $\{b, a, e, f, d, c\}$.

So the decoding is ffffefefef.

[^1]
Chapter V

Noisy Channels

V. 1 The definition of a channel

Definition V.1. Let I and J be alphabets. An $I \times J$ - channel is $I \times J$-matrix $\Gamma=\left[\Gamma_{i j}\right]_{\substack{i \in J \\ j \in J}}$ with coefficients in $[0,1]$ such that

$$
\sum_{j \in J} \Gamma_{i j}=1
$$

for all $i \in I$.
I is called the input alphabet of Γ and J the output alphabet.
We interpret $\Gamma_{i j}$ as the probability that the symbol j is received when the symbol i is send through the channel Γ.

Example V.2. $b=\begin{array}{llllll} & 0.4 & 0.2 & 0.1 & 0 & 0.3 \\ \text { is a channel with input alphabet }\{a, b, c, d\} \text { and output al- }\end{array}$

c	0.7	0	0.1	0	0.1

d	0.1	0.2	0.3	0	0.4

phabet $\{a, b, c, d\}$.
Lemma V.3. Let I and J be alphabets and Γ an $I \times J$-matrix with coefficients in \mathbb{R}. Then Γ is a channel if and only if each row of Γ is a probability distribution on J.

Proof. Both conditions just say that $\Gamma_{i j} \in[0,1]$ for all $i \in I, j \in J$ and $\sum_{j \in J} \Gamma_{i j}=1$ for all $i \in I$.
Definition V.4. (a) The transpose of an $I \times J$-matrix $M=\left[m_{i j}\right]_{\substack{i \in I \\ j \in J}}$ is the $J \times I$ matrix $M^{\operatorname{Tr}}=\left[m_{i j}\right]_{\substack{j \in J \in J \\ i \in I}}$.
(b) An $I \times J$-channel Γ is called symmetric if $\frac{|J|}{|I|} \Gamma^{\operatorname{Tr}}$ is a channel. Note that this is the case if and only if $\sum_{j \in J} \Gamma_{i j}=\frac{|I|}{|J|}$ for all $j \in J$ and if and only if all columns of Γ have the same sum.
(c) A binary symmetric channel BSC is a symmetric channel with input and output alphabet \mathbb{B}.
(d) Let Γ be a binary symmetric channel. Then $e=\Gamma_{01}$ is called the bit error of Γ.

Lemma V.5. Let e be the bit error of a binary symmetric channel Γ. Then

Proof. By definition $\Gamma_{01}=e$. Since $\Gamma_{00}+\Gamma_{01}=1, \Gamma_{00}=1-e$. Since Γ is symmetric the sum of each column must be $\frac{|\mathbb{B}|}{|\mathbb{B}|}=1$. So $\Gamma_{10}=1-\Gamma_{00}=e$ and $\Gamma_{11}=1-\Gamma_{01}=1-e$.

Notation V.6. We will usually write an $I \times J$-matrix just as an $|I| \times|J|$-matrix, that is we do not bother to list the header row and column. Of course this simplified notation should only be used if a fixed ordering of elements in I and J is given.

For example we will denote the BSC with error bit e by

$$
\operatorname{BSC}(e)=\left[\begin{array}{cc}
1-e & e \\
e & 1-e
\end{array}\right]
$$

Example V.7. Consider the simplified keypad

Two keys are called adjacent if an edge of the one is next to an edge of the other.
Suppose that for any two adjacent keys x and y there is a 10% chance that y will be pressed when intending to press x.

The channel is

Γ	A	B	C	D	E	F
A	0.8	0.1	0	0.1	0	0
B	0.1	0.7	0.1	0	0.1	0
C	0	0.1	0.8	0	0	0.1
D	0	0	0	0.8	0.1	0
E	0	0.1	0	0.1	0.7	0.1
F	0	0	0.1	0	0.1	0.8

V. 2 Transmitting a source through a channel

Definition V.8. Let I and J be alphabets, let Γ and t be $I \times J$ matrices, let p be an I-tuple and let q be an J-tuple.
(a) We say that say that q is linked to p via Γ if $q=p \Gamma$, that is $q_{j}=\sum_{i \in I} p_{i} \Gamma_{i j}$.
(b) $\operatorname{Diag}(p)$ is the $I \times I$ matrix $\left[d_{i k}\right]$ where

$$
d_{i k}= \begin{cases}p_{i} & \text { if } i=k \\ 0 & \text { if } i \neq k\end{cases}
$$

for all $i, k \in I$.
Lemma V.9. Let I and J be alphabets,let Γ and t be $I \times J$-matrices, p an I-tuple and q a J-tuple, all with coefficients in $\mathbb{R}^{\geq 0}$. Suppose that

$$
t=\operatorname{Diag}(p) \Gamma \quad\left(\text { so } t_{i j}=p_{i} \Gamma_{i j} \text { and } t_{i}=p_{i} \Gamma_{i}\right)
$$

(a) p is the marginal tuple of t on I if and only if Γ_{i} is a probability distributions on J for all $i \in I$ with $p_{i} \neq 0$.
(b) If p is positive, p is the marginal tuple of t on I if and only if Γ is a channel.
(c) q is linked to p via Γ if and only if q is the marginal tuple of t on J.

Proof. (a)
p is the marginal distribution of t on I

$$
\begin{array}{lc}
\Longleftrightarrow & \sum_{j \in J} t_{i j}=p_{i} \text { for all } i \in I \\
\Longleftrightarrow & \sum_{j \in J} p_{i} \Gamma_{i j}=p_{i} \text { for all } i \in I \\
\Longleftrightarrow & \sum_{j \in J} \Gamma_{i j}=1 \text { for all } i \in I \text { with } p_{i} \neq 0 \\
\Longleftrightarrow & \Gamma_{i} \text { is a probability distribution on } J \text { for all } i \in I \text { with } p_{i} \neq 0
\end{array}
$$

So (a) holds.
(b) Follows from (a). (c)

$$
\begin{gathered}
q \text { is linked to } p \text { via } \Gamma \\
\Longleftrightarrow \\
\Longleftrightarrow \quad q=p \Gamma \\
\Longleftrightarrow \quad q_{j}=\sum_{i \in I} p_{i} \Gamma_{i j} \text { for all } j \in J \\
\Longleftrightarrow \quad q \text { is the marginal distribution of } t \text { on } J
\end{gathered}
$$

Definition V.10. Let I and J be alphabets.
(a) $I \times J$-channel system is a tuple (Γ, t, p, q) such that Γ is a $I \times J$-channel, t, p and q are probability distribution on $I \times J, I$ and J respectively, $t=\operatorname{Diag}(p) \Gamma$ and $q=p \Gamma$.
(b) Let Γ be a $I \times J$-channel and p a probability distribution on T. Then $t=\operatorname{Diag}(p) \Gamma$ is called the joint distribution for Γ and $p .(\Gamma, t, p, p \Gamma)$ is called the Channel system for Γ and p and is denoted by $\Sigma(\Gamma, p)$.
(c) Let t be a probability distribution on $I \times J$ with marginal distribution p and q and Γ an $I \times J$-channel, Γ is called a channel associated to $t($ and (Γ, t, p, q) is called a channel system associated to $t)$ if $t=\operatorname{Diag}(p) \Gamma$.
(d) Let $\Sigma=(\Gamma, t, p, q)$ be an $I \times J$ channel system. Let $i \in I$ and $j \in J$. Then

- $t_{i j}$ is called the probability that i is send and j is received and is denoted by $\operatorname{Pr}^{\Sigma}(i, j)$.
- p_{i} is called probability that i is send, and is denoted by $\operatorname{Pr}^{\Sigma}(i, *)$.
- q_{j} is called the probability that j is received, and is denoted by $\operatorname{Pr}^{\Sigma}(*, j)$.
- $\Gamma_{i j}$ is called the probability that j is received when i is send and is denoted by $\operatorname{Pr}^{\Sigma}(j \mid i)$.

Assuming that there is no doubt underlying channel system, we will usually drop the superscript Σ.
Example V.11. Compute the channel system for the channel $\operatorname{BSC}(e)$ and the probability distribution ($p, 1-$ p).

$$
\begin{aligned}
t & =\operatorname{Diag}(p, 1-p)) \operatorname{BSC}(e) \\
& =\left[\begin{array}{cc}
p & 0 \\
0 & 1-p
\end{array}\right]\left[\begin{array}{cc}
1-e & e \\
e & 1-e
\end{array}\right] \\
& =\left[\begin{array}{cc}
p(1-e) & p e \\
(1-p) e & (1-p)(1-e)
\end{array}\right] \\
& =\left[\begin{array}{cc}
p-p e & p e \\
e-p e & 1-p-e+p e
\end{array}\right]
\end{aligned}
$$

Since q is the column sum of t :

$$
q=(p(1-e)+(1-p) e, p e+(1-p)(1-e))=(p+e-2 p e, 1+2 p e-p-e)
$$

As a more concrete example consider the case $e=0.1$ and $p=0.3$. Then

$$
\begin{gathered}
\Gamma=\left[\begin{array}{ll}
0.9 & 0.1 \\
0.1 & 0.9
\end{array}\right], \\
t=\left[\begin{array}{cc}
0.3 & 0 \\
0 & 0.7
\end{array}\right]\left[\begin{array}{ll}
0.9 & 0.1 \\
0.1 & 0.9
\end{array}\right]=\left[\begin{array}{ll}
0.27 & 0.03 \\
0.07 & 0.63
\end{array}\right]
\end{gathered}
$$

and since q is the column sum of t

$$
q=(0.34,0.66)
$$

Lemma V.12. Let I and J be alphabets and Let t be a probability distribution, p the marginal distribution of t on I and Γ an $I \times J$-matrix.
(a) Γ is a channel associated to t if and only if
(i) $\Gamma_{i}=\frac{1}{p_{i}} t_{i}$ for all $i \in I$ with $p_{i} \neq 0$, and
(ii) Γ_{i} is a probability distribution on J for all $i \in I$ with $p_{i}=0$
(b) There exists a channel associated to t.
(c) If p is positive, then $\operatorname{Diag}(p)^{-1} \Gamma$ is the unique channel associated to associated to t.

Proof. (a) Suppose first that Γ is a channel associated to t. Then $t=\operatorname{Diag}(p) \Gamma$ and so $t_{i}=p_{i} \Gamma_{i}$. Thus a:i) holds. Since Γ is channel, also a:ii] holds.

Suppose next that a:ip and a:iip holds. If $p_{i}=0$, then since $p_{i}=\sum_{j \in J} t_{i j}$ and $t_{i j}=0$, also $t_{i j}=0$ for all $j \in J$. Thus $t_{i}=p_{i} \Gamma_{i}$ for all $i \in I$. Hence $t=\operatorname{Diag}(p) \Gamma$. From V. 9 we conclude that Γ_{i} is a probability distribution on J for all $i \in I$ with $p_{i} \neq 0$. Together with a:iil this shows that Γ is a channel.
(b) Let Γ be the $I \times J$-matrix such that $\Gamma_{i}=\frac{1}{p_{i}} t_{i}$ if $p_{i} \neq 0$ and Γ_{i} is the equal probability distribution on J if $p_{i}=0$. Then by (a) Γ is a channel associated to t.
(c) Follows immediately from (a).

V. 3 Conditional Entropy

Definition V.13. Let $\Sigma=(\Gamma, t, p, q)$ be a channel system.
(a) $H(t)$ is called the joint entropy of p and q and is denoted by $H^{\Sigma}(p, q)$.
(b) $H(t)-H(q)$ is called the conditional entropy of p given q with respect to t, and is denoted by $H^{\Sigma}(p \mid q)$ and $H(\Gamma ; p)$.
(c) $H(t)-H(p)$ is called the conditional entropy of q given p with respect to t, and is denoted by $H^{\Sigma}(q \mid p)$.
(d) $H(p)+H(q)-H(t)$ is called the mutual information of p and q with respect to t and is denoted by $I^{\Sigma}(p, q)$.
Definition V.14. (a) Let f be an I tuple and g a J-tuple. We say that f is a permutation of g if there exists a bijection $\pi: J \rightarrow I$ with $g_{j}=f_{\pi(j)}$ for all $j \in J$.
(b) Let Γ be a $I \times J$-channel and E a probability distribution on J. We say that Γ is additive with row distribution E if each row of Γ is a permutation of E.

Example V.15. ($0,1,0,3,0.4,0,2$) is a permutation of $(0.4,0.2,0.3,0.1)$.
Example V.16. $\mathrm{BSC}(e)$ is additive with row distribution $E=(e, 1-e)$.
Lemma V.17. (a) Let p and p^{\prime} be probability distributions. If p is a permutation of p^{\prime}, then $H(p)=H\left(p^{\prime}\right)$.
(b) Let (Γ, t, p, q) be a channel system. Suppose that Γ is additive with row distribution E. Then t is a permutation of $p \otimes E$ and

$$
\begin{array}{ll}
H(t) & =H(p)+H(E)
\end{array} \begin{array}{ll}
H(p \mid q)=H(p)+H(E)-H(q) \\
H(q \mid p) & =H(E)
\end{array}
$$

Proof. 亿a $H(p)$ and $H\left(p^{\prime}\right)$ are sums of the same numbers $p_{i} \log \left(\frac{1}{p_{i}}\right)$, just in a different order.
(b) The i 'th row of t is $p_{i} \Gamma_{i}$ and the i 'th row of $p \otimes E$ is $p_{i} E$. Since Γ_{i} is a permutation of E, also $p_{i} \Gamma_{i}$ is a permutation of $p_{i} E$. So t is a permutation of $p \otimes E$. Thus by (a) and IV. 9

$$
H(t)=H(p \otimes E)=H(p)+H(E)
$$

Hence

$$
\begin{gathered}
H(p \mid q)=H(t)-h(q)=H(p)+H(E)-H(q) \\
H(q \mid p)=H(t)-h(p)=H(E)
\end{gathered}
$$

and

$$
I(p, q)=H(p)+H(q)-H(t)=H(q)-H(E)
$$

Corollary V.18. Let $(\operatorname{BSC}(e), t, p, q)$ be a channel system. Then

$$
H(p \mid q)=H(p)+H((e, 1-e))-H(q)
$$

V. 4 Capacity of a channel

Theorem V.19. Let (Γ, t, p, q) be a channel system. Then

$$
I(p, q) \geq 0
$$

with equality of if p and q are independent with respect to t.
Proof. Note that $I(p, q) \geq 0$ if and only if $H(t) \leq H(p)+H(q)$. Since p and q are the marginal distribution of t, the result now follows from IV. 9

Of course one does not want the output of the channel to be independent of the input. So one likes $I(p, q)$ to be as large as possible. This leads to the following definition:

Definition V.20. Let Γ be a $I \times J$ channel and let $\mathcal{P}(I)$ be set probability distribution on I. Define

$$
f_{\Gamma}: \mathcal{P}(I) \rightarrow \mathbb{R}, \quad p \rightarrow I^{\Sigma(\Gamma, p)}(p, p \Gamma)
$$

and

$$
\gamma(\Gamma)=\max f_{\Gamma}=\max _{p \in \mathcal{P}(I)} f_{\Gamma}(p)
$$

Then $\gamma(\Gamma)$ is called the capacity of the channel Γ.
In little less precise notation

$$
\gamma(\Gamma)=\max _{p} I(p, q)
$$

Theorem V.21. Let Γ be an additive $I \times J$ channel with row distribution E. Then

$$
\gamma(\Gamma)=\left(\max _{p \in \mathcal{P}(I)} H(p \Gamma)\right)-H(E) \leq \log |J|-H(E)
$$

with equality if and only if $p \Gamma$ is the equal probability distribution on J for some probability distribution p on I.

Proof. Let $p \in \mathcal{P}(I)$ and (Γ, t, p, q) the channel system for Γ and p. So $q=p \Gamma$ and $t=\operatorname{Diag}(p) \Gamma$. By V. 17

$$
I(p, q)=H(q)-H(E)
$$

Since $\gamma(\Gamma)=\max _{p} I(p, q)$ the first equality holds. By IV. $2 H(q) \leq \log |J|$ with equality if and only if q is the equal probability distribution. Hence also the second inequality holds.

Corollary V.22. Let Γ be an symmetric, additive $I \times J$ channel with row distribution E. Then

$$
\gamma(\Gamma)=\log |J|-H(E)
$$

Proof. Let $p=\left(\frac{1}{|I|}\right)_{i \in I}$ be the equal probability distribution on I. Let $j \in J$. We compute

$$
q_{j}=\sum_{i \in I} p_{i} \Gamma_{i j}=\frac{1}{|I|} \sum_{i \in I} \Gamma_{i j}=\frac{1}{|I|} \frac{|I|}{|J|}=\frac{1}{|J|}
$$

where the second equality holds since Γ is symmetric. So q is the equal probability distribution on J. Since Γ is additive, the Corollary now follows from V. 21

Corollary V.23. $\gamma(\operatorname{BSC}(e))=1-H((e, 1-e))=1-e \log \left(\frac{1}{e}\right)-(1-e) \log \left(\frac{1}{1-e}\right)$.
Proof. Since $\operatorname{BSC}(e)$ is a symmetric, additive channel with row distribution $(e, 1-e)$ and output alphabet of size 2, this follows immediately from V. 22

Lemma V.24. Let (Γ, t, p, q) be a channel system. Then

$$
H(q \mid p)=\sum_{i \in I} p_{i} H\left(\Gamma_{i}\right)=\sum_{(i, j) \in I \times J} t_{i j} \log \left(\frac{1}{\Gamma_{i j}}\right)
$$

Proof. Recall that p is the marginal distribution for t on I and so

$$
\begin{equation*}
p_{i}=\sum_{j \in J} t_{i j} \tag{1}
\end{equation*}
$$

Also

$$
\begin{equation*}
\frac{p_{i}}{t_{i j}}=\frac{p_{i}}{p_{i} \Gamma_{i j}}=\frac{1}{\Gamma_{i j}} \tag{2}
\end{equation*}
$$

We compute

$$
\begin{aligned}
H(q \mid p) & =H(t)-H(p) \\
& =\sum_{(i, j) \in I \times J} t_{i j} \log \left(\frac{1}{t_{i j}}\right)-\sum_{i \in I} p_{i} \log \left(\frac{1}{p_{i}}\right) \\
& \stackrel{(1)}{=} \sum_{(i, j) \in I \times J} t_{i j} \log \left(\frac{1}{t_{i j}}\right)-\sum_{i \in I}\left(\sum_{j \in J} t_{i j}\right) \log \left(\frac{1}{p_{i}}\right) \\
& =\sum_{(i, j) \in I \times J} t_{i j} \log \left(\frac{p_{i}}{t_{i j}}\right) \\
& \stackrel{(2)}{=} \sum_{(i, j) \in I \times J} t_{i j} \log \left(\frac{1}{\Gamma_{i j}}\right) \\
& =\sum_{(i, j) \in I \times J} p_{i} \Gamma_{i j} \log \left(\frac{1}{\Gamma_{i j}}\right) \\
& =\sum_{i \in I} p_{i}\left(\sum_{j \in J} \Gamma_{i j} \log \left(\frac{1}{\Gamma_{i j}}\right)\right) \\
& =\sum_{i \in I} p_{i} H\left(\Gamma_{i}\right)
\end{aligned}
$$

Chapter VI

The noisy coding theorems

VI. 1 The probability of a mistake

Definition VI.1. Let I and J be alphabets.
(a) An $I \times J$-decision rule is a function $\sigma: J \rightarrow I$.
(b) Let $i \in I$ and j in J. Then (i, j) is called a mistake for σ if $i \neq \sigma(j)$.
(c) An $I \times J$-decision system is a tuple $(\Gamma, t, p, q, \sigma)$, where (Γ, t, p, q) is a $I \times J$-channel system and σ an $I \times J$ - decision rule.
(d) Let Γ be a $I \times J$-channel, p a probability distribution of I and σ and $I \times J$ decision rule. Let (Γ, t, p, q) be the channel system for Γ and p. Then $(\Gamma, t, p, q, \sigma)$ is called the decision system for Γ, p and σ and is denoted by $\Sigma(\Gamma, p, \sigma)$.

Definition VI.2. Let $\Sigma=(\Gamma, t, p, q, \sigma)$ be an $I \times J$-decision system. Let $i \in I$.
(a) Then $F^{\sigma}(i)=\{j \in J \mid \sigma(j) \neq i\}$.
(b) $M^{\Sigma}(i)=\sum_{j \in F^{\sigma}(i)} \Gamma_{i j} . M^{\Sigma}(i)$ is called the probability of a mistake if i is send.
(c) $M^{\Sigma}=\sum_{i \in I} p_{i} M^{\Sigma}(i) . M^{\Sigma}$ is called the probability of a mistake.

Of course we will often drop the superscripts.
Definition VI. 3 (Ideal Observer Rule). Let $\Sigma=(\Gamma, t, p, q, \sigma)$ be an $I \times J$-decision system. We say that σ is an Ideal observer rule with respect to Σ if for all $i \in I$ and $j \in J$,

$$
t_{i j} \leq t_{\sigma(j) j}
$$

Since $\operatorname{Pr}(i \mid j)=\frac{t_{i j}}{q_{j}}$, this is equivalent to

$$
\operatorname{Pr}(i \mid j) \leq \operatorname{Pr}(\sigma(j) \mid j) \text { for all } j \in J \text { with } q_{j} \neq 0
$$

Example VI.4. Find the Ideal Observer Rule for the channel BSC(0.3) and probability distribution $(0.2,0.8)$. What is the probability of a mistake?

We have

$$
\Gamma=\left[\begin{array}{cc}
0.7 & 0.3 \\
0.3 & 0.7
\end{array}\right] \quad \text { and } \quad t=\left[\begin{array}{cc}
0.2 & 0 \\
0 & 0.8
\end{array}\right]\left[\begin{array}{cc}
0.7 & 0.3 \\
0.3 & 0.7
\end{array}\right]=\left[\begin{array}{ll}
0.14 & 0.06 \\
0.24 & 0.56
\end{array}\right]
$$

Let σ be an ideal observer rule. The largest entry in the first column of t occurs in the second row. So $\sigma(0)=1$. The largest entry in the second column of t occurs in the second row. So $\sigma(1)=1$. So the receiver always decides that 1 was send, regardless on what was received.

The mistakes are $(0,0)$ and $(0,1)$. Thus

$$
F(0)=\{0,1\} \quad \text { and } \quad F(1)=\{ \}
$$

So

$$
M(0)=\Gamma_{00}+\Gamma_{01}=1 \quad \text { and } \quad M(1)=0
$$

Hence

$$
M=p_{0} M(0)+p_{1} M(1)=0.2 \cdot 1+0.8 \cdot 0=0.2
$$

Definition VI. 5 (Maximum Likelihood Rule). Let $\Sigma=(\Gamma, t, p, q, \sigma)$ be a $I \times J$-decision system. We say that σ is a Maximum Likelihood Rule with respect to Γ iffor all $i \in I$ and $j \in J$

$$
\Gamma_{i j} \leq \Gamma_{\sigma(j) j}
$$

Since $\Gamma_{i j}=\operatorname{Pr}(j \mid i)$, this is the same as

$$
\operatorname{Pr}(j \mid i) \leq \operatorname{Pr}(j \mid \sigma(j))
$$

for all $i \in I$ and $j \in J$.
Example VI.6. Find the Maximum Likelihood rule for channel $\operatorname{BSC}(0.3)$. What is the probability of a mistake with respect to the probability distribution $(0.2,0.8)$?

We have

$$
\Gamma=\left[\begin{array}{ll}
0.7 & 0.3 \\
0.3 & 0.7
\end{array}\right]
$$

Let σ be a Maxumim Likelihood rule. The largest entry in the first column of Γ occurs in the first row, So $\sigma(0)=0$. The largest entry in the second column of t occurs in the second row. So $\sigma(1)=1$. So the receiver always decides that the symbol received was the symbol send.

The mistakes are $(0,1)$ and $(1,0)$. Thus

$$
F(0)=\{1\} \quad \text { and } \quad F(1)=\{0\}
$$

So

$$
M(0)=\Gamma_{01}=0.3 \quad \text { and } \quad M(1)=\Gamma_{10}=0.3
$$

Hence

$$
M=p_{0} M(0)+p_{1} M(1)=0.2 \cdot 0.3+0.8 \cdot 0.3=0.3
$$

VI. 2 Fano's inequality

Lemma VI.7. Let $(\Gamma, t, p, q, \sigma)$ be an $I \times J$-decision system. M the probability of a mistake and K the set of mistakes. Then

$$
\begin{gathered}
(I \times J) \backslash K=\{(\sigma(j), j) \mid j \in J\}, \\
M=\sum_{(i, j) \in K} t_{i j} \quad \text { and } 1-M=\sum_{j \in J} t_{\sigma(j) j}
\end{gathered}
$$

Proof. Note that $K=\{(i, j) \in I \times J \mid \sigma(j) \neq i\}$. So

$$
(I \times J) \backslash K=\{(i, j) \in I \times J \mid i=\sigma(j)\}=\{(\sigma(j), j) \mid j \in J\}
$$

and the first statement is proved.
We compute

$$
\begin{array}{rlll}
\sum_{(i, j) \in K} t_{i j} & =\frac{\sum_{\substack{(i, j j \in I \times J \\
\sigma(j) \neq i}} t_{i j}}{}= & \sum_{i \in I}\left(\sum_{j \in F(i)} t_{i j}\right) \\
& =\sum_{i \in I}\left(\sum_{j \in F(i)} p_{i} \Gamma_{i j}\right) & = & \sum_{i \in I} p_{i}\left(\sum_{j \in F(i)} \Gamma_{i j}\right) \\
& =\sum_{i \in I} p_{i} M(i) & = & M
\end{array}
$$

Thus the second statement holds. Since $1=\sum_{(i, j) \in I \times J} t_{i j}$, the first two statement imply the third.
Theorem VI. 8 (Fano's inequality). Let $(\Gamma, t, p, q, \sigma)$ be an $I \times J$-decision system and M the probability of a mistake. Then

$$
H(\Gamma ; p) \leq H((M, 1-M))+M \log (|I|-1)
$$

Proof. Let K be the sets of mistakes. By VI.7 $M=\sum_{(i, j) \in K} t_{i j}$ and $1-M=\sum_{j \in J} t_{\sigma(j) j}$. Thus

$$
\begin{aligned}
H((M, 1-M)) & =M \log \left(\frac{1}{M}\right)+(1-M) \log \left(\frac{1}{1-M}\right) \\
& =\sum_{(i, j) \in K} t_{i j} \log \left(\frac{1}{M}\right)+\sum_{j \in J} t_{\sigma(j) j} \log \left(\frac{1}{1-M}\right)
\end{aligned}
$$

Also by VI. 7

$$
I \times J=K \cup\{(\sigma(j), j) \mid j \in J\}
$$

Let $\Delta=\left[\frac{t_{i j}}{q_{j}}\right]_{j \in J}^{j \in I}$. By Exercise $9(\mathrm{f})$ on Homework 3

$$
\begin{aligned}
H(\Gamma ; p) & =H(p \mid q) & & =\sum_{j \in J} q_{j} H\left(\Delta_{j}\right) \\
& =\sum_{j \in J} q_{j}\left(\sum_{i \in I} \Delta_{j i} \log \left(\frac{1}{\Delta_{j i}}\right)\right) & & =\sum_{j \in J} \sum_{i \in I} q_{j} \frac{t_{i j}}{q_{j}} \log \left(\frac{1}{\frac{t_{i j}}{q_{j}}}\right) \\
& =\sum_{(i, j) \in I \times J} t_{i j} \log \left(\frac{q_{j}}{t_{i j}}\right) & & =\sum_{(i, j) \in K} t_{i j} \log \left(\frac{q_{j}}{t_{i j}}\right)+\sum_{j \in J} t_{\sigma(j) j} \log \left(\frac{q_{j}}{t_{\sigma(j) j}}\right)
\end{aligned}
$$

Put

$$
S_{1}=\sum_{(i, j) \in K} t_{i j} \log \left(\frac{q_{j}}{t_{i j}}\right)-\sum_{((i, j) \in K} t_{i j} \log \left(\frac{1}{M}\right)=\sum_{(i, j) \in K} t_{i j} \log \left(\frac{M q_{j}}{t_{i j}}\right)
$$

and

$$
S_{2}=\sum_{j \in J} t_{\sigma(j) j} \log \left(\frac{q_{j}}{t_{\sigma(j) j}}\right)-\sum_{j \in J} t_{\sigma(j) j} \log \left(\frac{1}{1-M}\right)=\sum_{j \in J} t_{\sigma(j) j} \log \left(\frac{(1-M) q_{j}}{t_{\sigma(j) j}}\right)
$$

Then

$$
H(\Gamma ; p)-H((M, 1-M))=S_{1}+S_{2}
$$

So it suffices to show $S_{1} \leq M \log (|I|-1)$ and $S_{2} \leq 0$.
For $(i, j) \in K$ put

$$
v_{i j}=\frac{t_{i j}}{M} \quad \text { and } \quad w_{i j}=\frac{q_{j}}{|I|-1} .
$$

Since $\sum_{(i, j) \in K} t_{i j}=M,\left(v_{i j}\right)_{(i, j) \in K}$ is a probability distribution on K. Also

$$
\sum_{(i, j) \in K} q_{j}=\sum_{j \in J} \sum_{\substack{i \in I \\ i \neq \sigma(j)}} q_{j}=\sum_{j \in J}(|I|-1) q_{j}=(|I|-1) \sum_{j \in J} q_{j}=|I|-1,
$$

and so also $\left(w_{i j}\right)_{(i, j) \in K}$ is a probability distribution on K. Thus by the Comparison TheoremIV. 1

$$
\begin{aligned}
0 & \geq \sum_{(i, j) \in K} v_{i j} \log \left(\frac{1}{v_{i j}}\right)-\sum_{(i, j) \in K} v_{i j} \log \left(\frac{1}{w_{i j}}\right) \\
& =\sum_{(i, j) \in K} v_{i j} \log \left(\frac{w_{i j}}{v_{i j}}\right) \\
& =\sum_{(i, j) \in K} \frac{t_{i j}}{M} \log \left(\frac{q^{M} M}{t_{i j}(I \mid-1)}\right) \\
& \left.=\sum_{(i, j) \in K} \frac{t_{i j}}{M} \log \left(\frac{q_{j} M}{t_{i j}}\right)-\sum_{(i, j) \in K} \frac{t_{i j}}{M} \log (|I|-1)\right) \\
& =\frac{1}{M} S_{1}+\log (|I|-1)
\end{aligned}
$$

Thus indeed $S_{1} \leq M \log (|I|-1)$.
For $j \in J$, put

$$
u_{j}=\frac{t_{\sigma(j) j}}{1-M}
$$

Since $\sum_{j \in J} t_{\sigma(j) j}=1-M$ both q and $\left(u_{j}\right)_{j \in J}$ are probability distributions on J. So by the Comparison Theorem IV. 1

$$
\begin{array}{rlc}
0 & \geq & \sum_{j \in J} u_{j} \log \left(\frac{1}{u_{j}}\right)-\sum_{j \in J} u_{j} \log \left(\frac{1}{q_{j}}\right) \\
& = & \sum_{j \in J} u_{j} \log \left(\frac{q_{j}}{u_{j}}\right) \\
& = & \sum_{j \in J} \frac{t_{\sigma(j) j}}{1-M} \log \left(\frac{q_{j}(1-M)}{t_{\sigma(j) j}}\right) \\
& = & \frac{1}{1-M} S_{2}
\end{array}
$$

and so indeed $S_{2} \leq 0$.

VI. 3 A lower bound for the probability of a mistake

Theorem VI.9. Let $(\Gamma, t, p, q, \sigma)$ be an $I \times J$-decision system and M the probability of a mistake. Then

$$
M>\frac{H(p)-\gamma(\Gamma)-1}{\log (|I|)}
$$

In particular, if p is the equal probability distribution, then

$$
M>1-\frac{\gamma(\Gamma)+1}{\log (|I|)}
$$

Proof. By the Fano inequality VI. 8

$$
\begin{equation*}
H(\Gamma ; p) \leq H((M, 1-M))+M \log (|I|-1) \leq \log 2+M \log (|I|-1))<1+M \log (|I|) \tag{*}
\end{equation*}
$$

By definition of the capacity,

$$
\gamma(\Gamma) \geq I(p, q)=H(p)+H(q)-H(t)=H(p)-H(\Gamma ; p)
$$

and so

$$
H(p)-\gamma(\Gamma) \leq H(\Gamma ; p)
$$

So (*) implies

$$
H(p)-\gamma(\Gamma)<1+M \log (|I|)
$$

and thus

$$
M>\frac{H(p)-\gamma(\Gamma)-1}{\log |I|}
$$

So the first statement holds. If p is the equal probability distribution, then by IV.2 $H(p)=\log (|I|)$ and so

$$
M>\frac{\log (|I|)-\gamma(\Gamma)-1}{\log |I|}=1-\frac{\gamma(\Gamma)+1}{\log |I|}
$$

VI. 4 Extended Channels

Let Γ be an $I \times J$ channel and Γ^{\prime} be an $I^{\prime} \times J^{\prime}$ channel. Suppose the two channel are 'unrelated'. The pair of channels is used to send a pair of symbols $i i^{\prime}$, namely i is send via Γ and i^{\prime} via Γ^{\prime}. Then the probability that the pair of symbols $j j^{\prime}$ is received is $\Gamma_{i j} \Gamma_{i^{\prime} j^{\prime}}^{\prime}$. So the combined channel $\Gamma^{\prime \prime}$ has input $I \times I^{\prime}$, output $J \times J^{\prime}$ and

$$
\Gamma_{i i^{\prime}, j j^{\prime}}^{\prime \prime}=\Gamma_{i j} \Gamma_{i^{\prime} j^{\prime}}^{\prime}
$$

This leads to the following definitions:

Definition VI.10. (a) Let M be an $I \times J$-matrix and M^{\prime} an $I^{\prime} \times J^{\prime}$ matrix Put $I^{\prime \prime}=I \times I^{\prime}$ and $J^{\prime \prime}=J \times J^{\prime}$. Then $M^{\prime \prime}=M \otimes M^{\prime}$ is the $I^{\prime \prime} \times J^{\prime \prime}$-matrix defined by

$$
m_{i i^{\prime}, j j^{\prime}}^{\prime \prime}=m_{i j} m_{i^{\prime} j^{\prime}}^{\prime}
$$

$M^{\prime \prime}$ is called tensor product of M and M^{\prime}.
(b) M be an $I \times J$-matrix and n a positive integer then $M^{\otimes n}$ is the $I^{n} \times J^{n}$ matrix inductively defined by

$$
M^{\otimes 1}=M \quad \text { and } M^{\otimes(n+1)}=M^{\otimes n} \otimes M
$$

Example VI.11. Compute

Lemma VI.12. Let Γ be an $I \times J$-channel and Γ^{\prime} an $I^{\prime} \times J^{\prime}$ channel. Put $I^{\prime \prime}=I \times I^{\prime}, J^{\prime \prime}=J \times J^{\prime}$ and $\Gamma^{\prime \prime}=\Gamma \otimes \Gamma^{\prime}$. Then
(a) $\Gamma_{i i^{\prime}}^{\prime \prime}=\Gamma_{i} \otimes \Gamma_{i^{\prime}}^{\prime}$ for all $i \in I, i^{\prime} \in I^{\prime}$.
(b) $\Gamma^{\prime \prime}$ is an $I^{\prime \prime} \times J^{\prime \prime}$-channel.
(c) Let $n \in \mathbb{Z}^{+}$. Then $\Gamma^{\otimes n}$ is an $I^{n} \times J^{n}$ - channel, called the n-fold extension of Γ.
(d) For all $x \in I^{n}, y \in J^{n}, \Gamma_{x y}^{\otimes n}=\prod_{k=1}^{n} \Gamma_{x_{k} y_{k}}$.

Proof. (a)

$$
\left(\Gamma_{i i^{\prime}}^{\prime \prime}\right)_{j j^{\prime}}=\Gamma_{i i^{\prime}, j j^{\prime}}^{\prime \prime}=\Gamma_{i j} \Gamma_{i^{\prime} j^{\prime}}^{\prime}=\left(\Gamma_{i}\right)_{j}\left(\Gamma_{i^{\prime}}^{\prime}\right)_{j^{\prime}}=\left(\Gamma_{i} \otimes \Gamma_{i^{\prime}}\right)_{j j^{\prime}}
$$

(b) Let $i \in I$ and $i^{\prime} \in I^{\prime}$. Since Γ and Γ^{\prime} are channels, Γ_{i} is a probability distribution on J and $\Gamma_{i^{\prime}}^{\prime}$ is a probability distribution on J^{\prime}. Thus by IV.8, $\Gamma_{i} \otimes \Gamma_{i^{\prime}}^{\prime}$ is a probablity distribution on $J^{\prime \prime}=J \times J^{\prime}$. So by (a) all rows of $\Gamma^{\prime \prime}$ are probability distributions and hence $\Gamma^{\prime \prime}$ is a channel.
(c) Follows from (b) and induction on n.
(d) Can be proved using an easy induction argument.

Lemma VI.13. Let Γ be an $I \times J$-channel and Γ^{\prime} an $I^{\prime} \times J^{\prime}$-channel. Put $\Gamma^{\prime \prime}=\Gamma \otimes \Gamma^{\prime}$ and suppose $\Sigma^{\prime \prime}=$ $\left(\Gamma^{\prime \prime}, t^{\prime \prime}, p^{\prime \prime}, q^{\prime \prime}\right)$ is a channel system. Let t and t^{\prime} be the marginal distribution for $t^{\prime \prime}$ on $I \times J$ and $I^{\prime} \times J^{\prime}$, respectively. Let p and p^{\prime} be the marginal distribution for $p^{\prime \prime}$ on I and I^{\prime}, respectively. Let q and q^{\prime} be the marginal distribution for $q^{\prime \prime}$ on J and J^{\prime}, respectively
(a) $\Sigma=(\Gamma, t, p, q)$ and $\Sigma^{\prime}=\left(\Gamma^{\prime}, t^{\prime}, p^{\prime}, q^{\prime}\right)$ are channel system.
(b) If p and p^{\prime} are independent with respect to $p^{\prime \prime}$, then q and q^{\prime} are independent with respect to $q^{\prime \prime}$.
(c) Let $i \in I$ and $i^{\prime} \in I^{\prime}$., then $H\left(\Gamma_{i i^{\prime}}^{\prime \prime}\right)=H\left(\Gamma_{i}\right)+H\left(\Gamma_{i^{\prime}}^{\prime}\right)$.
(d) $H\left(q^{\prime \prime} \mid p^{\prime \prime}\right)=H(q \mid p)+H\left(q^{\prime} \mid p^{\prime}\right)$
(e) $\gamma\left(\Gamma^{\prime \prime}\right)=\gamma(\Gamma)+\gamma\left(\Gamma^{\prime}\right)$.

Proof. Since $\Sigma^{\prime \prime}$ is a channel system

$$
\begin{equation*}
t_{i i^{\prime}, j j^{\prime}}^{\prime \prime}=p_{i i^{\prime}}^{\prime \prime \prime} \Gamma_{i i^{\prime}, j j^{\prime}}^{\prime \prime}=p_{i i^{\prime}}^{\prime \prime \prime} \Gamma_{i j} \Gamma_{i^{\prime} j^{\prime}}^{\prime} \tag{1}
\end{equation*}
$$

Since Γ^{\prime} is a channel, $\sum_{i \in I} \Gamma_{i^{\prime} j^{\prime}}^{\prime}=1$. Also t and p are marginal distributions of $t^{\prime \prime}$ and $p^{\prime \prime}$. So summing (1) over all $i^{\prime} \in I^{\prime}, j^{\prime} \in J^{\prime}$ gives

$$
t_{i j}=\sum_{i^{\prime} \in I^{\prime}, j \in J^{\prime}} t_{i i^{\prime}, j j^{\prime}}^{\prime \prime}=\left(\sum_{i^{\prime} \in I^{\prime}}\left(p_{i i^{\prime}}^{\prime \prime} \sum_{j^{\prime} \in J^{\prime}} \Gamma_{i^{\prime} j^{\prime}}^{\prime}\right)\right) \Gamma_{i j}=\left(\sum_{i^{\prime} \in I^{\prime}} p_{i i^{\prime}}^{\prime \prime}\right) \Gamma_{i j}=p_{i} \Gamma_{i j}
$$

So t is the joint distribution of p and Γ.
Since $\Sigma^{\prime \prime}$ is a channel system, $q^{\prime \prime}$ is the marginal distribution of $t^{\prime \prime}$ on $J^{\prime \prime}=J \times J^{\prime}$. Also q is the marginal distribution of $q^{\prime \prime}$ on J. It follows that q is the marginal distribution of $t^{\prime \prime}$ on J. Also t is the marginal distribution of $t^{\prime \prime}$ on $I \times J$. Hence the marginal distribution of t on J is the marginal distribution of $t^{\prime \prime}$ on J and so equal to q. Thus Σ is a channel system. By symmetry also Σ^{\prime} is a channel system.
(b) Suppose that p and p^{\prime} are independent with respect to $p^{\prime \prime}$. Then $p_{i i^{\prime}}^{\prime \prime}=p_{i} p_{i^{\prime}}^{\prime}$ and

$$
q_{j j^{\prime}}=\sum_{i \in I, i^{\prime} \in I^{\prime}} p_{i i^{\prime}}^{\prime \prime} \Gamma_{i i^{\prime}, j j^{\prime}}^{\prime \prime}=\sum_{i \in I, i^{\prime} \in I^{\prime}} p_{i} p_{i^{\prime}}^{\prime} \Gamma_{i j}^{\prime} \Gamma_{j j^{\prime}}^{\prime \prime}=\left(\sum_{i \in I} p_{i} \Gamma_{i j}\right)\left(\sum_{i^{\prime} \in I^{\prime}} p_{i^{\prime}}^{\prime} \Gamma_{i^{\prime} j^{\prime}}^{\prime}\right)=q_{j} q_{j^{\prime}}^{\prime}
$$

Hence $q^{\prime \prime}=q \otimes q^{\prime}$ and q and q^{\prime} are independent with respect to $q^{\prime \prime}$.
(c) Let $i \in I$ and $i^{\prime} \in I^{\prime}$. By VI.12 a,

$$
\Gamma_{i i^{\prime}}=\Gamma_{i} \otimes \Gamma_{i^{\prime}}^{\prime}
$$

and so (c) follows from IV. 9
(d) By V. 24

$$
H\left(q^{\prime \prime} \mid p^{\prime \prime}\right)=\sum_{i \in I, i^{\prime} \in I^{\prime}} p_{i i^{\prime}}^{\prime \prime} H\left(\Gamma_{i i^{\prime}}\right)
$$

and so by (c)

$$
H\left(q^{\prime \prime} \mid p^{\prime \prime}\right)=\sum_{i \in I}\left(\sum_{i^{\prime} \in I^{\prime}} p_{i i^{\prime}}^{\prime \prime}\right) H\left(\Gamma_{i}\right)+\sum_{i^{\prime} \in I^{\prime}}\left(\sum_{i \in I} p_{i i^{\prime}}^{\prime \prime}\right) H\left(\Gamma_{i^{\prime}}^{\prime}\right)=\sum_{i \in I} p_{i} H\left(\Gamma_{i}\right)+\sum_{i^{\prime} \in I^{\prime}} p_{i^{\prime}}^{\prime} H\left(\Gamma_{i^{\prime}}^{\prime}\right)
$$

Two more applications of $V .24$ give (d).
(e) Let \mathcal{P} be the set of probability distributions on $I \times I^{\prime}$. Recall that

$$
\gamma\left(\Gamma^{\prime \prime}\right)=\max _{p^{\prime \prime} \in \mathcal{P}} f_{\Gamma^{\prime \prime}}\left(p^{\prime \prime}\right)
$$

and

$$
\begin{equation*}
f_{\Gamma^{\prime \prime}}\left(p^{\prime \prime}\right)=I\left(p^{\prime \prime}, q^{\prime \prime}\right)=H\left(p^{\prime \prime}\right)+H\left(q^{\prime \prime}\right)-H\left(t^{\prime \prime}\right)=H\left(q^{\prime \prime}\right)-H\left(q^{\prime \prime} \mid p^{\prime \prime}\right) \tag{2}
\end{equation*}
$$

Since q and q^{\prime} are the marginal distributions of $q^{\prime \prime}$ IV. 9 gives

$$
\begin{equation*}
H\left(q^{\prime \prime}\right) \leq H(q)+H\left(q^{\prime}\right) \tag{3}
\end{equation*}
$$

with equality if q and q^{\prime} are independent with respect to $q^{\prime \prime}$, and so by with equality if p and p^{\prime} are independent with respect to $p^{\prime \prime}$.

Thus

$$
\begin{array}{rcc}
f_{\Gamma^{\prime \prime}}\left(p^{\prime \prime}\right) & \stackrel{(2)}{=} & H\left(q^{\prime \prime}\right)-\left(H\left(q^{\prime \prime} \mid p^{\prime \prime}\right)\right) \\
& \stackrel{(3)}{\leq} & H(q)+H\left(q^{\prime}\right)-\left(H\left(t^{\prime \prime}\right)-H\left(q^{\prime \prime}\right)\right) \\
& \stackrel{\text { @ }}{=} & H(q)+H\left(q^{\prime}\right)-(H(q \mid p))+\left(H\left(q^{\prime} \mid p^{\prime}\right)\right) \tag{4}\\
& = & \left((H(q)-(H(q \mid p)))+\left(\left(H\left(q^{\prime}\right)-\left(H\left(q^{\prime} \mid p^{\prime}\right)\right)\right)\right.\right. \\
& \stackrel{(2)}{=} & f_{\Gamma}(p)+f_{\Gamma^{\prime}}\left(p^{\prime}\right)
\end{array}
$$

with equality in the independent case. Since $f_{\Gamma}(p) \leq \gamma(\Gamma)$ and $f_{\Gamma^{\prime}}\left(p^{\prime}\right) \leq \gamma\left(\Gamma^{\prime}\right)$ we conclude that

$$
f_{\Gamma^{\prime \prime}}\left(p^{\prime \prime}\right) \leq \gamma(\Gamma)+\gamma\left(\Gamma^{\prime}\right)
$$

Since this holds for all $p \in \mathcal{P}$,

$$
\begin{equation*}
\gamma\left(\Gamma^{\prime \prime}\right)=\max _{p^{\prime \prime} \in \mathcal{P}} f_{\Gamma}\left(p^{\prime \prime}\right) \leq \gamma(\Gamma)+\gamma\left(\Gamma^{\prime}\right) \tag{5}
\end{equation*}
$$

Let $p_{\max }$ be a probability distribution on I with $f_{\Gamma}\left(p_{\max }\right)=\gamma(\Gamma)$, and $p_{\max }^{\prime}$ be a probability distribution on I^{\prime} with $f_{\Gamma^{\prime}}\left(p_{\max }^{\prime}\right)=\gamma\left(\Gamma^{\prime}\right)$. Put $p_{\max }^{\prime \prime}=p_{\max } \otimes p_{\max }^{\prime}$. Then $p_{\max }$ and $p_{\max }^{\prime}$ are independent with respect to $p_{\max }^{\prime \prime}$ and so by (4)

$$
f_{\Gamma^{\prime \prime}}\left(p_{\max }^{\prime \prime}\right)=f_{\Gamma}\left(p_{\max }\right)+f_{\Gamma^{\prime}}\left(p_{\max }^{\prime}\right)=\gamma(\Gamma)+\gamma\left(\Gamma^{\prime}\right)
$$

Since $\gamma\left(\Gamma^{\prime \prime}\right) \geq f_{\Gamma^{\prime \prime}}\left(p_{\max }^{\prime \prime}\right)$, this gives

$$
\gamma\left(\Gamma^{\prime \prime}\right) \geq \gamma(\Gamma)+\gamma\left(\Gamma^{\prime} .\right)
$$

Together with (5) this gives (e).
Corollary VI.14. Let n be a positive integer.
(a) Let Γ be a channel. Then $\gamma\left(\Gamma^{\otimes n}\right)=n \gamma(\Gamma)$.
(b) $\gamma\left(\operatorname{BSC}^{\otimes n}(e)\right)=n(1-H((e, 1-e)))$.

Proof. (a) This clearly holds for $n=1$. Suppose its true for n. Then

$$
\gamma\left(\Gamma^{\otimes(n+1)}\right)=\gamma\left(\Gamma^{\otimes n} \otimes \Gamma\right)=\gamma\left(\Gamma^{\otimes n}\right)+\gamma(\Gamma)=n \gamma(\Gamma)+\gamma(\Gamma)=(n+1) \gamma(\Gamma)
$$

Thus (a) also holds for $n+1$ and thus for all n,
bb Since $H(\operatorname{BSC}(e))=1-H((e, 1-e))$, b) follows from

VI. 5 Coding at a given rate

Definition VI.15. Let I and J be alphabets with $|J|>1$. Then the information rate of I relative to J is $\log _{|J|}|I|$.
Note that $\log _{|J|}|I|=\frac{\log |I|}{\log |J|}$ and $\log _{\left|J^{n}\right|}|I|=\frac{\log _{|| |}|I|}{n}$.
Theorem VI. 16 (Noisy Coding Theorem I). Let $\rho>0$ be a real number and let Γ be an $I \times J$ channel. Let $\left(n_{i}\right)_{i=1}^{\infty}$ be an increasing sequence of integers, $\left(C_{i}\right)_{i=1}^{\infty}$ a sequence of sets $C_{i} \subseteq I^{n_{i}}$, and $\left(\sigma_{i}\right)_{i=1}^{\infty}$ a sequence of $C_{i} \times J^{n_{i}}$-decision rules σ_{i}

Let M_{i} be the probability of a mistake for the decision system determined by the channel $\left.\Gamma^{\otimes n_{i}}\right|_{C_{i} \times J^{n_{i}}}$, the equal probability distribution on C_{i} and the decision rule σ_{i}. Suppose that
(i) $\frac{\log \left|C_{i}\right|}{n_{i}} \geq \rho$ for all $i \in \mathbb{Z}^{+}$, and
(ii) $\lim _{i \rightarrow \infty} M_{i}=0$.

Then $\rho \leq \gamma(\Gamma)$.
Proof. Let Γ_{i} be the channel $\left.\Gamma^{\otimes n_{i}}\right|_{C_{i} \times J^{n_{i}}}$. By VI. 9

$$
\begin{equation*}
M_{i}>1-\frac{\gamma\left(\Gamma_{i}\right)+1}{\log \left(\left|C_{i}\right|\right)} \tag{1}
\end{equation*}
$$

By C. 1 in the Appendix, $\gamma\left(\Gamma_{i}\right) \leq \gamma\left(\Gamma^{\otimes n_{i}}\right)$ and by VI. $14 \gamma\left(\Gamma^{n_{i}}\right)=n_{i} \gamma(\Gamma)$. Thus

$$
\begin{equation*}
\gamma\left(\Gamma_{i}\right) \leq n_{i} \gamma(\Gamma) \tag{2}
\end{equation*}
$$

By (i)

$$
\begin{equation*}
\log \left|C_{i}\right| \geq \rho n_{i} \tag{3}
\end{equation*}
$$

Substituting (2) and (3) into (1) gives

$$
M_{i}>1-\frac{n_{i} \gamma(\Gamma)+1}{n_{i} \rho}=1-\frac{\gamma(\Gamma)}{\rho}-\frac{1}{n_{i} \rho} .
$$

Thus

$$
\frac{\gamma(\Gamma)}{\rho}>1+M_{i}-\frac{1}{n_{i} \rho}
$$

By (ii) we have $\lim _{i \rightarrow \infty} M_{i}=0$. Since $\left(n_{i}\right)_{i=1}^{\infty}$ is increasing, $\lim _{i \rightarrow \infty} \frac{1}{n_{i} \rho}=0$. Hence $\frac{\gamma(\Gamma)}{\rho} \geq 1$ and so $\rho \leq \gamma(\Gamma)$.

Theorem VI. 17 (Noisy Coding Theorem II). Let $\rho>0$ and Γ an $I \times J$ channel. Suppose that $\rho<\gamma(\Gamma)$. Then there exists an increasing sequence of positive integers $\left(n_{i}\right)_{i=1}^{\infty}$ and a sequence $\left(C_{i}\right)_{i=1}^{\infty}$ of sets $C_{i} \subseteq I^{n_{i}}$ such that
(i) $\frac{\log \left|C_{i}\right|}{n_{i}} \geq \rho$ for all $i \in \mathbb{Z}^{+}$,
(ii) If $\left(p_{i}\right)_{i=1}^{\infty}$ is a sequence of probability distributions p_{i} on C_{i}, then there exists a sequence $\left(\sigma_{i}\right)_{i=1}^{\infty}$ of $C_{i} \times J^{n_{i}}$ decision rules σ_{i} such that

$$
\lim _{i \rightarrow \infty} M_{i}=0
$$

where M_{i} is probability of a mistake for the decision system determined by the channel $\left.\Gamma^{\otimes n_{i}}\right|_{C_{i} \times J^{n_{i}}}$, the probability distribution p_{i} and the decision rule σ_{i}.

Proof. Beyond the scope of these lecture notes.

VI. 6 Minimum Distance Decision Rule

Definition VI.18. Let $x, y \in \mathbb{B}^{n}$. Then $d(x, y)=\left\{i \mid 1 \leq i \leq n, x_{i} \neq y_{i}\right\} . d(x, y)$ is called the Hamming distance of x and y.

Definition VI.19. Let $C \subseteq \mathbb{B}^{n}$ be a code (so C is the set of codewords of a binary code all of whose codewords have the same length). Let $a \in C$ and $z \in \mathbb{B}^{n}$.
(a) A decision rule for C is decision rule for $C \times \mathbb{B}^{n}$, that is a function $\sigma: \mathbb{B}^{n} \rightarrow C$.
(b) Let σ be a decision rule for C. We say that σ is a Minimum Distance rule iffor all $a \in C$ and $z \in \mathbb{B}$

$$
d(a, z) \geq d(\sigma(z), z)
$$

Example VI.20. Let σ be a Minimum Distance rule for the code

$$
\{00111000,11000001,00001110,11001011\}
$$

What is $\sigma(11001001)$?

00111000	11000001	00001110	11001011
11001001	11001001	11001001	11001001
5	1	5	1

So $\sigma(11001001)$ is either 11000001 or 11001011.
Lemma VI.21. Let $\Gamma=\operatorname{BSC}(e), n \in \mathbb{Z}^{+}$and $x, y \in \mathbb{B}^{n}$. Then

$$
\Gamma_{x y}^{\otimes n}=e^{d}(1-e)^{n-d}
$$

Proof. We have

$$
\Gamma_{x y}^{\otimes n}=\prod_{k=1}^{n} \Gamma_{x_{k} y_{k}}
$$

Observe that $\Gamma_{x_{k} y_{k}}=e$ if $x_{k} \neq y_{k}$ and $\Gamma_{x_{k} y_{k}}=1-e$ if $x_{k}=y_{k}$. Note that there are $d k$'s with $x_{k} \neq y_{k}$ and $n-d$ k 's with $x_{k}=y_{k}$. So $\Gamma_{x y}^{\otimes n}=e^{d}(1-e)^{n-d}$

Lemma VI.22. Let $0<e<\frac{1}{2}, C \subseteq \mathbb{B}^{n}$ and σ a decision rule for C. Then σ is a minimal distance rule if and only if σ is a maximum likelihood rule with respect to $\operatorname{BSC}^{\otimes n}(e)$.

Proof. Let $z \in \mathbb{B}^{n}, a \in \mathbb{B}^{n}$ and put $a^{\prime}=\sigma(z)$. Let $d=d(a, z)$ and $d^{\prime}=d\left(a^{\prime}, z\right)$ and $f=\frac{1-e}{e}$. Since $e<\frac{1}{2}$, $1-e>\frac{1}{2}>e$ and so $f>1$. We compute

$$
\frac{\Gamma_{a^{\prime} z}}{\Gamma_{a z}}=\frac{e^{d^{\prime}}(1-e)^{n-d^{\prime}}}{e^{d}(1-e)^{n-d}}=\left(\frac{1-e}{e}\right)^{d-d^{\prime}}=f^{d-d^{\prime}}
$$

It follow that

$$
\Gamma_{a z} \leq \Gamma_{a^{\prime} z} \Longleftrightarrow d \geq d^{\prime}
$$

So $\Gamma_{a^{\prime} z}$ is maximal if and only if d^{\prime} is minimal.
Example VI.23. Suppose $C=\{000,111\}$. Determine a minimal distance rule σ for C. Compute $F(c), M_{c}$ and M for the decision system determined by $\operatorname{BSC}(e),(p, 1-p)$ and σ.

We have

$$
\sigma(z)= \begin{cases}000 & \text { if at least two coordinates are zero } \\ 111 & \text { if at most one coordinate is zero }\end{cases}
$$

Hence

$$
F_{000}=\{011,101,110,111\} \quad \text { and } F_{111}=\{000,001,010,100\} .
$$

So

$$
\begin{aligned}
M_{000} & =\Gamma_{000,011}+\Gamma_{000,101}+\Gamma_{000,110}+\Gamma_{000,111} \\
& =e^{2}(1-e)+e^{2}(1-e)+e^{2}(1-e)+e^{3} \\
& =e^{2}(3(1-e)+e) \\
& =e^{2}(3-2 e)
\end{aligned}
$$

By symmetry, also $M_{111}=e^{2}(3-2 e)$ and so

$$
M=p e^{2}(3-2 e)+(1-p) e^{2}(3-2 e)=e^{2}(3-2 e)
$$

Note that each of the four summand in M_{000} is at most e^{2}. So $M_{000} \leq 4 e^{2}$ and also $M \leq 4 e^{2}$.

Chapter VII

Error Correcting

Definition VII.1. Let $C \subseteq \mathbb{B}^{n}$ be a code and σ a decision rule for C. Let $a \in C$ and $z \in \mathbb{B}^{n}$.
(a) Let $k \in \mathbb{N} .(a, z)$ is called $a k$-bit error if $d(a, z)=k$.
(b) We say that σ corrects (a, z) if $a=\sigma(z)$.
(c) We say that σ is r-error correcting if σ corrects all k-bit errors for $0 \leq k \leq r$.

Example VII.2. Given the code $C=\{000,110,101,011\}$ (so C consist of all even messages of length 3) and the decision rule

$\sigma:$| 000 | 100 | 010 | 001 | 110 | 101 | 011 | 111 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 000 | 011 | 000 | 101 | 110 | 101 | 011 | 110 |

Does σ correct 0 -bit errors? Does σ correct 1 -bit errors?
0 -bit errors are of the form $(a, a), a \in C$. Since $\sigma(a)=a$ for all $a \in C$, all 0 -bit error are corrected. So σ is 0 -error correcting.
σ corrects some 1-bit errors but not all:

$$
\sigma(001)=101 \neq 011
$$

Thus $(101,001)$ is a 1 -bit error corrected by σ, but $(011,001)$ is a 1 -bit error not corrected by σ. So σ is not 1 -error correcting.

Example VII.3. Given the code $C=\{000000,110110,101101,011011\}$. (Note that C is obtained by doubling the code in VII.2. Define the decision rule σ for C by

$$
\sigma(x y)= \begin{cases}x x & \text { if } x \text { is even } \\ y y & \text { if } x \text { is odd }\end{cases}
$$

for all $x, y \in \mathbb{B}^{3}$. Show that σ is 1 -error correcting.
Let (a, z) be k-bit error for $k \leq 1$. Since $a \in C, a=b b$ for some even b in \mathbb{B}^{3}. Let $z=x y$ with $x, y \in \mathbb{B}^{3}$. Since $b b$ and $x y$ differ in at most 1 place, $b=x$ or $b=y$. Suppose $b=x$. Since b is even we get $\sigma(x y)=x x=b b=a$. If $b \neq x, b$ must differ in exactly one place from x. So x is odd and $\sigma(x y)=y y=b b=a$. So σ is indeed 1 -error correcting.

Lemma VII.4. Let $C \subseteq \mathbb{B}^{n}$. Let Σ be a decision system with channel $\operatorname{BSC}^{\otimes n}(e)$ and an r-error-correcting decision rule.
(a) $d(a, z) \geq r+1$ for any mistake (a, z).
(b) $\Gamma_{a z} \leq e^{r+1}$ for any $a \in C, z \in F(a)$.
(c) $M_{a} \leq|F(a)| e^{r+1}$ for any $a \in C$.
(d) $M \leq\left(\sum_{a \in C} p_{a}|F(a)|\right) e^{r+1}$.

Proof. (a) Let $a \in C$ and $z \in \mathbb{B}^{n}$ with $d(a, z) \leq r$. Since σ is r-correcting, $\sigma(z)=a$ and so (a, z) is not a mistake.
(b) Since $z \in F(a),(a, z)$ is a mistake. Put $d=d(a, z)$, then by a $d \geq r+1$. Hence

$$
\Gamma_{a z}=e^{d}(1-e)^{n-d}=e^{r+1} e^{d-(r+1)}(1-e)^{n-d} \leq e^{r+1}
$$

(c) $M_{a}=\sum_{z \in F(a)} \Gamma_{a z} \leq \sum_{z \in F(a)} e^{r+1}=|F(a)| e^{r+1}$.
(d) $M=\sum_{a \in C} p_{a} M_{a} \leq \sum_{a \in C} p_{a}|F(a)| e^{r+1}=\left(\sum_{a \in C} p_{a}|F(a)|\right) e^{r+1}$.

VII. 1 Minimum Distance

Definition VII.5. Let $C \subseteq \mathbb{B}^{n}$ be a binary code.
(a) $\delta=\delta(C)=\min \{d(a, b) \mid a, b \in C, a \neq b\}$. δ is called the minimum distance of C.
(b) For $a, b \in \mathbb{B}^{n}$ define $D(a, b)=\left\{i \mid a_{i} \neq b_{i}, 1 \leq i \leq n\right\}$.

Example VII.6. Compute the minimum distance of the code
$\{000000,111000,001110,110011\}$
The distances of 000000 to the other codewords are 3, 3 and 4. Also

111000	111000	001110
001110	110011	110011
4	3	5

So the minimum distance is 3 .
Definition VII.7. Let A and B be sets. Then

$$
A+B=(A \cup B) \backslash(A \cap B)
$$

$A+B$ is called the symmetric difference of A and B.
Lemma VII.8. Let A and B be sets.
(a) $A+B=(A \backslash B) \cup(B \backslash A)$.
(b) $|A+B|=|A \backslash B|+|A \backslash B|=|A|+|B|-2|A \cap B|$.

Proof. Readily verified.

Lemma VII.9. Let $a, b, c \in \mathbb{B}^{n}$.
(a) $D(a, c)=D(a, b)+D(b, c)$.
(b) $d(a, c)=d(a, b)+d(a, c)-2|D(a, b) \cap D(b, c)|$.
(c) $d(a, c) \leq d(a, b)+d(b, c)$, with equality if and only if $D(a, b) \cap D(b, c)=\varnothing$.

Proof. (a) Let $1 \leq i \leq n$.
If $i \notin D(a, b) \cup D(b, c)$, then $a_{i}=b_{i}=c_{i}$ and so $i \notin D(a, c)$.
If $i \in D(a, b) \backslash D(b, c)$, then $a_{i} \neq b_{i}=c_{i}$ and so $a_{i} \neq c_{i}$ and $i \in D(a, c)$.
If $i \in D(b, c) \backslash D(a, b)$, then $a_{i}=b_{i} \neq c_{i}$ and so $a_{i} \neq c_{i}$ and $i \in D(a, c)$.
If $i \in D(a, b) \cap D(b, c)$, then $a_{i} \neq b_{i} \neq c_{i}$. Since \mathbb{B} only has two elements this gives $a_{i}=c_{i}$ and so $i \notin D(a, c)$.

Hence $i \in D(a, c)$ if and only of $i \in(D(a, b) \backslash D(b, c)) \cup(D(b, c) \backslash D(a, b)))=D(a, b)+D(b, c)$
(b) and (b):

$$
\begin{aligned}
d(a, c) & =|D(a, c)|=|D(a, b)+D(b, c)| \\
& =|D(a, b)|+|D(b, c)|-2|D(a, b) \cap D(b, c)| \\
& =d(a, b)+d(b, c)-2|D(a, b) \cap D(b, c)|
\end{aligned}
$$

with equality if and only if $|D(a, b) \cap D(b, c)|=0$, that is if $D(a, b) \cap D(b, c)=\varnothing$.
Lemma VII.10. Let $a, b \in \mathbb{B}^{n}$. Put $d=d(a, b)$ and let $0 \leq e \leq d$. Then there exists $x \in \mathbb{B}^{n}$ with $d(a, x)=e$ and $d(x, b)=d-e$.

Proof. Let J be a subset of $D(a, b)$ with $|J|=e$. Define $x \in \mathbb{B}^{n}$ by $x_{i}=b_{i}$ if $i \in J$ and $x_{i}=a_{i}$ if $i \notin J$. Since $a_{i} \neq b_{i}$ for all $i \in J$ we have $D(a, x)=J$ and so $d(a, x)=|J|=e$. Since $D(a, x)=J \subseteq D(a, b)$ we conclude from VII. 9 that

$$
D(x, b)=D(x, a)+D(a, b)=J+D(a, b)=D(a, b) \backslash J
$$

and

$$
d(x, b)=|D(a, b) \backslash J|=|D(a, b)|-|J|=d-e .
$$

Definition VII.11. Let $r, n \in \mathbb{N}, x \in \mathbb{B}^{n}$ and $X \subseteq \mathbb{B}^{n}$. Then

$$
\mathbf{N}_{r}(x)=\left\{y \in \mathbb{B}^{n} \mid d(x, y) \leq r\right\}
$$

and

$$
\mathrm{N}_{r}(X)=\left\{y \in \mathbb{B}^{n} \mid d(x, y) \leq r \text { for some } x \in X\right\}
$$

$\mathrm{N}_{r}(x)$ is called the neighborhood of radius r around x.
Example VII.12. Compute $\mathrm{N}_{1}(0110)$.

$$
N_{1}(0110)=\{0110,1110,0010,0100,0111\}
$$

Lemma VII.13. Let $C \subseteq \mathbb{B}^{n}$ be a code, σ an decision rule for σ. Then σ is r-error correcting if and only if $\sigma(z)=a$ for all $a \in C$ and all $z \in \mathrm{~N}_{r}(a)$.

Proof. σ is r-error correcting if and only if no k-bit error (a, z) with $k \leq r$ is a mistake. This holds if and only if $\sigma(z)=a$ for all $a \in C$ and $z \in \mathbb{B}^{n}$ with $d(a, z) \leq r$ and so if and only if $\sigma(z)=a$ for all $a \in C$ and $z \in \mathbf{N}_{r}(a)$.

Definition VII.14. A binary code C is called an r-error correcting code if $\delta \geq 2 r+1$, that is $d(a, b) \geq 2 r+1$ for all $a, b \in C$ with $a \neq b$.

Theorem VII.15. Let $C \subseteq \mathbb{B}^{n}$ and $r \in \mathbb{N}$. Then the following are equivalent:
(a) C is an r-error correcting code.
(b) For each $z \in \mathbb{B}^{n}$, there exists at most one $a \in C$ with $d(a, z) \leq r$.
(c) $N_{r}(a) \cap N_{r}(b)=\varnothing$ for all $a, b \in C$ with $a \neq b$.
(d) Any minimum distance decision rule for C is r-error correcting.
(e) There exists an r-error correcting decision rule for C.

Proof. $(\mathrm{a}) \Longrightarrow(\mathrm{b})$: \quad Suppose C is an r-error correcting code. Then C has minimal distance at least $2 r+1$. Let $z \in \mathbb{B}^{n}$ and $a, b \in C$ with $d(a, z) \leq r$ and $d(b, z) \leq r$. Then $d(a, b) \leq d(a, z)+d(z, b) \leq r+r=2 r<2 r+1$. Since C is minimal distance at least $2 r+1, a=b$. So there exists at most one codeword of distance less or equal to r from z.
(b) \Longrightarrow c): Suppose $N_{r}(a) \cap N_{r}(b) \neq \varnothing$ and let $z \in N_{r}(a) \cap N_{r}(b)$. Then $d(a, z) \leq r$ and $d(b, z) \leq r$, contradiction to b .
(c) \Longrightarrow (d): Let σ be minimal distance decision rule and (a, z) be a k-bit error with $k \leq r$. Then $d(a, z)=k \leq r$. Put $b=\sigma(z)$. Since σ is a minimal distance decision rule $d(b, z) \leq d(a, z) \leq r$. Thus $z \in N_{r}(a) \cap N_{r}(b)$ and (c) implies that $a=b$. So σ corrects ($\left.a, z\right)$ and σ is r-error correcting.
(d) \Longrightarrow (e): Obvious.
(e) \Longrightarrow (a): Let $a, b \in C$ with $a \neq b$ and put $d=d(a, b)$. Let $d=2 e+\epsilon$ where $\epsilon \in\{0,1\}$ and $e \in \mathbb{N}$. By VII. 10 there exists $z \in \mathbb{B}^{n}$ with $d(a, z)=e$ and $d(x, b)=d-e=e+\epsilon$. Since $a \neq b, \sigma(a) \neq a$ or $\sigma(z) \neq b$. So at least one of (a, z) and (b, z) is a mistake. Hence σ is not $(e+\epsilon)$-error-correcting and so $r<e+\epsilon$. It follows that $r \leq e, d=e+(e+\epsilon)>r+r=2 r$ and $d \geq 2 r+1$. Thus $\delta(C) \geq 2 r+1$ and C is r-error correcting,

VII. 2 The Packing Bound

Lemma VII.16. Let $r, n \in \mathbb{N}$ with $r \leq n$ and $x \in \mathbb{B}^{n}$.
(a) $\left|\left\{y \in \mathbb{B}^{n} \mid d(x, y)=r\right\}\right|=\binom{n}{r}$.
(b) $\left|\mathrm{N}_{r}(x)\right|=\sum_{i=0}^{r}\binom{n}{i}$.

Proof. (a) The map

$$
y \rightarrow D(x, y)
$$

is bijection between $\left\{y \in \mathbb{B}^{n} \mid d(x, y)=r\right\}$ and the set of subsets of size r of $\{1, \ldots, n\}$.
(b) Note that $\mathrm{N}_{r}(x)$ is the disjoint union of the sets $\left\{y \in \mathbb{B}^{n} \mid d(x, y)=i\right\}, 0 \leq i \leq r$. So (a) follows from (b).

Lemma VII.17. Let $C \subseteq \mathbb{B}^{n}$ and $r \in \mathbb{N}$. Then
(a) $\left|\mathrm{N}_{r}(C)\right| \leq 2^{n}$ with equality if and only if $\left|\mathrm{N}_{r}(C)\right|=\mathbb{B}^{n}$.
(b) $\left|\mathrm{N}_{r}(C)\right| \leq|C| \sum_{i=0}^{r}\binom{n}{i}$ with equality if and only if C is an r-error correcting code.

Proof. (a) Just observe that $\left.\mathrm{N}_{r}(C)\right) \subseteq \mathbb{B}^{n}$ and $\left|\mathbb{B}^{n}\right|=2^{n}$.
(b) Note that $\mathrm{N}_{r}(C)=\bigcup_{a \in C} \mathrm{~N}_{r}(a)$ and so

$$
\begin{equation*}
\left|\bigcup_{a \in C} \mathrm{~N}_{r}(a)\right| \leq \sum_{a \in C}\left|\mathrm{~N}_{r}(a)\right| \tag{1}
\end{equation*}
$$

with equality if and only if $\mathrm{N}_{r}(a) \cap \mathrm{N}_{r}(b)=\varnothing$ for all $a, b \in C$ with $a \neq b$. So by VII.15 with equality if and only if C is r-error-correcting.

By VII.16b

$$
\begin{equation*}
\sum_{a \in C}\left|\mathrm{~N}_{r}(a)\right|=\sum_{a \in C} \sum_{i=0}^{r}\binom{n}{k}=|C| \sum_{i=0}^{r}\binom{n}{i} \tag{2}
\end{equation*}
$$

Combining (1) and (2) gives (b).
Theorem VII. 18 (The Packing Bound). Let $C \subseteq \mathbb{B}^{n}$ be an r-error-correcting code. Then

$$
|C| \cdot \sum_{i=0}^{r}\binom{n}{i} \leq 2^{n}
$$

and so

$$
|C| \leq \frac{2^{n}}{\sum_{o=0}^{r}\binom{n}{i}}
$$

Proof. By VII. 17

$$
|C| \cdot \sum_{i=0}^{r}\binom{n}{i}=\left|N_{r}(C)\right| \leq 2^{n}
$$

Definition VII.19. Let $C \subseteq \mathbb{B}^{n}$ be a code. Then the information rate $\rho(C)$ of C is the information rate of C relative to $\mid \mathbb{B}^{n}$. That is

$$
\rho(C)=\log _{\left|\mathbb{B}^{n}\right|}|C|=\frac{\log _{2}|C|}{n}
$$

Example VII.20. Use packing theorem to find an upper bound for the information rate of a 2-error correcting code $C \subseteq \mathbb{B}^{n}$ of size 100 ?

We will first find a lower bound for n.
We need $100\left(1+n+\binom{n}{2}\right) \leq 2^{n}$, that is

$$
100\left(\frac{2+2 n+n^{2}-n}{2}\right) \leq 2^{n}
$$

and

$$
25\left(n^{2}+n+2\right) \leq 2^{n-1}
$$

Thus also $25 n^{2} \leq 2^{n-1}$ and $5 n \leq 2^{\frac{n-1}{2}}$. Put $m=\frac{n-1}{2}$. Then $n=2 m+1$ and so $5(2 m+1) \leq 2^{m}$ and

$$
2^{m}-10 m-5>0
$$

Consider the function $f(x)=2^{x}-10 x-5$. Then

$$
f^{\prime}(x)=\ln (2) 2^{x}-10>0 \text { if and only if } x>\log _{2}\left(\frac{10}{\ln 2}\right) \approx 3.85
$$

Since $f(0)=1-0-5<0$ and $f(6)=64-60-6<0, f(x)<0$ on the interval $[0,6]$. Thus $m>6$ and $n=2 m+1>13$. Hence $n \geq 14$ and

$$
\rho(C) \leq \frac{\log _{2} 100}{14} \approx 0.228
$$

Definition VII.21. Let $C \subseteq \mathbb{B}^{n}$. Then C is called a perfect code if there exists $r \in \mathbb{N}$ such that for all $z \in \mathbb{B}^{n}$ there exists a unique $a \in C$ with $d(z, a)=r$.

Lemma VII.22. Let $C \subseteq \mathbb{B}^{n}$. Then C is a perfect code if and only if there exists $r \in \mathbb{N}$ such that C is an r-error correcting code and

$$
|C| \sum_{i=0}^{r}\binom{n}{i}=2^{n}
$$

Proof. By VII.15 C is r-error correcting the following holds for any perfect code and for any r-error correcting code:
(*) For each z in \mathbb{B}^{n}, there exists at most one $a \in C$ with $d(a, z) \leq r$.
Note that this condition holds if C is perfect code. So we may assume that $(*)$ holds and so C is r-error correcting. Then

C is a perfect code
$\Longleftrightarrow \quad$ for all $z \in \mathbb{B}^{n}$ there exists a unique $a \in C$ with $d(a, z) \leq r$
$\Longleftrightarrow \quad$ for all $z \in \mathbb{B}^{n}$ there exists at least one $c \in C$ with $d(c, z) \leq r \quad-$ by $\left(^{*}\right)$
$\Longleftrightarrow \mathbb{B}^{n}=N_{r}(C)$
$\Longleftrightarrow 2^{n}=\left|N_{r}(C)\right|$
$\Longleftrightarrow 2^{n}=|C| \sum_{i=0}^{r}\binom{n}{i}$

Definition VII.23. Let $\delta, n \in \mathbb{N}$ with $\delta \leq n$. Then $A(n, \delta)$ is the largest possible size of code $C \subseteq \mathbb{B}^{n}$ with minimum distance at least δ. That is

$$
A(n, \delta)=\max _{\substack{C \subseteq \mathbb{B}^{n} \\ \delta(C) \geq \delta}}|C|
$$

Note that the code with minimal distance δ will be $\left\lfloor\frac{\delta-1}{2}\right\rfloor$-error correcting. So the packing bound will provide an upper bound for $A(n, \delta)$. But if δ is fairly large this upper bound can be easily improved:

Lemma VII.24. Let $\delta, n \in \mathbb{N}$ with $\frac{2}{3} n<\delta \leq n$. Then $A(n, \delta)=2$.
Proof. The code $\{00 \ldots 0,11 \ldots 1\}$ show that $A(n, \delta) \geq 2$. We will now show that any code C with at least three codewords has minimal distance

$$
\delta(C) \leq \frac{2}{3} n
$$

So suppose a, b, c are three distinct codewords in C and assume without $\operatorname{loss} d(a, b) \geq \frac{2}{3} n$ and $d(b, c) \geq \frac{2}{3} n$. Then

$$
n \geq|D(a, b) \cup D(b, c)|=|D(a, b)|+|D(b, c)|-|D(a, b) \cup D(b, c)| \geq \frac{2}{3} n+\frac{2}{3} n-|D(a, b) \cap D(b, c)|
$$

and so

$$
|D(a, b) \cap D(b, c)| \geq \frac{1}{3} n
$$

Since $D(a, c) \cap(D(a, b) \cap D(b, c))=\varnothing$ this gives

$$
|D(a, c)| \leq n-|D(a, b) \cap D(b, c)| \leq n-\frac{1}{3} n=\frac{2}{3} n
$$

So indeed $\delta(C) \leq \frac{2}{3} n$.
The packing bound can be much higher: Consider $n=10$ and $\delta=7$. Then $r=\left\lfloor\frac{7-1}{2}\right\rfloor=3$ and

$$
|C| \leq \frac{2^{10}}{1+\binom{10}{1}+\binom{10}{2}+\binom{10}{3}}=\frac{1024}{1+10+45+120}=\frac{1024}{176}<6
$$

So we only get $|C| \leq 5$ from the packing bound.

Chapter VIII

Linear Codes

VIII. 1 Introduction to linear codes

Definition VIII.1. \mathbb{F}_{2} is the set $\mathbb{B}=\{0,1\}$ together with the following addition and multiplication:

+	0	1
0	0	1
0	1	0

.	0	1
0	0	0
0	0	1

So for example in $\mathbb{F}_{2}, 1+1=0$ and $1 \cdot 0=0$.
Definition VIII.2. \mathbb{F}_{2}^{n} is \mathbb{B}^{n} together with the following addition and scalar multiplication

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)+\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right) \quad l\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
k x_{1} \\
k x_{2} \\
\vdots \\
k x_{n}
\end{array}\right)
$$

for all $l, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in \mathbb{F}_{2}$.
If $l=0$, then $l x_{i}=0$ for all i and so $0 x=\overrightarrow{0}$ for all $x \in \mathbb{F}_{2}^{n}$. Here $\overrightarrow{0}=00 \ldots 0$. If $l=1$, then $l x_{i}=x_{i}$ for all i and so $1 x=x$ for all $x \in \mathbb{F}_{2}^{n}$.

Recall here that we are viewing

as three different notations for the exact same n-tuple with coefficients in \mathbb{B}.
(The book considers these to be different objects. If $x=x_{1} \ldots x_{n}$ is a message in \mathbb{B} then x^{\prime} denotes the corresponding column vector.)

Example VIII.3. Compute $11011+10110$
We have

11011
$+10110$
$=01101$
Definition VIII.4. A subspace of \mathbb{F}_{2}^{n} is a subset C of \mathbb{F}_{2}^{n} such that
(a) $\overrightarrow{0} \in C$.
(b) $l x \in C$ for all $l \in \mathbb{F}_{2}, x \in \mathbb{F}_{2}{ }^{1}$
(c) $x+y \in C$ for all $x, y \in C$.

A subspace of \mathbb{F}_{2}^{n} is also called a binary linear code of length n
Definition VIII.5. Let C be a subspace of \mathbb{F}_{2}^{n}. A basis for C is a k-tuple

$$
\left(v_{1}, \ldots, v_{k}\right)
$$

in C such that for each c in C there exists a unique k-tuple

$$
\left(l_{1}, \ldots, l_{k}\right)
$$

in \mathbb{F}_{2} with

$$
c=l_{1} v_{1}+\ldots+l_{k} v_{k} .
$$

Lemma VIII.6. Let C be a subspace of \mathbb{F}_{2}^{n}.
(a) C has a basis $\left(v_{1}, \ldots, v_{k}\right)$.
(b) $|C|=2^{k}$ and so $k=\log |C|$.
(c) $0 \leq k \leq n$.

Proof. (a) See your favorite linear algebra book.
(b) By definition of a basis and a subspace the map

$$
\mathbb{F}_{2}^{k} \rightarrow C, \quad\left(l_{1}, \ldots, l_{k}\right) \rightarrow l_{1} v_{1}+\ldots+l_{k} v_{k}
$$

is a well-defined bijection. Thus $|C|=\left|\mathbb{F}_{2}^{k}\right|=2^{k}$. (c) Since $1 \leq|C| \leq\left|\mathbb{F}_{2}^{n}\right|=2^{n}$, this follows from (b).
Example VIII.7. Let $C=\{000000,111000,000111,111111\}$. Find a basis for C and determine the parameters of C.

Both
and
are a basis for C and so $\operatorname{dim} C=2$.

[^2]Definition VIII.8. Let C be a binary linear code of length n. The length k of a basis of C is called the dimension of C and is denoted by $\operatorname{dim} C$. The triple $(n, \operatorname{dim} C, \delta(C))$ are called the parameters of C.
Remark VIII.9. The information rate $\rho(C)$ of a binary linear code C of length n and dimension k is $\frac{k}{n}$.
Proof. Let $C \subseteq \mathbb{F}_{2}^{n}$ be a linear code. Then

$$
\rho(C)=\frac{\log _{2}|C|}{\log _{2}\left|\mathbb{F}_{2}^{n}\right|}=\frac{\log _{2} 2^{k}}{\log _{2} 2^{n}}=\frac{k}{n}
$$

Definition VIII.10. Let $x=x_{1} \ldots x_{n} \in \mathbb{F}_{2}^{n}$. Then $\mathrm{wt}(x)=\left|\left\{1 \leq i \leq n \mid x_{i} \neq 0\right\}\right|$ is called the weight of x.
Lemma VIII.11. Let $x, y \in \mathbb{F}_{2}^{n}$.
(a) $d(x, y)=\mathrm{wt}(x-y)=\mathrm{wt}(x+y)$.
(b) $\operatorname{wt}(x)=d(x, \overrightarrow{0})$.
(c) Let C be a binary linear code. Then $\delta(C)$ is the minimal weight of a non-zero codeword.

Proof. (a)

$$
d(x, y)=\left|\left\{1 \leq i \leq n \mid x_{i} \neq y_{i}\right\}\right|=\left\{\mid\left\{1 \leq i \leq n \mid x_{i}-y_{i} \neq 0\right\}=\operatorname{wt}(x-y)\right.
$$

(b) $d(x, \overrightarrow{0})=\mathrm{wt}(x-\overrightarrow{0})=\mathrm{wt}(x)$.
(c) Let w be the minimal weight of a non-zero codeword.

Let $x, y \in C$ with $x \neq y$. Then $x-y \neq \overrightarrow{0}$ and so $d(x, y)=\omega t(x-y) \geq w$. Since C is subspace of $\mathbb{F}_{2}^{n}, x-y \in C$ and so $\delta(C) \geq w$.

Let x be non-zero codeword. Since $\overrightarrow{0} \in C$, we have $\mathrm{wt}(x)=d(\overrightarrow{0}, x) \geq \delta(C)$. Hence $w \geq \delta(C)$ and so $\delta(C)=w$.

Example VIII.12. Let $D=\{000000,111000,000111,111111\}$. Determine the parameters of D.
The length of C is 6 . The dimension of C is $\log _{2}|C|=$ $\log _{2} 4=2$. The weights of the codewords are $0,3,3,6$. So the minimum non-zero weight is 3 . Thus $\delta(C)=3$ and the parameters are

VIII. 2 Construction of linear codes using matrices

Definition VIII.13. (a) Let E be an $n \times k$ matrix over \mathbb{F}_{2}. Then

$$
\operatorname{Col}(E)=\left\{E y \mid y \in \mathbb{F}_{2}^{k}\right\}
$$

$\operatorname{Col}(E)$ is called the linear code generated by E, and E is called a generating matrix for $\operatorname{Col}(E)$.
(b) Let H be a $m \times n$-matrix. Then

$$
\operatorname{Nul}(H)=\left\{x \in \mathbb{F}_{2}^{n} \mid H x=\overrightarrow{0}\right\}
$$

H is called a check matrix for $\operatorname{Nul}(H)$.

Lemma VIII.14. (a) Let E be an $n \times k$ matrix over \mathbb{F}_{2}. Then $\operatorname{Col}(E)$ is a subspace of \mathbb{F}_{2}^{n}.
(b) Let H be a $m \times n$-matrix over \mathbb{F}_{2}. Then $\operatorname{Nul}(H)$ is a subspace of \mathbb{F}_{2}^{n}.

Proof. (a) $E \overrightarrow{0}=\overrightarrow{0}$. So $\overrightarrow{0} \in \operatorname{Col}(E)$. Let $a, b \in \operatorname{Col}(E)$. Then $a=E x$ and $b=E y$ for some $x, y \in \mathbb{F}_{2}^{k}$. Thus

$$
a+b=E x+E y=E(x+y)
$$

and so $a+b \in \operatorname{Col} E$.
(b) $H \overrightarrow{0}=\overrightarrow{0}$ and so $\overrightarrow{0} \in \operatorname{Nul}(H)$. Let $a, b \in \operatorname{Nul} H$. The $H a=\overrightarrow{0}$ and $H b=\overrightarrow{0}$. Hence

$$
H(a+b)=H a+H b=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}
$$

and so $a+b \in \mathrm{Nul} H$.

Example VIII.15. Find the minimal distance of

$$
\mathrm{Col}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

Let x be in the Column space of the matrix. Then

$$
x\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
a \\
b \\
c \\
a+b \\
b+c \\
a+c
\end{array}\right)
$$

for some $a, b, c \in \mathbb{F}_{2}$.
If exactly one of a, b and c are non-zero, one of the first three coefficient is non-zero and two of the last three coefficient are non-zero. So wt $(x)=3$

If exactly two of the a, b, c are not zero, two of the first three coefficient are non-zero and two of the last three coefficient are non-zero, so wt $(x)=4$

If all of a, b, c are non-zero, the first three coefficient are non-zero and the last three coefficient are zero. So wt $(x)=3$.

Thus $\operatorname{Col}(E)$ has minimum weight three and so is 1-error correcting.

VIII. 3 Standard form of check matrix

Notation VIII.16. Let $\left(I_{a}\right)_{a \in A}$ and $\left(J_{b}\right)_{b \in B}$ be tuples of sets. Let $M=\left[M_{a b}\right]_{a \in A}$ be an $A \times B$ matrix such that each $M_{a b}$ is an $I_{a} \times J_{b}$-matrix. Put $I=\cup_{a \in A} I_{a}$ and $J=\cup_{b \in B} J_{b}$. Then we will view M as an $I \times J$-matrix with

$$
M_{i j}=\left(M_{a b}\right)_{i j}
$$

for all $i \in I, j \in J$, where a is the unique element of A with $i \in I_{a}$ and b is the unique element of B with $j \in J_{b}$.
Example VIII.17. Given

$$
\begin{array}{cc}
X_{11}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], & X_{12}=\left[\begin{array}{l}
7 \\
8
\end{array}\right] \\
X_{21}=\left[\begin{array}{lll}
9 & 10 & 11
\end{array}\right], \quad \text { and } \quad X_{22}=[12] .
\end{array}
$$

Then

$$
\begin{gathered}
{\left[X_{11}, X_{12}\right]=\left[\begin{array}{llll}
1 & 2 & 3 & 7 \\
4 & 5 & 6 & 8
\end{array}\right],} \\
{\left[\begin{array}{l}
X_{11} \\
X_{21}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
9 & 10 & 11
\end{array}\right]}
\end{gathered}
$$

and

$$
\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 2 & 3 & 7 \\
4 & 5 & 6 & 8 \\
9 & 10 & 11 & 12
\end{array}\right]
$$

Definition VIII.18. Let A be a set. Then I_{A} denotes the $A \times A$ matrix with ab-coefficient equal to

$$
\delta_{a b}= \begin{cases}1 & \text { if } a=b \\ 0 & \text { if } a \neq b\end{cases}
$$

I_{A} is called the $A \times A$ identity matrix. If $n \in \mathbb{N}$, then $\mathrm{I}_{n}=\mathrm{I}_{\{1, \ldots, n\}}$.

Example VIII.19.

$$
I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { and } I_{\{x, y\}}=\begin{aligned}
& \\
& \hline x
\end{aligned} \left\lvert\, \begin{array}{cc}
x & y \\
y & 0 \\
y & 1
\end{array}\right.
$$

Lemma VIII.20. Let A be an $m \times k$ matrix in \mathbb{F}_{2}. Put

$$
E=\left[\begin{array}{l}
I_{k} \\
A
\end{array}\right] \text { and } H=\left[\begin{array}{ll}
A & I_{m}
\end{array}\right]
$$

Then
(a) $\operatorname{Col}(E)=\operatorname{Nul}(H)$.
(b) The columns of E form a basis for $\operatorname{Col}(E)$.
(c) $\operatorname{Col}(E)$ is a code of length $m+k$ and dimension k.

Proof. $\left\lfloor\right.$ a) Let $x \in \mathbb{F}_{2}^{k+m}$. Then $x=\binom{a}{b}$ for unique $a \in \mathbb{F}_{2}^{k}$ and $b \in \mathbb{F}_{2}^{m}$. We compute:

$$
\begin{aligned}
& \binom{a}{b} \in \operatorname{Col}\left(\left[\begin{array}{l}
I_{k} \\
A
\end{array}\right]\right) \\
& \Longleftrightarrow \quad\binom{a}{b}=\left[\begin{array}{l}
I_{k} \\
A
\end{array}\right] y \quad \text { for some } y \in \mathbb{F}_{2}^{k} \\
& \Longleftrightarrow \quad\binom{a}{b}=\binom{y}{A y} \quad \text { for some } y \in \mathbb{F}_{2}^{k} \\
& \Longleftrightarrow \quad a=y \text { and } b=A y \quad \text { for some } y \in \mathbb{F}_{2}^{k} \\
& \Longleftrightarrow \quad b=A a \\
& \Longleftrightarrow \quad A a+b=\overrightarrow{0} \\
& \Longleftrightarrow \quad\left[\begin{array}{ll}
A & I_{l}
\end{array}\right]\binom{a}{b}=\overrightarrow{0} \\
& \Longleftrightarrow \quad\binom{a}{b} \in \operatorname{Nul}\left(\left[\begin{array}{ll}
A & \left.\left.I_{l}\right]\right)
\end{array}\right.\right.
\end{aligned}
$$

So $x \in \operatorname{Col} E$ if and only if $x \in \operatorname{Nul} H$.
(b)

Consider the map

$$
c: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}^{m+k}, y \rightarrow E y=\binom{y}{A y}
$$

Note that

$$
\operatorname{Col}(E)=\left\{E y \mid y \in \mathbb{F}_{2}^{k}\right\}=\left\{c(y) \mid y \in \mathbb{F}_{2}^{k}\right\}
$$

and so $\operatorname{Col}(E)=\operatorname{Im} c$. Looking at the first k bits of $E y$ we see that c is $1-1$. So α is a bijection from \mathbb{F}_{2}^{k} to $\operatorname{Col} E$. Let $v_{i}=\operatorname{Col}(E)$. Then

$$
c(y)=E y=y_{1} v_{1}+y_{2} v_{2}+\ldots+y_{k} v_{k}
$$

and since c is a bijection, for each $a \in \operatorname{Col}(E)$ there exists a unique $\left(y_{1}, \ldots, y_{k}\right) \in \mathbb{F}_{2}^{k}$ with $a=y_{1} v_{1}+\ldots+$ $y_{k} v_{k}$. Hence $\left(v_{1}, \ldots, v_{k}\right)$ is basis for $\operatorname{Col}(E)$.
(c) $\operatorname{By}(\mathrm{b}) \operatorname{dim} \operatorname{Col} E=k$. Since $\operatorname{Col} E \subseteq \mathbb{F}_{2}^{m+k}, \operatorname{Col} E$ has length $m+k$.

We may view c has code for \mathbb{F}_{2}^{k} in the alphabet \mathbb{B}_{2}. Since $c(y)=E y=(y, A y)$ the first k-bits of $c(y)$ (namely y) are called the message bits, and the last m bits (namely $A y$) are called the check bits.

Definition VIII.21. Let $C \subseteq \mathbb{B}^{n}$ be a linear code.
(a) A check matrix H for C is said to be in standard form if $H=\left[A I_{m}\right]$ for some $k \times m$ matrix A.
(b) A generating matrix E for C is said to be in standard form if $E=\left[\begin{array}{l}I_{k} \\ A\end{array}\right]$ for some $k \times m$-matrix A.

Definition VIII.22. Let $C, D \subseteq \mathbb{F}_{2}^{n}$. We say that D is a permutation of C if the exist a bijection $\pi:\{1, \ldots, n\} \rightarrow$ $\{1, \ldots, n\}$ with

$$
D=\left\{a_{\pi(1)} a_{\pi(2)} \ldots a_{\pi(n)} \mid a_{1} a_{2} \ldots a_{n} \in C\right\}
$$

Example VIII.23. Show that

$$
D=\{000,100,001,101\}
$$

is a permutation of

$$
C=\{000,010,001,011\}
$$

D is obtained from C via the permutation:

$$
\pi: \begin{array}{lll}
1 & 2 & 3 \\
\hline 2 & 1 & 3
\end{array}
$$

Notation VIII.24. Let I, J be sets, $i, k \in I, A$ an $I \times J$ matrix and x and $y J$-tuples.
(a) $\mathrm{R}_{i} x A$ denotes the $I \times J$ matrix B with $\operatorname{Row}_{i} B=x$ and $\operatorname{Row}_{l} A=\operatorname{Row}_{l} A$ for all $l \in I$ with $l \neq i$. (So $\mathrm{R}_{i} x A$ is the matrix obtained from A by replacing Row i by x.)
(b) $\mathrm{R}_{i k} x y A=\mathrm{R}_{i} x\left(\mathrm{R}_{k} y A\right.$). (So $R_{i k} x y A$ is the matrix obtained from A by replacing Row k by y and then replacing Row i by x.)

Definition VIII.25. Let I and J be sets and $i, k \in I$ with $i \neq k$. Then ' $R_{i} \leftrightarrow R_{j}$ ' and ' $\mathrm{R}_{i}+\mathrm{R}_{k} \rightarrow R_{k}$ ' are the functions with domain the binary $I \times J$-matrix defined as follows:
(a) $\left(R_{i} \leftrightarrow R_{k}\right)(A)=R_{i k} a^{k} a^{i} A$. So $R_{i} \rightarrow R_{k}$ interchangings row i and row k of A
(b) $\left(R_{i}+R_{k} \rightarrow R_{k}\right)(A)=R_{k}\left(a^{i}+a^{k}\right) A$. So $\left(R_{i}+R_{k} \rightarrow R_{k}\right)$ adds row i to row k of A.

An elementary row operation is one of the function $R_{i} \leftrightarrow R_{j}$ and $R_{i}+R_{k} \rightarrow R_{k}$.
Elementary column operations are defined similarly, using the symbol C in place of R and using columns rather that rows.

Lemma VIII.26. (a) Let H and G be $m \times n$-matrices in \mathbb{F}_{2} and suppose G is obtain from H by sequence of elementary row operation. Then $\mathrm{Nul} H=\mathrm{Nul} G$.
(b) Let E and F be $m \times n$-matrices in \mathbb{F}_{2} and suppose F is obtain from E by a sequence of elementary column operation. Then $\operatorname{Col} E=\operatorname{Col} F$.

Proof. (a) Let $h_{i}=\operatorname{Row}_{i}(H)$. Note that $x \in \operatorname{Nul} H$ if and only if $h_{i} x=0$ for all $1 \leq i \leq m$
Suppose that $G=\left(\mathrm{R}_{i} \leftrightarrow \mathrm{R}_{k}\right)(H)$. Then H and G have the same rows (just in a different order) and $x \in \mathrm{Nul} H$ if and only if $x \in \operatorname{Nul} G)$.

Suppose next that $G=\left(\mathrm{R}_{i}+\mathrm{R}_{k} \rightarrow \mathrm{R}_{k}\right)(H)$. Let $x \in \mathrm{Nul} H$. If $l \neq k$, then $g_{l}=h_{l}$ and so $g_{l} x=0$. Also $g_{k} x=\left(h_{i}+h_{k}\right) x=h_{i} x+h_{k} x=0+0$. So $x \in \operatorname{Nul} G$. Note that $h_{k}=h_{i}+\left(h_{i}+h_{k}\right)=g_{i}+g_{k}$ and by symmetry, $\mathrm{Nul} G \subseteq \mathrm{Nul} H$. Thus (a) holds.
(b) Note that $x \in \operatorname{Col} E$. Let $v_{j}=\operatorname{Col}_{j}(E)$. Then $x \in \operatorname{Col} E$ if and only if

$$
x=\sum_{j \in J} y_{j} v_{j}
$$

for some $\left(y_{1}, \ldots, y_{k}\right) \in \mathbb{F}_{2}^{k}$.
Suppose that $F=\left(\mathrm{C}_{j} \leftrightarrow \mathrm{C}_{k}\right)(E)$. Then E and F have the same columns (just in a different order) and $x \in \operatorname{Col} E$ if and only if $x \in \operatorname{Col} F$.

Suppose next that $F=\left(\mathrm{C}_{j}+\mathrm{C}_{k} \rightarrow \mathrm{C}_{k}\right)(E)$ and let $x \in \operatorname{Col} E$. Then

$$
x=\sum_{l \in J} y_{l} v_{l}=y_{j} v_{j}+y_{k} v_{k}+\sum_{l \neq j, k} y_{l} v_{l}=\left(y_{j}+y_{k}\right) v_{j}+y_{k}\left(v_{j}+v_{k}\right)+\sum_{l \neq j, k} y_{l} v_{l}
$$

and so $x \in \operatorname{Col} F$. By symmetry $\operatorname{Col} F \subseteq \operatorname{Col} E$ and so (b) holds.
Proposition VIII.27. Let C be a subspace of \mathbb{B}^{n}. Then there exists a permutation D of C such that D has a generating matrix and a check matrix in standard form.

Proof. Observe first that E has $n \times k$ - generating matrix. For example we can choose a matrix whose columns consists of all the codewords. Deleting all the zero columns we may assume that E has non zero column. Then $e_{1 i}=1$ for some i. Applying the permutation $1 \leftrightarrow i$ to the code C we may assume that $e_{11}=1$. Adding the first column to column j for each $2 \leq j \leq k$ with $e_{1 j}=1$ we may assume that $e_{1 j}=0$ for all $2 \leq j \leq k$. Consider the matrix F obtained by deleting row 1 and column 1 from E. By induction we may assume that F is in standard form. Adding column i to the first column for each $2 \leq i \leq k$ with $e_{i 1}=1$ we obtain a generating matrix in standard form.

Example VIII.28. Find a generating matrix and a check matrix in standard form for

$$
C=\{000,110,101,011\}
$$

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]
$$

So

$$
E=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right] \quad \text { and } \quad H=[1,1,1]
$$

are a generating matrix and check matrix in standard form for C

VIII. 4 Constructing 1-error-correcting linear codes

Definition VIII.29. Let $\left(v_{1}, \ldots, v_{k}\right)$ be a k-tuple in \mathbb{F}_{2}^{n}. Then $\left(v_{1}, \ldots, v_{k}\right)$ is called linearly dependent if there exists a non-zero $\left(l_{1}, \ldots, l_{k}\right) \in \mathbb{F}_{2}^{k}$ with

$$
l_{1} v_{1}+l_{2} v_{2}+\ldots+l_{k} v_{k}=\overrightarrow{0}
$$

$\left(v_{1}, \ldots, v_{k}\right)$ is called linearly independent, if its is not linearly dependent.
Note that $\left(v_{1}, \ldots, v_{k}\right)$ is linearly independent if for all $\left(l_{1}, \ldots, l_{k}\right) \in \mathbb{F}_{2}^{k}$

$$
l_{1} v_{1}+l_{2} v_{2}+\ldots+l_{k} v_{k}=\overrightarrow{0} \quad \Longrightarrow \quad l_{1}=0, l_{2}=0, \ldots, l_{k}=0
$$

Lemma VIII.30. Let H be check matrix for the binary linear code C.
(a) The minimum distance of C is the minimal number of columns of H whose sum is equal to $\overrightarrow{0}$. It is also equal to the minimal number of linearly dependent columns of H.
(b) Let $r \in \mathbb{Z}^{+}$. Then C is r-error-correcting if and only if any sum of $2 r$ or less columns of H is not equal to $\overrightarrow{0}$.

Proof. Let $x=x_{1} x_{2} \ldots x_{n} \in \mathbb{F}^{n}$ with $x \neq \overrightarrow{0}$ and let h_{i} be the i-th column of H. Then

$$
H x=x_{1} h_{1}+x_{2} h_{2}+\ldots+x_{n} h_{n} .
$$

Let $1 \leq i_{1}<i_{2}<\ldots<i_{d} \leq n$ such that $x_{i_{j}} \neq 0$ for all $1 \leq j \leq d$ and $x_{i}=0$ for all other i. Then $x_{i_{j}}=1$ and so

$$
H x=h_{i_{1}}+h_{i_{2}}+\ldots+h_{i_{d}} .
$$

Observe that $d=\operatorname{wt}(x)$. Since $x \in C$ if only if $H x=\overrightarrow{0}$, we conclude that there exists a vector of weight d in C if and only if there exists d columns of H whose sum is equal to 0 .

This proves the first statement. Let $1 \leq k_{1}<k_{2}<\ldots<k_{e} \leq n$. Then the columns $h_{k_{1}}, \ldots, h_{k_{e}}$ are linearly dependent if and only if there exists a non-zero $\left(l_{1}, l_{2}, \ldots, l_{e}\right) \in \mathbb{F}_{2}^{e}$ with

$$
\begin{equation*}
l_{1} h_{k_{1}}+l_{2} h_{k_{2}}+\ldots l_{e} h_{k_{e}}=\overrightarrow{0} \tag{*}
\end{equation*}
$$

In a minimal linear dependent set of columns, all the l_{j} will be non-zero (since the columns with $l_{j} \neq 0$ are still linear dependent). So $l_{j}=1$ for all $1 \leq j \leq e$ and (*) becomes

$$
h_{k_{1}}+h_{k_{2}}+\ldots+h_{k_{e}}=\overrightarrow{0}
$$

Thus the minimal number of linear dependent columns is also the minimal numbers of columns whose sum is equal to $\overrightarrow{0}$.
(b) C is r-error correcting if and only if the minimal distance is at least $2 r+1$. By (a) C has minimum distance less or equal to $2 r$ if and only if there exists $2 r$ or less columns whose sum is zero. So holds.

Corollary VIII.31. Let $n, k \in \mathbb{Z}$ with $k \leq n$ and put $m=n-k$. Let $C \subseteq \mathbb{F}_{2}$ and H be an $m \times n$-matrix in \mathbb{F}_{2}. Then the following two statements are equivalent:
(a) C is binary linear 1-error correcting code with check matrix H and dimension k.
(b) $C=\operatorname{Nul}(H), \operatorname{Col} H=\mathbb{F}_{2}^{m}$ and the columns of H are non-zero and pairwise distinct.

Proof. By definition H is a check matrix for C if and only if $C=\mathrm{Nul} H$. So we may assume $C=\mathrm{Nul} H$. Then

$$
\operatorname{dim} C=\operatorname{dim} \operatorname{Nul} H=n-\operatorname{dim} \operatorname{Col} H=k+(m-\operatorname{dim} \operatorname{Col} H)
$$

Thus $\operatorname{dim} C=k$ if and only if $\operatorname{dim} \operatorname{Col} H=m$ and so if and only if $\operatorname{Col} H=\mathbb{F}^{m}$.
We now apply VIII.30 with $r=1$. We conclude that C is 1 -error correcting if and only the sum of one or two of the columns is never $\overrightarrow{0}$. Since $x+y=\overrightarrow{0}$ if and only if $x=y$, we see that C is 1 -error correcting if and only if the columns of H are non-zero and pairwise distinct.

Lemma VIII.32. (a) Let $n, k \in \mathbb{Z}^{+}$. Then there exists a binary linear 1-error correcting code of dimension k and length n if and only if

$$
k \leq n-\left\lceil\log _{2}(n+1)\right\rceil
$$

(b) The maximal information rate of an 1-error correcting, binary linear code of length n is

$$
1-\frac{\left\lceil\log _{2}(n+1)\right\rceil}{n}
$$

Proof. Suppose first that there exist an 1-error-correcting code of length n and dimension n. Then the Packing bound shows

$$
2^{k}(1+n) \leq 2^{n}
$$

and so $k+\log _{2}(1+n) \leq n$ and $k \leq n-\log _{2}(1+n)$.
Suppose next that $k \leq n-\log _{2}(1+n)$. Put $m=n-k$. Then $m \leq m+k=n \leq 2^{m}-1$. Put $e_{i}=\operatorname{Col}_{i}\left(I_{m}\right)$. Then $\left|\mathbb{F}_{2}^{k} \backslash\left\{\overrightarrow{0}, e_{1}, \ldots, e_{m}\right\}\right|=2^{m}-m-1 \geq k$. So there exists distinct vectors $a_{1}, \ldots, a_{k} \in \mathbb{F}_{2}^{k} \backslash\left\{\overrightarrow{0}, e_{1}, \ldots, e_{m}\right\}$ Let A be the $k \times m$ matrix with $\operatorname{Col}_{i}(A)=a_{i}$ and put $H=\left[A, I_{m}\right]$. Since $\operatorname{ColI} I_{m}=\mathbb{F}_{2}^{m}$, also $\operatorname{Col} H=\mathbb{F}_{2}^{m}$. VIII. 31 now shows that $\mathrm{Nul} H$ is a k-dimensional 1-error correcting code of length n.

Note that

$$
\lim _{n \rightarrow \infty} 1-\frac{\left\lceil\log _{2}(n+1)\right\rceil}{n}=1
$$

So one can construct 1-error-correcting binary linear codes of information rates arbitrarily close to 1 .
Definition VIII.33. A Hamming code is a perfect-1-error correcting binary linear code.
Theorem VIII.34. Let $C \subseteq \mathbb{F}_{2}^{n}$ be a linear code with $n \times m$ check matrix H such that $\operatorname{dim} C=n-m$. Then C is a Hamming code if and only if $n=2^{m}-1$ and the columns of H are the non-zero vectors of \mathbb{F}_{2}^{m} (in some order).

Proof. By VII. 22
$\mathbf{1}^{\circ}$. $\quad C$ is a Hamming code if and only if C is 1 -error correcting and $|C|(1+n)=2^{n}$

Since $\operatorname{dim} C=n-m$

$$
|C|(1+n)=2^{n} \Longleftrightarrow 2^{n-m}(1+n)=2^{n} \Longleftrightarrow 1+n=2^{m} \Longleftrightarrow n=2^{m}-1
$$

By VIII.31 C is 1-error correcting if and only if the columns of H are non-zero and pairwise distinct.
Thus
2. $\quad C$ is a Hamming code if and only if and only if the columns of H are non-zero and pairwise distinct and $n=2^{m}-1$.

Since \mathbb{F}_{2}^{m} has exactly $2^{m}-1$ non-zero vectors 2° implies the theorem.
Corollary VIII.35. Let $n \in \mathbb{N}$. Then there exists a Hamming code of length n if and only if $n=2^{m}-1$ for some $m \in \mathbb{N}$, that is if and only if $n+1$ is a power of 2 . If this is the case, a Hamming code of length n is unique up to permutation.

Proof. The first statement follows directly from Theorem VIII. 34 . The same Theorem shows that an $n \times m$ check matrix of an Hamming code of length n is unique up to a permutation of the columns. So also the Hamming code is unique up to permutation.

Example VIII.36. Find a Hamming code of length 7.
We have $7=2^{3}-1$. So $m=3$ and we can choose the check matrix

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

So

$$
E=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right]
$$

is a generating matrix. The codewords are

0000000	0001011	1111111	1110100
1000111	1100001	0111000	0011110
0100110	1010010	0111001	0101101
0010101	1001100	1101010	0110011

Lemma VIII.37. Let C be a linear code with check matrix H. Let (c, z) be a l-bit error for C.
(a) If the error occurred in bit i, then $H z=\operatorname{Col}_{i} H$.
(b) If C is 1-error-correcting, i is the uniquely determined by $\operatorname{Col}_{i} H=H z$.

Proof. (a) Let $e_{i}=\operatorname{Col}_{i}\left(I_{n}\right)$. Then $z=c+e_{i}$ and so $H z=H\left(c+e_{i}\right)=H c+H e_{i}=\overrightarrow{0}+\operatorname{Col}_{i}(H)=\operatorname{Col}_{i}(H)$.
(b) Just recall no two columns of the check matrix of a 1-error correcting binary linear code are the same.

Example VIII.38. Let C be the binary linear code with check matrix

$$
\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

(a) Is C 1-error correcting?
(b) Suppose that (a, z) is a l-bit error with $z=101100$. Find z.
(a) The columns of H are non-zero and pairwise distinct. So C is 1-error correcting.
(b)

$$
H z=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
1 \\
0 \\
1 \\
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

So $H z$ is the third column of H. Hence the error occurred in bit 3 and $a=100110$. To confirm

$$
H z=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

So 100110 is indeed a codeword.

VIII. 5 Decoding linear codes

Definition VIII.39. Let H be a check matrix for the linear code $C \subseteq \mathbb{F}_{2}^{n}$ and $z \in \mathbb{F}_{2}^{n}$.
(a) Hz is called the syndrome of z with respect to H.
(b) $z+C=\{z+c \mid c \in C\}$ is called the coset of C containing z.

Observe that $z \in C$ if and only of the syndrome of z is $\overrightarrow{0}$.
Lemma VIII.40. Let H be a check matrix for the linear code $C \subseteq \mathbb{F}_{2}^{n}$. Let $y, z \in \mathbb{F}_{2}^{n}$. Then the following are equivalent:
(a) y and z have the same syndrome with respect to H.
(b) $y+z \in C$.
(c) $z=y+c$ for some codeword $c \in C$.
(d) $z \in y+C$.
(e) $(y+C) \cap(z+C) \neq \varnothing$.
(f) $y+C=z+C$.

Proof. We have

$$
\begin{array}{ll}
& H y=H z \\
\Longleftrightarrow & H z+H y=\overrightarrow{0} \\
\Longleftrightarrow & H(z+y)=\overrightarrow{0} \\
\Longleftrightarrow & z+y \in C \\
\Longleftrightarrow & z+y=c \text { for some } c \in C \\
\Longleftrightarrow & z=y+c \text { for some } c \in C \\
\Longleftrightarrow \in y+C \tag{d}
\end{array}
$$

So the first four statements are equivalent.
(d) \Longrightarrow e): Note that $z=z+\overrightarrow{0} \in z+C$. So if $z \in y+C$, then $z \in z+C \cap y+C$ and $z+C \cap y+C \neq \varnothing$ and (e) holds.
$(\mathrm{e}) \Longrightarrow(\mathbb{f}):$ Let $u \in y+C \cap z+C$. Then since (d) implies (a), $H u=H y=H z$ Let $v \in \mathbb{F}_{2}^{n}$. Since (a) and (d) are equivalent, $v \in y+Z$ if and only of $H v=H y$, if and only if $H v=H z$ and if and only if $v \in z+C$. So $y+C=z+C$.
$(\mathrm{f}) \Longrightarrow$ d. If $y+C=z+C$, then $z=z+\overrightarrow{0} \in z+C=y+C$.
Corollary VIII.41. Let $C \subseteq \mathbb{F}_{2}^{n}$ be a linear code and $z \in \mathbb{F}_{2}^{n}$. Then z lies in a unique coset of C, namely $z+C$. In particular, distinct cosets are disjoint.

Proof. If $z \in y+C$, then VIII. 40 show that $y+C=z+C$.
Example VIII.42. Let C be the code with check matrix

$$
H=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Find the cosets of C and the corresponding syndromes.

Since H is in standard form, $E=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$ is a generating matrix for C. So
We compute

$0000+C$	$1000+C$	$0100+C$	$1100+C$
0000	1000	0100	1100
1010	0010	1110	0110
0101	1101	0001	1001
1111	0111	1011	0011
00	10	01	11

The last row lists the common syndrome of the elements in the coset.
Which of the cosets contains 1101 ?

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right)=\binom{1}{0}
$$

So 1101 lies in the coset with symdrome 10 , that is $1000+C$.
Lemma VIII.43. Let C be the linear code of length n and dimension k. Let H be an $m \times n$-check matrix for C.
(a) The set of syndromes of C with respect to H is $\operatorname{Col}(H)$.
(b) The numbers of syndromes for C with respect to H is 2^{n-k}.
(c) $n-k \leq m$.
(d) If $m=n-k$ (for example if H is in standard form), every element of \mathbb{F}_{2}^{m} is a syndrome.

Proof. (a) s is a syndrome if and only if $s=H z$ for some $z \in \mathbb{F}_{2}^{n}$ and so if and only if $s \in \operatorname{Col} H$.
(b) Let u be the numbers of syndromes. by VIII.40 u is also the number of cosets of C. Each cosets of C contains 2^{k} elements and each element of \mathbb{F}_{2}^{n} lies in unique coset so

$$
u \cdot 2^{k}=2^{n} .
$$

Thus $u=2^{n-k}$.
(c) The syndromes are contained in \mathbb{F}_{2}^{m}. So there are at most 2^{m} syndromes. Thus $n-k \leq m$,
(d) If $m=n-k, C$ has 2^{m} syndromes and so every element of \mathbb{F}_{2}^{m} is a syndrome.

Remark VIII.44. Let H be an $m \times n$-matrix in \mathbb{F}_{2}. Then $\operatorname{dim} \mathrm{Nul} H+\operatorname{dim} \operatorname{Col} H=n$.
Proof. Put $k=\operatorname{dim} \operatorname{Nul} H$. By VIII.43 $|\mathrm{Col} H|$ is equal to the number of syndromes of $\mathrm{Nul} H$ and so equal to 2^{n-k}. Thus $\operatorname{dim} \operatorname{Col} H=n-k=n-\operatorname{dim} \mathrm{Nul} H$.

Definition VIII.45. Let C be linear code with an $m \times n$ check matrix H. A syndrome look-up table for C with respect to H is a function

$$
\tau: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{n}
$$

such that for all syndrome sof H,
(i) $\tau(s)$ has syndrome s,
(ii) $\tau(s)$ is a vector of minimal weight in $\tau(s)+C$.

Note that (i] and (iii) just mean that $\tau(s)$ is a of minimal weight among the vectors with syndrome s.
Definition VIII.46. Let C be linear code of length n with check matrix H and τ a syndrome look-up table for C with respect to H. Then the function

$$
\sigma: \mathbb{R}^{n} \rightarrow C, z \rightarrow z+\tau(H z)
$$

is called the decision rule for C with respect to H and τ.
Note here that by definition of a syndrome table $\tau(H z)$ has syndrome $H z$ and so byVIII.40 $z+\tau(H z) \in C$. So this is well-defined.

Lemma VIII.47. Let C be linear code of length n with check matrix H, τ a syndrome look-up table for C with respect to H and σ the corresponding decision rule. Then σ is a Minimum Distance Rule

Proof. Let $z \in \mathbb{R}^{n}$ and $c \in C$. Put $s=H z$. Be definition of $\tau, \tau(s)$ has syndrome s. Since also z has syndrome s, we conclude from VIII. 40 that $z+c \in z+C=\tau(s)+C$. By definition of $\tau, \tau(s)$ is of minimal weight in $\tau(s)+C$. So

$$
\mathrm{wt}(z+c) \leq \mathrm{wt}(\tau(s))
$$

We compute

$$
d(z, \sigma(z))=d(z, z+\tau(s))=\mathrm{wt}(z+(z+\tau(s))=\mathrm{wt}(\tau(s)) \geq \mathrm{wt}(z+c)=d(z, c)
$$

[^3]Example VIII.49. Let C be the code with check matrix.

$$
H=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Construct a syndrome look-up table τ and compute $\sigma(11001)$, where σ is the decision rule for C with respect to H and τ.

$$
\begin{gathered}
{\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)} \\
\tau(100)=00100
\end{gathered}
$$

and so

$$
\sigma(11001)=11001+00100=11101
$$

To double check

$$
\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Chapter IX

Algebraic Coding Theory

IX. 1 Classification and properties of cyclic codes

Definition IX.1. A code $C \subseteq \mathbb{F}_{2}^{n}$ is called cyclic if
(a) C is linear, and
(b) $a_{n} a_{1} \ldots a_{n-1} \in C$ for all $a=a_{1} \ldots a_{n} \in C$.

Example IX.2. Which of following codes are cyclic?
(a) $\{000,100,111,011\}$.
(b) $\{000,100,010,001\}$
(c) $\{000,1010,0101,1111\}$
(a): Not cyclic, since 100 is in the code, but 010 is not.
(b): Not cyclic, since its not linear: 100 and 010 are in the code, but $100+010=110$ is not. (c): Is cyclic.

Definition IX.3. An ideal in a ring R is a subset S of R such that
(a) $0 \in S$.
(b) If $s, t \in S$ then $s+t \in S$.
(c) If $a \in R$ and $s \in S$, then $a s \in S$ and $s a \in S$.

Example IX.4. The set of even integers is an ideal in the integers.
Indeed 0 is even. Sums of even integers are even and any multiple of an even integer is even.
Lemma IX.5. Let \mathbb{F} be a field and $f, g \in \mathbb{F}[x]$ with $g \neq 0$. Then there exists uniquely determined $q, r \in \mathbb{F}[x]$ with

$$
f=q h+r \text { and } \operatorname{deg} r<\operatorname{deg} h
$$

r is called the remainder of f when divided by h.

Proof. We first prove the existence of q and r by induction on $\operatorname{deg} f$. Note that $f=0 h+f$, so if $\operatorname{deg} f<\operatorname{deg} h$, we can choose $q=0$ and $r=f$.

Suppose now that $\operatorname{deg} f \geq h$. Let $f=\sum_{i=0}^{m} a_{i} x^{i}$ and $h=\sum_{i=0}^{n} b_{i} x^{i}$ with $a_{m} \neq 0 \neq b_{n}$. Then $m=\operatorname{deg} h \geq$ $\operatorname{deg} h=n$. Put

$$
\tilde{f}=f-\frac{b_{m}}{a_{n}} x^{m-n} h
$$

Observe that the coefficient of x^{m} in \tilde{f} is $b_{m}-\frac{b_{m}}{a_{n}} a_{n}=b_{m}-b_{m}=0$. Hence $\operatorname{deg} \tilde{f}<m=\operatorname{deg} f$. So by induction, there exist $\tilde{q}, \tilde{r} \in \mathbb{F}[x]$ with

$$
\tilde{f}=\tilde{q} h+\tilde{r} \text { and } \operatorname{deg} \tilde{r}<\operatorname{deg} h
$$

We have

$$
f=\tilde{f}+\frac{b_{m}}{a_{n}} x^{m-n} h=\tilde{q} h+\tilde{r}+\frac{b_{m}}{a_{n}} x^{m-n} h=\left(\tilde{q}+\frac{b_{m}}{a_{n}} x^{m-n}\right) h+\tilde{r} .
$$

So we can choose $q=\tilde{q}+\frac{b_{m}}{a_{n}} x^{m-n}$ and $r=\tilde{r}$.
This shows this existence of q and r. For the uniqueness suppose

$$
f=q h+r=q^{*} h+r^{*}, \quad \operatorname{deg} r<\operatorname{deg} h \quad \text { and } \quad \operatorname{deg} r^{*}<\operatorname{deg} h
$$

for some $q, q^{*}, r, r^{*} \in \mathbb{F}[x]$. Then

$$
\left(q-q^{*}\right) h=r^{*}-r
$$

By A.8. $\operatorname{deg}\left(r^{*}-r\right) \leq \max \left(\operatorname{deg} r, \operatorname{deg} r^{*}\right)<\operatorname{deg} h$ and so $\operatorname{deg}\left(q-q^{*}\right) h<\operatorname{deg} h$. Hence A. 8 shows that $q-q^{*}=0$ and so also $r^{*}-r=\left(q-q^{*}\right) h=0 h=0$.

Hence $q=q^{*}$ and $r=r^{*}$. So q and r are unique.
Definition IX.6. Let \mathbb{F} be a field and $h \in \mathbb{F}[x]$ with $h \neq 0$. Let $f, g \in \mathbb{F}[x]$.
\bar{f} is the remainder of f when divided by h.
Define an addition \oplus and multiplication \odot on $\mathbb{F}[x]$ as follows:

$$
f \oplus g=\overline{f+g}
$$

and

$$
f \odot g=\overline{f g}
$$

For $n \in \mathbb{N}$, define $f^{\odot n}$ inductively by

$$
f^{\odot 0}=\overline{1} \quad \text { and } \quad f^{\odot(n+1)}=f^{\odot n} \odot f .
$$

Let

$$
\mathbb{F}^{h}[x]=\{f \in \mathbb{F}[x] \mid \operatorname{deg} f<\operatorname{deg} h\}
$$

$\left(\mathbb{F}^{h}[x], \oplus, \odot\right)$ is called the ring of polynomials modulo h with coefficients in \mathbb{F}.
Example IX.7. Determine the addition and multiplication in $\mathbb{R}^{x^{2}+1}[x]$.

Since $\operatorname{deg} x^{2}+1=2$ we have $\mathbb{R}^{x^{2}+1}[x]=\{a+b x \mid a, b \in \mathbb{R}\}$. We compute

$$
(a+b x) \oplus(c+d x)=(a+c)+(b+d x)
$$

and

$$
\begin{aligned}
(a+b x) \odot(c+d x) & =\overline{a c+a d x+b c x+b d x^{2}} \\
& =\overline{(a c-b d)+(a d+b c) x+b d\left(x^{2}+1\right)} \\
& =(a c-b d)+(a d+b c) x
\end{aligned}
$$

So $\mathbb{R}^{x^{2}+1}[x]$ has the same addition and multiplication as the ring of complex numbers

$$
\mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\}
$$

Lemma IX.8. Let \mathbb{F} be a field and $h \in \mathbb{F}[x]$ with $h \neq 0$. Let $f, g \in \mathbb{F}^{h}[x]$ and $a \in \mathbb{F}$.
(a) $\bar{f}=f$.
(b) $f \oplus g=f+g$
(c) $a \odot f=a f$.

Proof. (a) $f=0 h+f$ and $\operatorname{deg} f<\operatorname{deg} h$. So f is the remainder of f when divided by h.
(b) Observe that $\operatorname{deg}(f+g) \leq \max (\operatorname{deg} f, \operatorname{deg} g)<\operatorname{deg} h$ and so by (a) $\overline{f+g}=f+g$.
(c) Since $\operatorname{deg} a f \leq \operatorname{deg} f<\operatorname{deg} h$, a) gives $\overline{a f}=a f$.

Remark IX.9. Let \mathbb{F} be a field and $h \in \mathbb{F}[x]$ with $h \neq 0$. Then $\mathbb{F}^{h}[x]$ is vector space over \mathbb{F}.
Definition IX.10. Let R be a commutative ring and $a, b \in R$. We say that a divides b and write $a \mid b$ if $b=r a$ for some $r \in R$.

Lemma IX.11. Let \mathbb{F} be a field and $h \in \mathbb{F}[x]$ with $h \neq 0$. Let $f, g \in \mathbb{F}[x], a \in \mathbb{F}$ and $n \in \mathbb{N}$. Then
(a) $\bar{f} \in \mathbb{F}^{h}[x]$.
(b) $0 \oplus f=1 \odot f=\bar{f}=\overline{\bar{f}}=f \odot 1=f \oplus 0$
(c) $f \oplus g=\overline{f+g}=\bar{f}+\bar{g}=\bar{f} \oplus \bar{g}=\bar{f} \oplus g=f \oplus \bar{g}$
(d) $f \odot g=\overline{f g}=\overline{\bar{f}} \overline{\bar{g}}=\bar{f} \odot \bar{g}=\bar{f} \odot g=f \odot \bar{g}$
(e) $\overline{f^{n}}=f^{\odot n}=(\bar{f})^{\odot n}=\overline{(\bar{f})^{n}}$
(f) $-\bar{f}=\overline{-f}$.
(g) $\bar{f}=0$ if and only if h divides f.
(h) $\bar{f}=\bar{g}$ if and only if h divides $g-f$.
(i) $a \odot f=\overline{a f}=a \bar{f}$

Proof. Recall first that by definition of the remainder $f=p h+\bar{f}$ and $g=q h+\bar{g}$ for some $p, q \in \mathbb{F}[x]$. Also $\operatorname{deg} \bar{f}<\operatorname{deg} h$ and $\operatorname{deg} \bar{g}<\operatorname{deg} h$.
(a) Since $\operatorname{deg} \bar{f}<\operatorname{deg} h, \bar{f} \in F^{h}[x]$.
b) $1 \odot f=\overline{1 f}=\bar{f}=\overline{0+f}=0 \oplus f$. Since $\bar{f} \in \mathbb{F}^{h}[x]$, IX.8 a, gives $\overline{\bar{f}}=\bar{f}$.
(c) We compute

$$
f+g=(p h+\bar{f})+(q h+\bar{g})=(p+q) h+(\bar{f}+\bar{g})
$$

Note that $\bar{f}+\bar{g}$ has degree less than h and so $\bar{f}+\bar{g}$ is the remainder of $f+g$ when divided by h. Hence $f \oplus g=\overline{f+g}=\bar{f}+\bar{g}$.

By IX.8 b), $\bar{f} \oplus \bar{g}=\bar{f}+\bar{g}$. The remaining parts of (c) now follow from $\overline{\bar{f}}=\bar{f}$ and $\overline{\bar{g}}=\bar{g}$.
(d) By definition $\bar{f} \bar{g}=t h+\overline{\bar{f} \bar{g}}$ for some $t \in \mathbb{F}[x]$ and $\operatorname{deg} \overline{\bar{f} \bar{g}}<\operatorname{deg} h$. We have

$$
f g=(p h+\bar{f})(q h+\bar{g})=(p h q+\bar{f} q+p \bar{g}) h+\bar{f} \bar{g}=(p h q+\bar{f} q+p \bar{g}+t) h+\overline{\bar{f} \bar{g}}
$$

So $\overline{\bar{f} \bar{g}}$ is the remainder of $f g$ when divided by h. Hence $f \odot g=\overline{f g}=\overline{\bar{f}} \bar{g}$. d is now readily verified.
(e) For $n=0$ all four expression are equal to $\overline{1}$.

Suppose (e) holds for n. Then using (d)

$$
\begin{gathered}
\overline{f^{(n+1)}}=\overline{f^{n} f}=f^{n} \odot f=\overline{f^{n}} \odot f=f^{\odot n} \odot f=f^{\odot(n+1)} \\
(\bar{f})^{\odot(n+1)}=(\bar{f})^{\odot n} \odot \bar{f}=\overline{f^{n}} \odot \bar{f}=\overline{f^{n}} \odot f
\end{gathered}
$$

and

$$
\overline{(\bar{f})^{(n+1)}}=\overline{(\bar{f})^{n} f}=\overline{f^{\otimes n} f}=f^{\otimes n} \odot f
$$

(f) $-f=-p h+(-\bar{f})$ and so $-\bar{f}$ is the remainder of f when divided by h.
(g) h divides f if and only if $f=\operatorname{sh}$ for some $s \in F[x]$ and so if and only if $f=s h+0$ for some $s \in F[x]$.

Since $\operatorname{deg} 0<\operatorname{deg} h$, this holds if and only if 0 is the remainder of f when divided by 0 .
(h) $\bar{f}=\bar{g}$ if and only if $\bar{f}-\bar{g}=0$ and if and only if $\overline{f-g}=0$. So hh follow from (g).
(i) By (d), $a \odot f=\overline{a f}=a \odot \bar{f}$ and by IX.8 c) $a \odot \bar{f}=a \bar{f}$.

Lemma IX.12. Let \mathbb{F} be a field, $0 \neq h \in \mathbb{F}[x]$ and $I \subseteq \mathbb{F}^{h}[x]$. Then I is an ideal in $\mathbb{F}^{h}[x]$ if and only if I is an \mathbb{F}-subspace of $\mathbb{F}^{h}[x]$ and $x \odot f \in I$ for all $f \in I$.

Proof. Let $f, g \in I$ and $a \in \mathbb{F}$.
\Longrightarrow : Suppose that I is an ideal in $\mathbb{F}^{h}[x]$. Then by definition of an ideal, $0 \in I$ and $f+g \in I$. Also since $\left.a \in \mathbb{F}^{h}[x]\right)$, af $=a \odot f \in I$. Thus I is an \mathbb{F}-subspace of $\mathbb{F}^{h}[x]$. Also $x \odot f=\bar{x} \odot f \in I$ and so the forward direction is proved.
\Longleftarrow : Suppose I is an \mathbb{F}-subspace of $\mathbb{F}^{h}[x]$ and $x \odot f \in I$ for all $f \in I$. Then by definition of a subspace $0 \in I$ and $f+g \in I$.

We claim that $x^{i} \odot f \in I$ for all $i \in \mathbb{N} . x^{0} \odot f=1 \odot f=f$ and so the claim holds for $i=0$. Suppose inductively that $x^{i} \odot f \in I$. Then by assumption also $x \odot\left(x^{i} \odot f\right) \in I$ and hence

$$
x^{i+1} \odot f=\overline{x^{i+1} f}=\overline{x\left(x^{i} f\right)}=x \odot \overline{x^{i} f}=x \odot\left(x^{i} \odot f\right) \in I .
$$

So indeed $x^{i} \odot f \in I$ for all $i \in \mathbb{N}$ and $f \in I$.
Let $g \in \mathbb{F}^{h}[x]$. Then $g=\sum_{i=0}^{n} a_{i} x^{i}$ for some $a_{i} \in \mathbb{F}_{2}$ and so

$$
g \odot f=\left(\sum_{i=0}^{n-1} a_{i} x^{i}\right) \odot f=\sum_{i=0}^{n-1}\left(a_{i} x^{i}\right) \odot f=\sum_{i=0}^{n-1} a_{i}\left(x^{i} \odot f\right)
$$

Since each $x^{i} \odot f \in I$ and I is an \mathbb{F}-subspace, $g \odot f \in I$. Thus I is an ideal in $\mathbb{F}^{h}[x]$.
Definition IX.13. Let $n \in \mathbb{Z}^{+}$. Then $V^{n}[x]=\mathbb{F}_{2}^{x^{n}-1}[x]$.
Lemma IX.14. Let \mathbb{F} be a field, $n \in \mathbb{Z}^{+}$and for $f \in \mathbb{F}[x]$ let \bar{f} be remainder of f when divided by $x^{n}-1$.
(a) Let $i, j \in \mathbb{N}$ with $0 \leq j<n$. Then $\overline{x^{n i+j}}=x^{j}$.
(b) Let $f \in \mathbb{F}[x]$ with

$$
f=\sum_{i=0}^{r} \sum_{j=0}^{n-1} a_{i j} x^{i n+j}
$$

for some $a_{i j} \in \mathbb{F}$. Then

$$
\bar{f}=\sum_{j=0}^{n-1}\left(\sum_{i=0}^{r} a_{i j}\right) x^{i}
$$

Proof. Since $x^{n}=\left(x^{n}-1\right)+1, \overline{x^{n}}=1$ and so

$$
\overline{x^{n i+j}}=\overline{\left(x^{n}\right)^{i} x^{j}}=\overline{\overline{x^{n}} x^{j}}=\overline{1 x^{j}}=\overline{x^{j}}=x^{j}
$$

So (a) holds.
From (a) we get

$$
\overline{\sum_{i=0}^{r} \sum_{j=0}^{n-1} a_{i j} x^{i n+j}}=\sum_{i=0}^{r} \sum_{j=0}^{n-1} a_{i j} \overline{x^{i n+j}}=\sum_{i=0}^{r} \sum_{j=0}^{n-1} a_{i j} x^{j}=\sum_{j=0}^{n-1}\left(\sum_{i=0}^{r} a_{i j}\right) x^{j}
$$

and so \sqrt{b} holds.
Example IX.15. Compute the remainder of $f=1+x+x^{4}+x^{5}+x^{7}+x^{11}+x^{17}+x^{28}$ when divided by $x^{6}+1$ in $\mathbb{F}_{2}[x]$.

$$
f=1+x+x^{4}+x^{5}+x^{6+1}+x^{6+5}+x^{12+5}+x^{24+4}
$$

and so

$$
\bar{f}=1+x+x^{4}+x^{5}+x+x^{5}+x^{5}+x^{4}=1+2 x+2 x^{4}+3 x^{5}=1+x^{5}
$$

Lemma IX.16. Let $C \subseteq \mathbb{F}_{2}^{n}$. For $a=a_{0} \ldots a_{n-1} \in \mathbb{F}_{2}^{n}$ define

$$
a(x)=\sum_{i=0}^{n-1} a_{i} x^{i}=a_{0}+a_{1} x+\ldots a_{n-1} x^{n-1} \in V^{n}[x] .
$$

Put $C(x)=\{a(x) \mid a \in C\}$. Then C is a cyclic code if and only if $C(x)$ is an ideal in $V^{n}[x]$.

Proof. Note that $\overrightarrow{0} \in C$ if and only if $0=\overrightarrow{0}(x) \in C(x)$. Let $a, b \in C$. Then $a+b \in C$ if and only if $(a+b)(x) \in C(x)$ and so if and only if $a(x)+b(x) \in C(x)$. Thus C is a subspace of \mathbb{F}_{2}^{n} if and only if $C(x)$ is a subspace of $V^{n}[x]$.

Put $\hat{a}=a_{n-1} a_{0} \ldots a_{n-2}$. Then

$$
x \odot a(x)=\overline{x \sum_{i=0}^{n-1} a_{i} x^{i}}=\overline{\sum_{i=0}^{n-1} a_{i} x^{i+1}}=a_{n-1}+a_{0} x+\ldots+a_{n-2} x^{n-1}=\hat{a}(x)
$$

Thus $\hat{a} \in C$ if and only if $x \odot a(x) \in C(x)$. So by IX.12 C is cyclic if and only if $C(x)$ is an ideal.
Definition IX.17. Let R be a commutative ring and $a \in R$. Define $\langle a\rangle=\{r a \mid r \in R\} .\langle a\rangle$ is called the ideal in R generated by a.

Lemma IX.18. Let R be a commutative ring and $a \in R$.
(a) $\langle a\rangle$ is an ideal in R.
(b) $\langle a\rangle \subseteq I$ for any ideal I of R with $a \in I$.

Proof. (a) We have $0=0 a \in\langle a\rangle$. Also for any $r, s \in R, r a+s a=(r+s) a \in\langle a\rangle$ and $s(r a)=(s r) a \in\langle a\rangle$.
(b) By definition of an ideal, $r a \in I$ for all $r \in R$ and so $\langle a\rangle \subseteq I$.

Lemma IX.19. Let \mathbb{F} be a field, $h \in \mathbb{F}[x]$ with $h \neq 0$ and $f \in \mathbb{F}^{h}[x]$. Let $\langle f\rangle$ be the ideal in $\mathbb{F}^{h}[x]$ generated by f. Then
(a) $\langle f\rangle$ is the \mathbb{F}-subspace of $\mathbb{F}^{h}[x]$ spanned by

$$
1 \odot f, x \odot f, \ldots, x^{n-1} \odot f
$$

where $n=\operatorname{deg} h$.
(b) $\langle f\rangle=\{g \odot f \mid g \in \mathbb{F}[x]\}$.

Proof. (a) Let $g=\sum_{i=0}^{n-1} a_{i} x^{i} \in \mathbb{F}^{h}[x]$. Then

$$
g \odot f=a_{0}(1 \odot f)+a_{1}(x \odot f)+\ldots+a_{n-1}\left(x^{n-1} \odot f\right)
$$

and so the elements of $\langle f\rangle$ are exactly the \mathbb{F}-linear combinations of $1 \odot f, x \odot f, \ldots, x^{n-1} \odot f$. (b)

$$
\langle f\rangle=\left\{g \odot f \mid g \in \mathbb{F}^{h}[x]\right\}=\{\bar{g} \odot f \mid g \in \mathbb{F}[x]\}=\{g \odot f \mid g \in \mathbb{F}[x]\} .
$$

Example IX.20. Find the ideal in $V^{3}[x]$ generated by $f=1+x^{2}$ and determined the corresponding cyclic code.

$$
\begin{aligned}
& 1 \odot\left(1+x^{2}\right)=1+x^{2} \\
& x \odot\left(1+x^{2}\right)=\overline{x+x^{3}}=x+1 \\
& x^{2} \odot\left(1+x^{2}\right)=\overline{x^{2}+x^{4}}=x+x^{2}
\end{aligned}
$$

Note that $\left(1+x^{2}\right)+(1+x)=x^{2}+x$. So

$$
\left\langle x^{2}+1\right\rangle=\left\{0,1+x^{2}, 1+x, x+x^{2}\right\} .
$$

The corresponding cyclic code is
$\{000,101,110,011\}$
Lemma IX.21. Let \mathbb{F} be a field and $f, g, t \in \mathbb{F}[x]$ with $t \neq 0$. Then $f \mid g$ if and only if $f t \mid g t$.
Proof.

$$
\begin{array}{ll}
& f t \mid g t \\
\Longleftrightarrow & g t=f t l \text { for some } l \in \mathbb{F}[x] \\
\Longleftrightarrow & g t-f t l=0 \text { for some } l \in \mathbb{F}[x] \\
\Longleftrightarrow & (g-f l) t=0 \text { for some } l \in \mathbb{F}[x] \\
\Longleftrightarrow & g-f l=0 \text { for some } l \in \mathbb{F}[x] \\
\Longleftrightarrow & g=f l \text { for some } l \in \mathbb{F}[x] \\
\Longleftrightarrow & f \mid g
\end{array}
$$

Lemma IX.22. Let \mathbb{F} be a field, $h \in \mathbb{F}[x]$ with $h \neq 0$ and I an ideal in $\mathbb{F}^{h}[x]$. Let $g \in \mathbb{F}[x]$ be of minimal degree with $\bar{g} \in I$ and $g \neq 0$.
(a) Let $f \in \mathbb{F}[x]$. Then $\bar{f} \in I$ if and only if g divides f in $\mathbb{F}[x]$.
(b) $I=\langle\bar{g}\rangle$.
(c) g divides h in $\mathbb{F}[x]$ and so $h=\operatorname{tg}$ for some $t \in \mathbb{F}[x]$.
(d) Let $f, f^{*} \in \mathbb{F}[x]$. Then $f \odot g=f^{*} \odot g$ if and only if t divides $f^{*}-f$.
(e) Let $k=\operatorname{deg} t$. Then $I=\{s g \mid s \in \mathbb{F}[x]$, $\operatorname{deg} s<k\}$.
(f) $\left(g, x g, x^{2} g, \ldots, x^{k-1} g\right)$ is an \mathbb{F}-basis for I.
(g) $\operatorname{dim}_{\mathbb{F}} I=k$.
(h) Let $f \in \mathbb{F}[x]$. Then $\bar{f} \in I$ if and only if $f \odot t=0$.
(i) Suppose that $h=x^{n}-1$ and let $f \in \mathbb{F}^{h}[x]$. Then $f \in I$ if and only if the coefficient of x^{i} in $f t$ is 0 for all $k \leq i<n$.

Proof. Let $n=\operatorname{deg} h$. Since $\bar{h}=0 \in I, \operatorname{deg} g \leq \operatorname{deg} h$
(a) Let $f=q g+r$ with $q, r \in \mathbb{F}[x]$ and $\operatorname{deg} r<\operatorname{deg} g$. If $g \mid f$, then $f=q g$ and so $\bar{f}=\bar{q} \odot g \in I$.

Suppose $\bar{f} \in I$. Since $\operatorname{deg} r<\operatorname{deg} g \leq \operatorname{deg} h$, we have $r=\bar{r}=\overline{f-q g}=\bar{f} \oplus \overline{-q} \odot \bar{g} \in I$. The minimal choice of $\operatorname{deg} g$ shows that $r=0$ and so $g \mid f$.
(b) Let $f \in I$. Then $\operatorname{deg} f<n$ and so $\bar{f}=f \in I$. Thus by (a), $f=e g$ for some $e \in \mathbb{F}[x]$. Therefore $f=\bar{f}=\bar{e} \odot \bar{g}$ and $f \in\langle\bar{g}\rangle$. Since $\bar{g} \in I$, IX.18 b shows $\langle\bar{g}\rangle \subseteq I$ and thus $I=\langle\bar{g}\rangle$.
(c) Note that $\bar{h}=0 \in I$ and so by (a) , $h=\operatorname{tg}$ for some $t \in \mathbb{F}[x]$.
(d) We have

	$f \odot g=f^{*} \odot g$	
\Longleftrightarrow	$\overline{f g}=\overline{f^{*} g}$	- definition of \odot
\Longleftrightarrow	h divides $f g-f^{*} g$	- -X.11
\Longleftrightarrow	$t g$ divides $\left(f-f^{*}\right) g$	- ©
\Longleftrightarrow	t divides $f-f^{*}$	- IX.21

(e) Let $f \in \mathbb{F}^{h}[x]$ and let s be the remainder of f when divided by t. Then t divides $f-s$ and so by (d), $f \odot \bar{g}=f \odot g=s \odot g$. Note that deg $s g<k+(n-k)=n$ and so $s \odot g=\overline{s g}=s g$. Hence

$$
I=\langle\bar{g}\rangle=\left\{f \odot \bar{g} \mid f \in \mathbb{F}^{h}[x]\right\}=\{s g \mid s \in \mathbb{F}[x], \operatorname{deg} s<k\}
$$

(f) Note that $\operatorname{deg} g=n-k$. Let $s \in \mathbb{F}[x]$ with $\operatorname{deg} r<k$ and let $s=\sum_{i=0}^{k-1} a_{i} x^{i}$. Then
(*)

$$
s g=\sum_{i=0}^{k-1} a_{i} x^{i} g .
$$

Together with (e) we see that I is the set of \mathbb{F}-linear combinations of ($g, x g, x^{2} g, \ldots, x^{k-1} g$).
If $\left(a_{0}, \ldots, a_{k-1}\right) \neq 0$, then $s \neq 0$ and $s g \neq 0$. By $\left(^{*}\right) \sum_{i=0}^{k-1} a_{i} x^{i} \neq 0$ and so $\left(g, x g, x^{2} g, \ldots x^{k-1} g\right)$ is linearly independent.
(g) follows immediately from (f).
(h)

$$
\begin{array}{lll}
& \bar{f} \in I & \\
\Longleftrightarrow & g \mid f & -(a) \tag{a}\\
\Longleftrightarrow & g t \mid f t & -\mid X .21 \\
\Longleftrightarrow & h \mid f t & -(\mathbb{C} \mid \\
\Longleftrightarrow & \overline{f t}=0 & -\boxed{\mid X .11] h} \\
\Longleftrightarrow & f \odot t=0 & - \text { definition of } \odot
\end{array}
$$

(i) Let $f \in \mathbb{F}^{h}[x]$ and write $f=q g+r$ with $\operatorname{deg} r<\operatorname{deg} g=n-k$. By (a),

$$
f=\bar{f} \in I \quad \Longleftrightarrow \quad r=0 .
$$

Since $\operatorname{deg} f<n$ and $\operatorname{deg} g=n-k$, we have

$$
\operatorname{deg} q<k
$$

Also

$$
\operatorname{deg} r t=\operatorname{deg} r+\operatorname{deg} t<(n-k)+k=n .
$$

Note that $r=0$ if and only if $\operatorname{deg} r t<\operatorname{deg} t$, that is if only if $\operatorname{deg} r t<k$. Since $\operatorname{deg} r t<n$, this gives

$$
r=0 \quad \Longleftrightarrow \quad \text { the coefficient of } x^{i} \text { in } r t \text { is } 0 \text { for } k \leq i<n
$$

We compute

$$
f t=(q g+r) t=q g t+r t=q h+r t=q \cdot\left(x^{n}-1\right)+r t=q x^{n}-q+r t
$$

Let $k \leq i<n$. Since $i<n$, the coefficient of x^{i} in $q x^{n}$ is 0 . Since $i \geq k$ and $\operatorname{deg} q<k$, the coefficient of x^{i} in q also 0 . Thus the coefficent of x^{i} in $f t$ is the same as the coefficient of x^{i} in $r t$. Hence (i) holds.

Definition IX.23. Let \mathbb{F} be a field.
(a) Let $0 \neq f=\sum_{i=0}^{m} a_{i} x^{i} \in \mathbb{F}[x]$ with $a_{m} \neq 0$. Then a_{m} is called the leading coefficient of f. If $f=0$, we call 0 the leading coefficient of f. We denote the leading coefficient of f be $\operatorname{lead}(f)$.
(b) A monic polynomial is a polynomial with leading coefficient 1 .
(c) Let $0 \neq h \in \mathbb{F}[x]$ and I an ideal in $\mathbb{F}^{h}[x]$. Let $g \in \mathbb{F}[x]$ be a monic polynomial of minimal degree with $\bar{g} \in I$. Then g is called the canonical generator for I. (If $I \neq 0$, then g is the monic polynomial of minimal degree in I, and if $\left.I=0, g=\frac{1}{\operatorname{lead}(h)} h\right)$.

Lemma IX.24. Let \mathbb{F} be a field and $0 \neq h \in \mathbb{F}[x]$.
(a) Let I an ideal in $\mathbb{F}^{h}[x]$. Then the canonical generator of I is unique.
(b) Let $g \in \mathbb{F}[x]$ be monic. Then g is the canonical generator for the ideal $\langle\bar{g}\rangle$ in $\mathbb{F}^{h}[x]$ if and only if $g \mid h$.

Proof. (a) Let g_{1} and g_{2} be canonical generators of I. Then $\operatorname{deg} g_{1}=\operatorname{deg} g_{2}$ and g_{1} and g_{2} are monic. Thus $\operatorname{deg} g_{1}-g_{2}<\operatorname{deg} g_{1}$. Also $\overline{g_{1}-g_{2}}=\overline{g_{1}}-\overline{g_{2}} \in I$ and so by minimal choice of $\operatorname{deg} g_{i}, g_{1}-g_{2}=0$ and $g_{1}=g_{2}$.
(b) If g is the canonical generator for $\langle\bar{g}\rangle$, then IX. 22 shows that $g \mid h$.

Conversely suppose that $g \mid h$ and let \tilde{g} be the canonical generator for $\langle\bar{g}\rangle$. Since $\overline{\tilde{g}}=\langle\bar{g}\rangle$,

$$
\overline{\tilde{g}}=f \odot \bar{g}=\overline{f g}
$$

for some $f \in \mathbb{F}^{h}[x]$. Thus IX.11 shows that h divides $\tilde{g}-f g$. Thus $\tilde{g}-f g=k h$ for some $k \in \mathbb{F}[x]$. So $\tilde{g}=f g+k h$. Since $g \mid h$ this shows that $g \mid \tilde{g}$. Thus $\operatorname{deg} g \leq \operatorname{deg} \tilde{g}$. The minimal choice of $\operatorname{deg} \tilde{g}$ now shows that $\operatorname{deg} g=\operatorname{deg} \tilde{g}$ and so also g is a canonical generator of $\langle\bar{g}\rangle$.

Definition IX.25. Let $a=a_{0} \ldots a_{n-1} \in \mathbb{F}_{2}^{n}$. For $0 \leq i<n$ define

$$
a^{(i)}=a_{n-i} \ldots a_{n-1} a_{0} a_{1} \ldots a_{n-1-i}
$$

$a^{(i)}$ is called the cyclic i-shift of a.
$\langle a\rangle$ is the linear subspace of \mathbb{F}_{2}^{n} spanned by $a^{(0)}, a^{(1)}, \ldots, a^{(n-1)} .\langle a\rangle$ is called the cyclic code generated by a.

Corollary IX.26. Let $C \subseteq \mathbb{F}_{2}^{n}$ be cyclic code. Then there exists $a \in C$ with $C=\langle a\rangle$.
Proof. Let $C(x)$ be the ideal of $V^{n}[x]$ correponding to C. Then $C(x)=\langle g\rangle$ for some $g \in V[x]$. Let $a \in C$ be the codeword corresponding to g. Then $a^{(i)}$ corresponds to $x^{i} \odot g$ and since $C(x)$ is spanned by $x^{i} \odot g$, $0 \leq i<n, C$ is spanned by $a^{(i)}$.

Example IX.27. Determine the cyclic code generated by 0110 and find the canonical generator for the corresponding ideal in $V^{4}[x]$.

The cyclic shifts of 0110 are

$$
0110,0011,1001,1100
$$

Since $1001=1100+0110+0011,\langle 1100\rangle$ is spanned by

$$
1100,0110,0011 .
$$

Sums of 0 of these word:

0000

Sums of two of these words:

$$
1010,0101,1111 .
$$

Sum of all three:

$$
1001 .
$$

So

$$
\langle 1100\rangle=\{0000,1100,0110,0011,1001,1010,0101,1111\} .
$$

The non-zero codeword with the most trailing zeros is 1100 . So the canonical generator is $1+x$.
Theorem IX.28. Let $C \subseteq \mathbb{F}_{2}^{n}$ be a cyclic code. Let g be the canonical generator of the ideal $C(x)$ in $V^{n}[x]$. Let $h \in \mathbb{F}[x]$ with $g h=x^{n}-1$. Put $k=\operatorname{deg} h$ and $m=n-k=\operatorname{deg} g$.
(a) The $n \times k$ matrix

$$
E=\left[\begin{array}{cccccc}
c_{0} & 0 & 0 & \ldots & 0 & 0 \\
c_{1} & c_{0} & 0 & \ldots & 0 & 0 \\
\vdots & c_{1} & c_{0} & \ldots & \vdots & \vdots \\
\vdots & \vdots & c_{1} & \ldots & 0 & \vdots \\
c_{m-1} & \vdots & \vdots & \ldots & c_{0} & 0 \\
c_{m} & c_{m-1} & \vdots & \ldots & c_{1} & c_{0} \\
0 & c_{m} & c_{m-1} & \ldots & \vdots & c_{1} \\
0 & 0 & c_{m} & \ldots & \vdots & \vdots \\
\vdots & 0 & 0 & \ldots & c_{m-1} & \vdots \\
\vdots & \vdots & \vdots & \ldots & c_{m} & c_{m-1} \\
0 & 0 & 0 & \ldots & 0 & c_{m}
\end{array}\right]
$$

is a generating matric for C.
(b) The $m \times n$ matrix

$$
H=\left[\begin{array}{cccccccccc}
h_{k} & h_{k-1} & h_{k-2} & \ldots & h_{1} & h_{0} & 0 & 0 & \ldots & 0 \\
0 & h_{k} & h_{k-1} & \ldots & h_{2} & h_{1} & h_{0} & 0 & \ldots & 0 \\
0 & 0 & h_{k} & \ldots & h_{3} & h_{2} & h_{1} & h_{0} & \ldots & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & \ldots & h_{k} & \ldots & \ldots & h_{1} & h_{0} & 0 \\
0 & 0 & 0 & \ldots & 0 & h_{k} & \ldots & h_{2} & h_{1} & h_{0}
\end{array}\right]
$$

is a check matrix for C.
Proof. (a) By IX.22 $C(x)$ is spanned by the polynomials $x^{i} g, 0 \leq i<k$. Thus C is spanned by the cyclic shifts $c^{(i)}, 0 \leq i<k$. Since the columns of E are the $c^{(i)}$, halds.
(b) Let $d=d_{0} d_{1} \ldots d_{n-1} \in \mathbb{F}_{2}^{n}$ and $d(x)$ the corresponding polynomial. By IX.22, $d(x) \in C(x)$ if and only if the coefficent a_{s} of x^{s} in $h \cdot d(x)$ is equal to 0 for all $k \leq s<n$. We compute

$$
a_{s}=\sum_{l=0}^{s} h_{l} d_{s-l}
$$

Since $\operatorname{deg} h=k, h_{l}=0$ for $l \geq k$. Put $i=s-k$. Then $0 \leq i<n-k=m$ and

$$
a_{s}=\sum_{l=0}^{k} h_{l} d_{s-l}=h_{k} d_{i}+h_{k-1} d_{i+1}+\ldots+h_{1} d_{s-1}+h_{0} d_{s}
$$

Hence

$$
\begin{aligned}
& a_{k}=h_{k} d_{0}+h_{k-1} d_{1}+h_{k-2} d_{2}+\ldots+h_{1} d_{k-1}+h_{0} d_{k} \\
& a_{k+1}=\quad h_{k} d_{1}+h_{k-1} d_{2}+\ldots+h_{2} d_{k-1}+h_{1} d_{k}+h_{0} d_{k+1} \\
& a_{k+2}=\quad h_{k} d_{2}+\ldots+h_{3} d_{k-1}+h_{2} d_{k}+h_{1} d_{k+1}+h_{0} d_{k+2}
\end{aligned}
$$

$$
\begin{aligned}
& a_{n-2}=\quad h_{k} d_{n-k-2}+\ldots+\ldots+h_{1} d_{n-3}+h_{0} d_{n-2} \\
& a_{n-1}=\quad \quad h_{k} d_{n-k-1}+\ldots+h_{2} d_{n-3}+h_{1} d_{n-2}+h_{0} d_{n-1}
\end{aligned}
$$

So $a_{k+i}=0$ for $0 \leq i<m$ if and only if $H d=\overrightarrow{0}$. So H is indeed a check matrix for C.

Example IX.29. Find a generating and a check matrix for the cyclic code C of length 7 with canonical generator $g=1+x^{2}+x^{3}+x^{4}$. Is 1001011 in the code?

We have $n=7, m=\operatorname{deg} g=4$ and $k=n-m=7-4=3$. Since $g=1+x^{2}+x^{3}+x^{4}$ the first column of E is 1011100. So

$$
E=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

To determine H we first compute $h=\frac{x^{7}+1}{g}$:

$$
\begin{aligned}
& \begin{array}{rll}
x^{3}+x^{2} & +1 & \\
x^{4}+x^{3}+x^{2}+1 & x^{7} & \\
\hline
\end{array} \\
& \begin{array}{llll}
x^{7}+x^{6}+x^{5} & +x^{3} & \\
\hline x^{6}+x^{5} & +x^{3} & +1
\end{array} \\
& \frac{x^{6}+x^{5}+x^{4}+x^{2}}{x^{4}+x^{3}+x^{2}+1} \\
& \begin{array}{r}
x^{4}+x^{3}+x^{2}+1 \\
0
\end{array}
\end{aligned}
$$

Hence $h=x^{3}+x^{2}+1$ and the first row of H is 1101000.Thus

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

To check whether $d=1001011$ is in the code we compute $H d$:

$$
H d=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1+1+0+0 \\
0+0+0+0 \\
0+1+1+0 \\
0+1+0+1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

So $H d=\overrightarrow{0}$ and $d \in C$.

We could also have observed that d is the sum of the first and last column of E and so $d \in C$.

IX. 2 Definition of a family of BCH codes

Irreducible polynomials

Definition IX.30. Let \mathbb{F} be a field and $h \in \mathbb{F}[x]$. Then h is called irreducible if
(i) $\operatorname{deg} h>0$.
(ii) if $h=f g$ for some $f, g \in \mathbb{F}[x]$, then $\operatorname{deg} f=0$ or $\operatorname{deg} g=0$.

Remark IX.31. Let \mathbb{F} be a field and $h \in \mathbb{F}[x]$. Then h is irreducible if and only
(i) $\operatorname{deg} h>0$.
(ii) If $f \mid h$ for some $f \in \mathbb{F}[x]$, then $\operatorname{deg} f=0$ or $\operatorname{deg} f=h$.

Proof. We may assume that $\operatorname{deg} h>0$.
Suppose first that h is irreducible and let $f \in \mathbb{F}[x]$ with $f \mid h$. Then $h=f g$ for some $g \in \mathbb{F}[x]$. Since h is irreducible, $\operatorname{deg} f=0$ or $\operatorname{deg} g=0$. If $\operatorname{deg} g=0$, then $\operatorname{deg} f=\operatorname{deg} h-\operatorname{deg} g=\operatorname{deg} f$.

Suppose next that (ii) holds and that $f, g \in \mathbb{F}[x]$ with $h=f g$. Then $f \mid h$ and so $\operatorname{deg} f=0$ or $\operatorname{deg} f=\operatorname{deg} h$. If $\operatorname{deg} f=\operatorname{deg} h$, then $\operatorname{deg} g=\operatorname{deg} h-\operatorname{deg} f=0$. So h is irreducible.

Lemma IX.32. Let R be a commutative ring and $r \in R$. Then $s r=1$ for some $s \in R$ if and only if $\langle r\rangle=R$.
Proof. Suppose $s r=1$ for some $s \in R$. Let $t \in R$. Then $t=t 1=t(s r)=(t s) r \in\langle r\rangle$ and so $R=\langle r\rangle$. Suppose that $R=\langle r\rangle$. Then $1 \in\langle r\rangle$ and so $1=s r$ for some $s \in R$.

Lemma IX.33. Let \mathbb{F} be a field and let $h \in \mathbb{F}[x]$ be irreducible. Put $\mathbb{E}=\mathbb{F}^{h}[x]$.
(a) \mathbb{F} is a subfield of \mathbb{E}
(b) \mathbb{E} is a field.
(c) Let $h=\sum_{i=0}^{n} h_{i} x^{i}$. Then x is a root in \mathbb{E} of the polynomial $\sum_{i=0}^{n} h_{i} y^{i}$ in $\mathbb{E}[y]$.

Proof. (a) Let $a, b \in \mathbb{F}$. Then $a, b, a+b$ and $a b$ are polynomials of degree at most 0 . Since deg $h>0$, we get $a \oplus b=a+b$ and $a \odot b=a b$. So \mathbb{F} is a subfield of $\mathbb{F}^{h}[x]$.
(b) Let $0 \neq f \in \mathbb{F}^{h}[x]$ and put $I=\langle f\rangle$. Let g be the canonical generator for I. Then g divides h. Since $0 \neq f \in I$ we have $g \mid f$ and so $\operatorname{deg} g \leq \operatorname{deg} f<\operatorname{deg} h$ and $g \neq 0$. Since h is irreducible, this implies $\operatorname{deg} g=0$. Hence $g \in \mathbb{F}$ and g^{-1} is a polynomial of degree 0 with $1=g^{-1} g=g^{-1} \cdot g$. Thus by IX.32, $\langle g\rangle=\mathbb{F}^{h}[x]$. Since $\langle f\rangle=I=\langle g\rangle=\mathbb{F}^{h}[x]$, another application of IX.32 shows that $s \cdot f=1$ for some $s \in \mathbb{F}^{h}[x]$. Hence $\mathbb{F}^{h}[x]$ is a field.
(c) Let $e \in \mathbb{E}$. Note that in E we have to use the operations \oplus and \odot. So e is a root of $\sum_{i=0}^{n} h_{i} y^{i}$ in \mathbb{E} if and only if

$$
h_{0} \oplus h_{1} \odot e \oplus h_{1} \odot e^{\odot 2} \oplus \ldots \oplus h_{n} \odot e^{\odot n}=0
$$

and if and only if

$$
\overline{\sum_{i=0}^{m} h_{i} e^{i}}=0
$$

So x is a root of $\sum_{i=0}^{n} h_{i} y^{i}$ if and only if

$$
\overline{\sum_{i=0} h_{i} x^{i}}=0
$$

But this just say $\bar{h}=0$, which is true.
Example IX.34. We will investigate $\mathbb{F}_{2}^{h}[x]$, where $h=1+x+x^{3} \in \mathbb{F}_{2}[x]$.
Note that neither x nor $x+1$ divide h, so h is irreducible. Put $\mathbb{E}=\mathbb{F}_{2}^{h}[x]$. To simplify notation, we will just write $f+g$ and $f g$ for $f \oplus g$ and $f \odot g$. But to avoid confusion, we will write α for x to indicate that we view α as element of the the field \mathbb{E} (rather than an element of $\mathbb{F}[x]$). Then

$$
1+\alpha+\alpha^{3}=\overline{1+x+x^{3}}=\bar{h}=0
$$

Also every element in \mathbb{E} can be uniquely written as

$$
a+b \alpha+c \alpha^{2}
$$

with $a, b, c \in \mathbb{F}_{2}$. We now compute all the powers of α.

$$
\begin{aligned}
& \alpha^{0} \quad=1 \\
& \alpha^{1} \quad=\quad \alpha \\
& \alpha^{2} \quad=\quad \alpha^{2} \\
& \alpha^{3}=1+\alpha \\
& \alpha^{4}=\alpha \alpha^{3} \quad=\quad \alpha+\alpha^{2} \\
& \alpha^{5}=\alpha \alpha^{4}=a^{2}+\alpha^{3}=1+\alpha+\alpha^{2} \\
& \alpha^{6}=\alpha \alpha^{5}=\alpha+\alpha^{2}+a^{3}=\alpha+\alpha^{2}+1+\alpha=1+\alpha^{2} \\
& \alpha^{7}=\alpha \alpha^{6}=\alpha+\alpha^{3}=\alpha+1+\alpha=1
\end{aligned}
$$

Hence

$$
\mathbb{E}^{\sharp}=\mathbb{E} \backslash\{0\}=\left\{\alpha^{i} \mid 0 \leq i<7\right\}
$$

Since $h(\alpha)=0$ we $h\left(\alpha^{2}\right)=h(\alpha)^{2}=0$. Let's verify this by direct computation

$$
h\left(\alpha^{2}\right)=1+\alpha^{2}+\left(\alpha^{2}\right)^{3}=1+\alpha^{2}+\alpha^{6}=1+\alpha^{2}+\left(1+\alpha^{2}\right)=0
$$

also

$$
h\left(\alpha^{4}\right)=1+\alpha^{4}+\left(\alpha^{4}\right)^{3}=1+\alpha^{4}+\alpha^{12}=1+\alpha^{4}+\alpha^{5}=1+\left(\alpha+\alpha^{2}\right)+\left(1+\alpha+\alpha^{2}\right)=0
$$

Thus $\alpha, \alpha^{2}, \alpha^{4}$ are the roots of $1+x+x^{3}$.
From $\alpha^{7}=1$ we have $\left(\alpha^{i}\right)^{7}=\alpha^{i 7}=\left(\alpha^{7}\right)^{i}=1$. So if $0 \neq e \in \mathbb{E}$, then $e^{7}=1$ and e is a root of $x^{7}-1$.
Note that $\left(1+x+x^{3}\right)(1+x)=1+x+x^{3}+x+x^{2}+x^{4}=1+x^{2}+x^{3}+x^{4}$. So the long division in IX.29. shows that

$$
x^{7}-1=(1+x)\left(1+x+x^{3}\right)\left(1+x^{2}+x^{3}\right)
$$

1 is a root of $1+x$ and $\alpha, \alpha^{2}, \alpha^{4}$ are the root of $1+x+x^{3}$. So α^{3}, α^{4} and a^{6} should be the roots of $1+x^{2}+x^{3}$. To confirm

$$
1+\left(\alpha^{3}\right)^{2}+\left(\alpha^{3}\right)^{3}=1+\alpha^{6}+\alpha^{9}=1+\alpha^{6}+\alpha^{2}=1+\left(1+\alpha^{2}\right)+\alpha^{2}=0
$$

Since $\left(\alpha^{3}\right)^{2}=\alpha^{6}$ and $\left(\alpha^{6}\right)^{2}=\alpha^{12}=\alpha^{5}$ also α^{6} and a^{5} are roots of $1+x^{2}+x^{3}$.
Lemma IX.35. Let $n \in \mathbb{Z}^{+}$and write

$$
x^{n}-1=f_{0} f_{1} \ldots f_{l}
$$

where $f_{0}, f_{1}, \ldots, f_{l}$ are pairwise distinct irreducible polynomials in $\mathbb{F}_{2}[x]$ with $f_{0}=x-1=1+x$. Let $C \subseteq \mathbb{F}_{2}^{n}$ be cyclic code and g the canonic generator for the ideal $C(x)$ in $V^{n}[x]$ corresponding to C. Then there exists uniquely determined $\epsilon_{i} \in\{0,1\}, 0 \leq i \leq l$ with

$$
g=f_{0}^{\epsilon_{0}} \ldots f_{l}^{\epsilon_{l}}
$$

Moreover, $x^{n}-1=g h$ where

$$
h=f_{0}^{\delta_{0}} \ldots f_{l}^{\delta_{l}}
$$

and $\delta_{i}=1-\epsilon_{i}$.
Proof. By IX. $22 g$ divides $x^{n}-1$ in $\mathbb{F}_{2}[x]$. The lemma now follows from A. 13
Example IX.36. Given that $x^{7}-1=(1+x)\left(1+x+x^{3}\right)\left(1+x^{2}+x^{3}\right)$ is the factorization of $x^{7}-1$ into irreducible polynomials. Find a generating matrix and a check matrix for all the four dimensional cyclic codes of length 7.

Let C be such a code, Let g be the canonical generator of C and $h \in \mathbb{F}_{2}[x]$ with $g h=x^{7}-1$. Then $\operatorname{deg} h=\operatorname{dim} C=4$ and $\operatorname{deg} g=7-4=3$. Then

$$
g=(1+x)^{\epsilon_{1}}\left(1+x+x^{3}\right)^{\epsilon_{2}}\left(1+x^{2}+x^{3}\right)^{\epsilon_{3}}
$$

for some $\epsilon_{1}, \epsilon_{2}, \epsilon_{3} \in\{0,1\}$. We have $3=\operatorname{deg} g=\epsilon_{1}+3 \epsilon_{2}+3 \epsilon_{3}$ and we conclude that $g=1+x+x^{3}$ or $g=1+x^{2}+x^{3}$. So either

$$
g=1+x+x^{3} \text { and } h=(1+x)\left(1+x^{2}+x^{3}\right)=\left(1+x^{2}+x^{3}\right)+\left(x+x^{3}+x^{4}\right)=x^{4}+x^{2}+x+1
$$

or

$$
g=1+x^{2}+x^{3} \text { and } h=(1+x)\left(1+x+x^{3}\right)=\left(1+x+x^{3}\right)+\left(x+x^{2}+x^{4}\right)=x^{4}+x^{3}+x^{2}+1
$$

Thus

$$
E=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } H=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right]
$$

or

$$
E=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } H=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

So both codes are Hamming codes.
Lemma IX.37. Let \mathbb{F} be a field and $0 \neq f \in \mathbb{F}[x]$. Let $a=\operatorname{lead}(f)$ and $n=\operatorname{deg} f$. Then there exists a field \mathbb{E} containing \mathbb{F} and elements $\alpha_{1}, \alpha_{2} \ldots, \alpha_{n}$ in \mathbb{E} such that

$$
f=a\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n}\right)
$$

Moreover, if \mathbb{F} is finite we can choose \mathbb{E} be be finite.
Such a field \mathbb{E} is called a splitting field for f over \mathbb{F}.
Proof. The proof is by induction on $\operatorname{deg} f$. If $\operatorname{deg} f=0$, the lemma holds with $\mathbb{E}=\mathbb{F}$. So suppose $\operatorname{deg} f>0$. Then $f=g h$ with $g, h \in \mathbb{F}[x]$ and h irreducible. Put $\mathbb{K}=\mathbb{F}^{h}[x]$. Then \mathbb{K} is a field and there exists a root α of h in \mathbb{K}. Moreover, \mathbb{K} is finite if \mathbb{F} is finite. Then $x-\alpha$ divides h in $\mathbb{K}[x]$ and so $f=(x-\alpha) t$ for some $t \in \mathbb{K}[x]$. Since $\operatorname{deg} t=n-1$, by induction there exist a field \mathbb{E} containing \mathbb{K} and elements $\alpha_{1}, \alpha_{2} \ldots, \alpha_{n-1}$ in \mathbb{E} such that

$$
t=a\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n-1}\right)
$$

and \mathbb{E} is finite if \mathbb{K} is finite. Thus the lemma holds with $\alpha_{n}=\alpha$.
Lemma IX.38. Let \mathbb{F} be a field and $\alpha_{i}, 1 \leq i \leq d$ be elements in \mathbb{F}. Let D be the $d \times n$ matrix

$$
D=\left[\alpha_{i}^{j}\right]_{1 \leq i \leq i d .}^{0 \leq j<n} .
$$

and $c=c_{0} c_{1} \ldots c_{n-1} \in \mathbb{F}^{n}$. The i-th coordinate of $D c$ is $\sum_{j=0}^{n-1} c_{j} \alpha_{i}^{j}$ and so $D c=0$ if and only if $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}$ all are roots of $c(x)=\sum_{j=0}^{n-1} c_{j} x^{j}$.

Proof. Just observe that the i 'th coefficient of $D c$ is $\sum_{j=0}^{n-1} \alpha_{i}^{j} c_{j}=\sum_{j=0}^{n-1} c_{j} a_{i}^{j}=c\left(\alpha_{i}\right)$.
Lemma IX.39. Let \mathbb{F} and \mathbb{E} be a fields with $\mathbb{F} \subseteq \mathbb{E}$. Let $f \in \mathbb{F}[x]$ and $\alpha \in \mathbb{E}$. Suppose that α is the root of some non-zero polynomial in $\mathbb{F}[x]$ and let $m \in \mathbb{F}[x]$ be a monic polynomial of minimal degree with respect to $m(\alpha)=0$. Put $\mathbb{F}[\alpha]=\{f(\alpha) \mid f \in \mathbb{F}[x]\}$. Then
(a) Let $f \in \mathbb{F}[x]$ and let r be the remainder of f when devided by m. Then $f(\alpha)=r(\alpha)$.
(b) $f(\alpha)=0$ if and only if m divides f in $\mathbb{F}[x]$
(c) Let $f, g \in \mathbb{F}[x]$. Let r and s be the remainder of f and g when divided by m. Then

$$
f(\alpha)=g(\alpha) \quad \Longleftrightarrow \quad r=s \quad \Longleftrightarrow \quad m \mid g-f .
$$

(d) For each $e \in \mathbb{F}[a]$ there exists a unique $r \in \mathbb{F}^{m}[x]$ with $e=r(\alpha)$.
(e) Let $t=\operatorname{deg} m$. Then $\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{t-1}\right)$ is an \mathbb{F}-basis for $\mathbb{F}[\alpha]$.
(f) m is the unique monic irreducible polynomial in $\mathbb{F}[x]$ with $m(\alpha)=0$.
m is called the minimal polynomial of α over \mathbb{F} and is denoted by $m_{\alpha}^{\mathbb{F}}$ or m_{α}.
Proof. (a) Let $f=q m+r$ with $q, r \in \mathbb{F}[x]$ and $\operatorname{deg} r<\operatorname{deg} m$. Then $f(\alpha)=q(\alpha) m(\alpha)+r(\alpha)=q(\alpha) 0+r(\alpha)=$ $r(\alpha)$. So (a) holds.
(b): We have $f(\alpha)=0$ if and only if $r(\alpha)=0$. Since $\operatorname{deg} r<\operatorname{deg} m$, the minimality of $\operatorname{deg} m$ shows that $r(\alpha)=0$ if and only if $r=0$. So $f(\alpha)=0$ if and only if $m \mid f$ and b holds.
(C)

$$
\begin{array}{rll}
& f(\alpha)=g(\alpha) & \\
\Longleftrightarrow & r(\alpha)=s(\alpha) & - \text { ab } \\
\Longleftrightarrow & (r-s)(\alpha)=0 & \\
\Longleftrightarrow & m \mid r-s & -\sqrt{b} \\
\Longleftrightarrow & r-s=0 & -\operatorname{deg}(r-s)<\operatorname{deg} m \\
\Longleftrightarrow & r=s &
\end{array}
$$

(d) The existence of r follows from (a). The uniqueness from (c).
(e) Any $f \in \mathbb{F}^{m}[x]$ can be uniquely written as $f=\sum_{i=0}^{t-1} a_{i} x^{i}$ with $a_{i} \in \mathbb{F}$. Also $f(\alpha)=\sum_{i=0}^{t-1} a_{i} \alpha^{i}$. So (d) says that every $e \in \mathbb{F}[a]$ is a unique linear combination of $1, \alpha, \ldots, \alpha^{t-1}$. Thus (e) holds.
(f) Suppose that $m=g h$ for some $g, h \in \mathbb{F}[x]$. Then $g(\alpha) h(\alpha)=m(\alpha)=0$ and since \mathbb{E} is a field, $g(\alpha)=0$ or $h(\alpha)=0$. Lets say $g(\alpha)=0$. Then the minimality of $\operatorname{deg} m$ implies $\operatorname{deg} g=\operatorname{deg} m$ and so $\operatorname{deg} h=0$. Thus m is irreducible.

Let g be any irreducible monic polynomial with $g(\alpha)=0$. By $b, m \mid g$ and since g is irreducible, A. 11 implies $m=g$. Thus m is unique.

Definition IX.40. Let \mathbb{E} be a field containing $\mathbb{F}_{2}, C \subseteq \mathbb{F}_{2}^{n}$ a linear code and H an $m \times n$-matrix with coefficents in \mathbb{E}. We say that H is a check matrix for C over \mathbb{E} if

$$
C=\left\{c \in \mathbb{F}_{2}^{n} \mid H c=0\right\}
$$

Lemma IX.41. Let $C \in \mathbb{F}_{2}^{n}$ be a cyclic code with canonical generator $g \in \mathbb{F}_{2}[x]$. Suppose that $g=a g_{1} \ldots g_{s}$, where g_{1}, \ldots, g_{s} are pairwise distinct irreducible monic polynomials in $\mathbb{F}[x]$. Let \mathbb{E} be a field containing \mathbb{F}_{2} and let $\alpha_{1}, \ldots, \alpha_{d}$ be pairwise distinct elements in \mathbb{E}. Suppose that
(i) Each α_{i} is a root of one of the g_{j} 's.
(ii) Each g_{j} has one of the $\alpha_{i}^{\prime} s$ as a root.

Put

$$
H=\left[\alpha_{i}^{j}\right]_{\substack{1 \leq i \leq d \\ 0 \leq j \leq n}}
$$

Then H is a check matrix for C over \mathbb{E} and

$$
C=\left\{c \in \mathbb{F}_{2}^{n} \mid c\left(\alpha_{i}\right)=0 \text { for all } 1 \leq i \leq d\right\}
$$

Proof. Let $c \in \mathbb{F}_{2}^{n}$, then $c \in C$ if and only if $c(x) \in C(x)$. Since g is a canonical generator for $C(x)$, this is the case if and only if g devides $c(x)$.

Suppose g divides $c(x)$. Let $1 \leq i \leq d$. By (ii) there exists $1 \leq j \leq s$ with $g_{j}\left(\alpha_{i}\right)=0$. Since g_{j} divides g, $g\left(\alpha_{i}\right)=0$ and since g divides $c(x), c\left(\alpha_{i}\right)=0$.

Suppose $c\left(\alpha_{i}\right)=0$ for all $1 \leq i \leq d$. Let $1 \leq j \leq s$. By (ii) there exists $1 \leq i \leq d$ with $g_{j}\left(\alpha_{i}\right)=0$. So by IX. $39 g_{j}$ divides $c(x)$. Thus by A. $13 g$ divides $c(x)$.

We proved that g divides $c(x)$ if and only if $c\left(\alpha_{i}\right)=0$ for all $1 \leq i \leq d$. By IX.38 this holds if and only if $H c=0$. So H is check matrix for C.

IX. 3 Properties of BCH codes

Definition IX.42. Let \mathbb{E} be a finite field and put $n=|\mathbb{E}|-1 . \alpha \in \mathbb{E}$ is called a primitive element for \mathbb{E} if

$$
\alpha^{n}=1 \quad \text { and } \quad \mathbb{E} \backslash\{0\}=\left\{\alpha^{i} \mid 0 \leq i<n\right\} .
$$

Lemma IX.43. Every finite field has a primitive element.
Proof. For a proof see A. 18 in the appendix.
Definition IX.44. Let \mathbb{E} be a finite field containing \mathbb{F}_{2}. Put $n=\left|\mathbb{E}^{\sharp}\right|$ and let α be a primitive element for \mathbb{E}. Let $1 \leq d<n$ and

$$
g=\operatorname{lcm}\left(m_{\alpha^{i}} \mid 1 \leq i<d\right)
$$

Let $C \subseteq \mathbb{F}_{2}^{n}$ be the cyclic code with canonical generator g. Then C is called the BCH code of length n and designated distance d with respect to α.

Lemma IX.45. Let \mathbb{F} be a field and $\alpha_{j}, 0 \leq j<n$ pairwise distinct non-zero elements in \mathbb{F}. Let A be the $d \times n$ matrix

$$
A=\left[\alpha_{j}^{i}\right]_{\substack{1 \leq i \leq d \\ 0 \leq j<n}}
$$

Then any d columns of A are linearly independent over \mathbb{F}.
Proof. Given $0 \leq s_{1}<s_{2}<\ldots<s_{d}<n$. Put $\beta_{j}=\alpha_{s_{j}}$ and consider the $d \times d$-matrix

$$
B=\left[\beta_{j}^{i}\right]_{\substack{0 \leq i<d \\ 1 \leq j \leq d}} .
$$

Then β_{j} times column j of B is column s_{j} of A. Since $\beta_{j} \neq 0$ for all $1 \leq j \leq d$, the columns of B are linearly independent if and only if columns $s_{1}, s_{2}, \ldots s_{d}$ of A are linearly independent.

Since B is a square matrix, the columns of B are linearly independent if and only if B is invertible, if and only if B^{T} is invertible, and if and only if $c=0$ for all $c \in \mathbb{F}^{d}$ with $B^{\mathrm{T}} c=0$. Note that

$$
B^{\mathrm{T}}=\left[\beta_{i}^{j}\right]_{\substack{1 \leq i \leq d \\ 0 \leq j<d}}
$$

By IX.38, $B^{\mathrm{T}} c=0$ if and only if $\beta_{1}, \beta_{2}, \ldots, \beta_{d}$ are root of $c(x)$. Note that a non-zero polynomial of degree e has at most e roots. Since $c(x)$ is a polynomial of degree less than d, and the $\beta_{1}, \beta_{2}, \ldots \beta_{d}$ are d different elements of \mathbb{F}, we conclude that $\beta_{1}, \beta_{2}, \ldots, \beta_{d}$ are roots of $c(x)$ if and only if $c(x)=0$ and so if and only if $c=0$.

Theorem IX.46. Let \mathbb{E} be a finite field containing \mathbb{F}_{2} and $n=|\mathbb{E}|-1$. Let C be the $B C H$-code of length n and designated distance d with respect to the primitive element α in \mathbb{E}. Let $\left\{m_{\alpha^{i}} \mid 1 \leq i<d\right\}=\left\{m_{1}, \ldots, m_{s}\right\}$, where the $m_{i} ' s, 1 \leq i \leq s$ are pairwise distinct. Then
(a) $g=m_{1} m_{2} \ldots m_{s}$.
(b) $H=\left[\alpha^{i j}\right]_{\substack{1 \leq i<d \\ 0 \leq j<n}}$ is a check matrix for H over \mathbb{E} and $C=\left\{c \in \mathbb{F}_{2}^{n} \mid c\left(\alpha^{i}\right)=0\right.$ for all $\left.1 \leq i<d\right\}$.
(c) For $1 \leq i \leq s$ let α_{i} be a root of m_{i} in \mathbb{E}. Then $\tilde{H}=\left[\alpha_{i}^{j}\right]_{\substack{1 \leq i \leq s \\ 0 \leq j<n}}$ is a check matrix for C and

$$
C=\left\{c \in \mathbb{F}_{2}^{n} \mid c\left(\alpha_{i}\right)=0 \text { for all } 1 \leq i \leq s\right\} .
$$

(d) C has minimum distance at least d
(e) $\operatorname{dim} C \geq n-\left\lfloor\frac{d}{2}\right\rfloor \log _{2}(n+1)$.
(f) If $d=2 r+1$, then C is an r-error correcting code and $\operatorname{dim} C \geq n-r \log _{2}(n+1)$.

Proof. (a) Follows from $g=\operatorname{lcm}\left(m_{\alpha^{i}} \mid 1 \leq i<d\right)$.
(b) Since α^{i} is a root of $m_{\alpha^{i}}$ we conclude that each m_{j} has some $\alpha^{i}, 1 \leq i \leq d-1$ as a root and each α^{i} is a root of one the $m_{j}^{\prime} s$. So bl follows IX. 41
(c) Since α_{i} is a root of m_{i} another application of IX. 41 gives (c).
(d) By IX. 45 applied with $\alpha_{j}=\alpha^{j}, 0 \leq j<n$, any $d-1$-columns of H are linearly independent over \mathbb{E}. Hence the sum of any $d-1$-columns of H is non-zero and so $H c \neq 0$ for any $0 \neq c \in \mathbb{F}_{2}^{n}$ with $\operatorname{wt}(c) \leq d-1$. Thus C has minimal weight at least d.
(e) Put $l=\log _{2}(n+1)$. Then $|E|=n+1=2^{l}$. Put $t_{i}=\operatorname{deg} m_{i}$. By IX.39|ep, $\left|\mathbb{F}_{2}\left[\alpha_{i}\right]\right|=2^{t_{i}}$. Since $\left|\mathbb{F}_{2}\left[\alpha_{i}\right]\right| \leq|\mathbb{E}|=2^{l}$ we have $t_{i} \leq l$. Thus

$$
\operatorname{deg} g=\sum_{i=1}^{s} \operatorname{deg} m_{i}=\sum_{i=1}^{s} t_{i} \leq s l
$$

By IX.22.f, $\operatorname{dim} C=n-\operatorname{deg} g \geq n-s l$.
Since $\alpha^{2 j}$ is a root of $m_{\alpha^{j}}$, we have $m_{\alpha^{2 j}}=m_{\alpha^{j}}$ and so if $i=2^{k} j$ with j odd, $m_{\alpha^{i}}=m_{\alpha^{j}}$. Thus

$$
\left\{m_{\alpha^{i}} \mid 1 \leq i<d\right\}=\left\{m_{\alpha^{j}} \mid 1 \leq j<d, j \text { odd }\right\}
$$

Thus $s \leq \frac{(d-1)+1}{2}$ and $s \leq\left\lfloor\frac{d}{2}\right\rfloor$. So

$$
\operatorname{dim} C \geq n-s l \geq n-\left\lfloor\frac{d}{2}\right\rfloor \log _{2}(n+1)
$$

(f) Follows from (d) and (e)

Example IX.47. Let $\mathbb{E}=\mathbb{F}_{2}^{x^{4}+x+1}[x]$ and $\alpha=x \in \mathbb{E}$. Let C be the BCH-code of length 15 and designated distance 7 with respect to α. S Verify that \mathbb{E} is a field and α is a primitive elements in \mathbb{E}. Determine the dimension of C, the minimal distance of C, the canonical generator for C and a check matrix over \mathbb{E} for C.

To show that \mathbb{E} is a field it suffices to show that $x^{4}+x+1$ is irreducible in $\mathbb{F}_{2}[x]$. (see Lemma IX.33). Suppose that $x^{4}+x+1=p q$ with $p, q \in \mathbb{F}_{2}[x]$. Then $\operatorname{deg} p+\operatorname{deg} q=4$ and we may assume that $\operatorname{deg} p \leq 2$. We have $0^{4}+0+1=1$ and $1^{4}+1+1=1$ and so neither 0 nor 1 is a root of $x^{4}+x+1$. Hence neither 0 nor 1 is a root of p. Thus p is none of $x, x+1, x^{2}+1, x^{2}+x$ and x^{2}. To determined whether $x^{2}+x+1$ divides $x^{4}+x+1$ we use long devision of polynomials:
111
$\frac{111}{10011}$
$\frac{111}{1111}$
$\frac{111}{1}$

So the remainder of $x^{4}+x+1$ when divide by $x^{2}+x+1$ is 1 . So $p \neq x^{2}+x+1$. We proved that p is neither a polynomial of degree 1 nor 2 . Hence $\operatorname{deg} p=0$ and $x^{4}+x+1$ is irreducible.

To show that α is a primitive element we compute the powers of α :

$$
\begin{aligned}
& \alpha^{0}=1 \quad \alpha^{8}=1+\alpha^{2} \\
& \alpha^{1}=\alpha<\alpha^{9}=\alpha+\alpha^{3} \\
& \alpha^{2}=\alpha^{2} \alpha^{10}=1+\alpha+\alpha^{2} \\
& \alpha^{3}=\alpha^{3} \quad \alpha^{11}=\alpha+\alpha^{2}+\alpha^{3} \\
& \alpha^{4}=1+\alpha \quad \alpha^{12}=1+\alpha+\alpha^{2}+\alpha^{3} \\
& \alpha^{5}=\alpha+\alpha^{2} \quad \alpha^{13}=1+\alpha^{2}+\alpha^{3} \\
& \alpha^{6}=\alpha^{2}+\alpha^{3} \quad \alpha^{14}=1+\alpha^{3} \\
& \alpha^{7}=1+\alpha+\alpha^{3} \quad \alpha^{15}=1
\end{aligned}
$$

So α is indeed a primitive elements. To find the canonical generator g we need to determine $m_{\alpha^{i}}$ for $1 \leq i<7$.
α, α^{2} and α^{4} are roots of $1+x+x^{4}$ and so $m_{\alpha}=m_{\alpha^{2}}+m_{\alpha^{4}}$.
We look at the powers of α^{3} as strings of length 4

$$
\begin{aligned}
\left(\alpha^{3}\right)^{0}=1 & \leftrightarrow 1000 \\
\left(\alpha^{3}\right)^{1}=\alpha^{3} & \leftrightarrow 0001 \\
\left(\alpha^{3}\right)^{2}=\alpha^{6} & \leftrightarrow 0011 \\
\left(\alpha^{3}\right)^{3}=\alpha^{9} & \leftrightarrow 0101 \\
\left(\alpha^{3}\right)^{4}=\alpha^{12} & \leftrightarrow 1111
\end{aligned}
$$

The first four strings are linearly independent. The sum of all five is zero.
So α^{3} and α^{6} have minimal polynomial $1+x+x^{2}+x^{3}+x^{4}$.

Powers of α^{5} :

$$
\begin{aligned}
\left(\alpha^{3}\right)^{0}=1 & \leftrightarrow 1000 \\
\left(\alpha^{5}\right)^{1}=\alpha^{3} & \leftrightarrow 0110 \\
\left(\alpha^{5}\right)^{2}=\alpha^{10} & \leftrightarrow 1110
\end{aligned}
$$

The first two strings are linearly independent and the sum of all three is zero. So α^{5} is a root of $1+x+x^{2}$. Thus we can choose $m_{1}=1+x+x^{4}, m_{2}=1+x+x^{2}+x^{3}+x^{4}$ and $m_{3}=1+x+x^{2}$. Hence

$$
g=\left(1+x+x^{4}\right)\left(1+x+x^{2}+x^{3}+x^{4}\right)\left(1+x+x^{2}\right)
$$

We compute

Thus $g=1+x+x^{2}+x^{4}+x^{5}+x^{8}+x^{10}$. Since $\operatorname{deg} g=10, \operatorname{dim} C=15-10=5$. The string of length 15 corresponding to g is 111011001010000 . This is a codeword of weight 7 and so C has minimum distance at most 7. By IX.46 C has minimum weight at least 7 and so $\delta(C)=7$.

Since α, α^{3} and α^{5} are roots of m_{1}, m_{2} and m_{3} respectively we obtain the following check matrix:

$$
H=\left[\begin{array}{ccccccccccccccc}
1 & \alpha & \alpha^{2} & \alpha^{3} & \alpha^{4} & \alpha^{5} & \alpha^{6} & \alpha^{7} & \alpha^{8} & \alpha^{9} & \alpha^{10} & \alpha^{11} & \alpha^{12} & \alpha^{13} & \alpha^{14} \\
1 & \alpha^{3} & \alpha^{6} & \alpha^{9} & \alpha^{12} & 1 & \alpha^{3} & \alpha^{6} & \alpha^{9} & \alpha^{12} & 1 & \alpha^{3} & \alpha^{6} & \alpha^{9} & \alpha^{12} \\
1 & \alpha^{5} & \alpha^{10} & 1 & \alpha^{5} & \alpha^{10}
\end{array}\right]
$$

Lemma IX.48. Let $C \subseteq \mathbb{F}_{2}^{n}$ be a $B C H$ code with respect to the primitive element α. Let (c, z) be a l-bit error for C. Then $z(\alpha) \neq 0$ and if $i \in \mathbb{N}$ with $0 \leq i<n$ and $z(\alpha)=\alpha^{i}$, then $c_{i} \neq z_{i}$.

Proof. Since (c, z) is 1-bit error, $c_{j} \neq z_{j}$ for a unique $0 \leq j<n$. Thus $z(x)=c(x)+x^{j}$. By IX. $41 c(\alpha)=0$ for all $c \in C$ and so

$$
z(\alpha)=c(\alpha)+\alpha^{j}=\alpha^{j} .
$$

Since α is a primitive element, the elements $\alpha^{s}, 0 \leq s<n$, are pairwise distinct. Hence $j=i$ and so $z_{i} \neq c_{i}$.

Example IX.49. Let C be the code from example IX.47. Does there exist a 1-bit error (c, z) with

$$
z=011111110000000 ?
$$

We have $z(\alpha)=\alpha+\alpha^{2}+\alpha^{3}+\alpha^{4}+\alpha^{5}+\alpha^{6}+\alpha^{7}$. We calculate the remainder of this polynomial when divided by $x^{4}+x+1$.
$\frac{111}{10011} 11111110$
$\frac{10011}{1100110}$
$\frac{10011}{101010}$
$\frac{10011}{1100}$

Thus $z(\alpha)=\alpha^{3}+\alpha^{2}=\alpha^{2}(1+\alpha)=\alpha^{2} \alpha^{4}=\alpha^{6}$. So if (c, z) is a 1-bit error, then the error occurred in bit 7:

$$
c=0111110100000000
$$

We compute $c\left(\alpha^{3}\right)$ and $c\left(\alpha^{5}\right)$ to check whether c is in the code:

$$
c\left(\alpha^{5}\right)=0+\alpha^{5}+\alpha^{10}+1+\alpha^{5}+\alpha^{10}+0+\alpha^{5}=1+\alpha^{5} \neq 0
$$

So c is not in the code. Thus z cannot be the result of a 1-bit-error.

Chapter X

Cryptography in theory and practice

X. 1 Encryption in terms of a channel

Definition X.1. A cryptosystem Ω is quadruple $\left(\mathcal{M}, \mathcal{C},\left(E_{k}\right)_{k \in \mathcal{K}},\left(D_{l}\right)_{l \in \mathcal{K}}\right)$, where \mathcal{M}, \mathcal{C} and \mathcal{K} are alphabets and for $k \in \mathcal{K}, E_{k}: \mathcal{M} \rightarrow \mathcal{C}$ and $D_{k}: \mathcal{C} \rightarrow \mathcal{M}$ are functions such that for each $k \in \mathcal{K}$ there exists $k^{*} \in \mathcal{K}$ with $D_{k^{*}} \circ E_{k}=\mathrm{id}_{\mathcal{M}}$.

The elements of \mathcal{M} are called plaintext messages, the elements of \mathcal{C} are called ciphertext messages, the elements of \mathcal{K} are called keys, each E_{k} is called an encryption function and each D_{l} is called an decryption function.

Example X.2. Let $\mathcal{M}=\mathcal{C}=\mathbb{A}=\{A, B, C, D, \ldots, Z, \sqcup\}, \mathcal{K}=\{0,1, \ldots, 25\}$ and for $k \in \mathcal{K}, E_{k}=D_{k}=c_{k}$, where c_{k} is the shift by k-letters defined in Example I.20 Note that D_{26-k} is the inverse of E_{k}, so this is indeed a cryptosystem.

Definition X.3. Let $\left(\mathcal{M}, \mathcal{C},\left(E_{k}\right)_{k \in \mathcal{K}},\left(D_{l}\right)_{l \in \mathcal{K}}\right)$ be a cryptosystem and p and r probabilty distribution on \mathcal{M} and \mathcal{K}, respectively. Define

$$
\begin{aligned}
u: \mathcal{M} \times \mathcal{K} \times \mathcal{C} & \rightarrow \\
(m, k, c) & \rightarrow \begin{cases}p_{m} r_{k} & \text { if } c=E_{k}(m) \\
0 & \text { if } c \neq E_{k}(m)\end{cases}
\end{aligned}
$$

t, q, and s are defined to by the marginal distribution of u on $\mathcal{M} \times \mathcal{C}, \mathcal{C}$ and $\mathcal{K} \times \mathcal{C}$ respectively.
Define the $\mathcal{M} \times \mathcal{C}$-matrix Γ by

$$
\Gamma_{m c}=\sum_{\substack{k \in \mathcal{K} \\ E_{k}(m)=c}} r_{k}
$$

Γ is called the encryption channel for the cryptosystem with respect to r.
We interpreted $u_{m k c}$ as the probability $\operatorname{Prob}(m, k, c)$ that plain text message m was encrypted via the key k and the cipher text c was obtained.

Lemma X.4. With the notation as in X.3
(a) u is a probability distribution.
(b) p, r and $p \otimes r$ are the marginal distribution of u on \mathcal{M}, \mathcal{K} and $\mathcal{M} \times \mathcal{K}$, respectively.
(c) Γ is a channel associated to the distribution t on $\mathcal{M} \times \mathcal{C}$.
(d) E_{k} is $1-1$ for all $k \in \mathcal{K}$.
(e)

$$
q_{c}=\sum_{\substack{(m, k) \in \mathcal{M} \times \mathcal{K} \\ E_{k}(m)=c}} p_{m} r_{k} .
$$

(f) $s_{k c}=0$ if $c \notin E_{k}(\mathcal{M})$ and $s_{k, c}=p_{m} r_{k}$ if $c \in E_{k}(\mathcal{M})$ and m is the unique element of \mathcal{M} with $E_{k}(m)=c$.
(g) $H(s)=H(p \otimes r)=H(p)+H(r)$.
(h) $H(r \mid q)=H(r)+H(p)-H(q)$.

Proof. Let $m \in \mathcal{M}, k \in \mathcal{K}$ and $c \in \mathcal{C}$.
(a) and (b) Clearly $u_{m k c} \in[0,1]$. Given m and k, then $c^{*}=E_{k}(m)$ is the only element of \mathcal{C} with $u_{m k c^{*}} \neq 0$. Thus

$$
\sum_{c \in \mathcal{C}} u_{m k c}=u_{m k c^{*}}=p_{m} r_{k} .
$$

So $p \otimes r$ is the marginal distribution of u on $\mathcal{M} \times \mathcal{K}$. Since $p \otimes r$ is a probability distribution, we conclude fromIV.6 that also u is a probablity distribution. Since p and r are the marginal distributions of $p \otimes r$ on \mathcal{M} and \mathcal{K}, respectively, they are also the marginal distributions of u on \mathcal{M} and \mathcal{K}, see $\bar{B} .1$ in the appendix.
(c) We will first verify that Γ is a channel: Let $m \in \mathcal{M}$, then

$$
\sum_{c \in \mathcal{C}} \Gamma_{m c}=\sum_{c \in C}\left(\sum_{\substack{k \in \mathcal{K} \\ E_{k}(m)=c}} r_{k}\right)=\sum_{\substack{k \in \mathcal{K}, c \in \mathcal{C} \\ E_{k}(m)=c}} r_{k}=\sum_{k \in \mathcal{K}} r_{k}=1
$$

So Γ is indeed a channel.
Since $u_{m k c}=0$ for $c \neq E_{k}(m)$ we have

$$
t_{m c}=\sum_{k \in \mathcal{K}} u_{m k c}=\sum_{\substack{k \in \mathcal{K} \\ E_{k}(m)=c}} u_{m k c}=\sum_{\substack{k \in \mathcal{K} \\ E_{k}(m)=c}} p_{m} r_{k}=p_{m} \sum_{\substack{k \in \mathcal{K} \\ E_{k}(m)=c}} r_{k}=p_{m} \Gamma_{m c}
$$

Thus $t=\operatorname{Diag}(p) \Gamma$ and so (see Definition V.10 d) Γ is a channel associated to t.
(d) Let $k \in \mathcal{K}$ and $m_{1}, m_{2} \in \mathcal{M}$ with $E_{k}\left(m_{1}\right)=E_{k}\left(m_{2}\right)$. By definition of a cryptosystem there exists $k^{*} \in \mathcal{K}$ with $D_{k^{*}} \circ E_{k}=\mathrm{id}_{\mathcal{M}}$. Thus

$$
m_{1}=D_{k^{*}}\left(E_{k}\left(m_{1}\right)\right)=D_{k^{*}}\left(E_{k}\left(m_{2}\right)\right)=m_{2}
$$

and so E_{k} is 1-1.
(e) Since p and q are the marginal distributions of $t, p=q \Gamma$. So using (c),

$$
q_{c}=\sum_{m \in \mathcal{M}} p_{m} \Gamma_{m c}=\sum_{m \in \mathcal{M}} p_{m}\left(\sum_{\substack{k \in \mathcal{K} \\ E_{k}(m)=c}} r_{k}\right)=\sum_{\substack{(m, k) \in \mathcal{M} \times \mathcal{K} \\ E_{k}(m)=c}} p_{m} r_{k} .
$$

(f) Since s is the marginal distribution of u on $\mathcal{K} \times \mathcal{C}, s_{k c}=\sum_{m \in \mathcal{M}} u_{m k c}=\sum_{E_{k}(m)=c}^{m \in \mathcal{M}} p_{m} r_{k}$

Since E_{k} is 1-1, there either exists a unique $m \in \mathcal{M}$ with $E_{k}(m)=c$ or there exists no element $m \in \mathcal{M}$ with $E_{k}(m)=c$. This gives (f).
(g) Since p and r are independent with respect to $p \otimes r, I V .9$ gives

$$
H(p \otimes r)=H(p)+H(r)
$$

Consider the function:

$$
\pi: \mathcal{M} \times \mathcal{K} \rightarrow \mathcal{K} \times \mathcal{C}, \quad(m, k) \rightarrow\left(k, E_{k}(m)\right)
$$

Since each E_{k} is $1-1$, also π is $1-1$ and so π is a bijection from $\mathcal{M} \times \mathcal{K}$ to $\operatorname{Im} \pi$. Let $k \in \mathcal{K}$ and $c \in \mathcal{C}$. If $(k, c)=\pi(m, k)$ for some $m \in \mathcal{M}$, then (e) shows that

$$
s_{\pi(m, k)}=s_{k c}=p_{m} r_{k}=(p \otimes r)_{m k}
$$

Since π is a bijection from $\mathcal{M} \times \mathcal{K}$ to $\operatorname{Im} \pi$, V.17a gives

$$
H(p \otimes r)=H\left(\left.s\right|_{\operatorname{Im} \pi}\right)
$$

Also $s_{k c}=0$ if $(k, c) \notin \operatorname{Im} \pi$. So

$$
H\left(\left.s\right|_{\operatorname{Im} \pi}\right)=H(s)
$$

and (g) holds.
(h) Using the definition of $H(r \mid q)$ and (g),

$$
H(r \mid q)=H(s)-H(q)=H(p)+H(r)-H(q)
$$

Definition X.5. (a) The key equivocation of a cryptosystem with respect to the probability distribution p and r on \mathcal{M} and \mathcal{K}, respectively, is

$$
H(r \mid q)
$$

(b) A cryptosytem is said to have perfect secrecy with respect to the probability distribution r on \mathcal{K} if

$$
I(p, q)=0
$$

for all probability distributions p on \mathcal{M}.
Here Γ, r, s and q are as define in X. 3
$H(r \mid q)$ measures the amount of information obtained about the keys by observing ciphertext messages.
$I(p, q)$ measures the dependency of p and $q . I(p, q)=0$ means that p and q are independent. So knowing the ciphertext does not reveal any information about the plaintext messages.

X. 2 Perfect secrecy

Theorem X.6. Given a cryptosystem and a probability distribution r on \mathcal{K}. Then the following are equivalent:
(a) The cryptosystem has perfect secrecy with respect to the probability distribution r.
(b) p and q are independent for all probability distributions p on \mathcal{M}.
(c) There exists a positive probability distribution p on \mathcal{M} such that p and q are independent.
(d) There exists a positive probability distribution p on \mathcal{M} such that $\Gamma_{m c}=q_{c}$ for all $m \in \mathcal{M}$ and all $c \in \mathcal{C}$,
(e) Each column of Γ is constant, that is there exist a \mathcal{C}-tuple $\left(l_{c}\right)_{c \in \mathcal{C}}$ with $\Gamma_{m c}=l_{c}$ for all $m \in \Gamma, c \in \mathcal{C}$.
(f) $\Gamma_{m c}=q_{c}$ for all probability distributions p on \mathcal{M}, all $m \in \mathcal{M}$ and all $c \in \mathcal{C}$:

Proof. $(\mathrm{a}) \Longleftrightarrow(\mathrm{b}): \quad \mathrm{By}$ V. $19 I(p, q)=0$ if and only if p and q are independent.
$(\mathrm{b}) \Longrightarrow$ (c): Just choose p to be the equal probability distribution on \mathcal{M}.
$(\bar{c}) \Longrightarrow$ (d): Since p and q independent we have $t_{m c}=p_{m} q_{c}$ for all $m \in \mathcal{M}$ and $c \in \mathcal{C}$. Since Γ is a channel associated to $t, t_{m c}=p_{m} \Gamma_{m c}$. Thus $p_{m} \Gamma_{m c}=p_{m} q_{c}$ for all $m \in \mathcal{M}$ and all $c \in \mathcal{C}$. Since p is positive $p_{m} \neq 0$ and so $\Gamma_{m c}=q_{c}$.
(d) \Longrightarrow (e): All entries in column c of Γ are equal to q_{c}.
$(\mathrm{e}) \Longrightarrow(\mathrm{f}):$ Let $c \in \mathcal{C}$. Since column c of Γ is constant there exists $l_{c} \in[0,1]$ with $\Gamma_{m c}=l_{c}$ for all $m \in \mathcal{M}$. Let p be any probability distribution on \mathcal{M}. Then

$$
q_{c}=\sum_{m \in \mathcal{M}} p_{m} \Gamma_{m c}=\sum_{m \in \mathcal{M}} p_{m} l_{c}=\left(\sum_{m \in \mathcal{M}} p_{m}\right) l_{c}=1 l_{c}=l_{c}
$$

and so (f) holds.
$(f) \Longrightarrow(\mathrm{b})$: Let p be a probability distribution on \mathcal{M}. Then $t_{m c}=p_{m} \Gamma_{m c}=p_{m} q_{c}$ and so p and q are independent with respect to t. Thus (b) holds.

Corollary X.7. If a cyrptosystem has perfect secrecy (with respect to some probability distribution on \mathcal{K}), then the numbers of keys is greater or equal to the number of plaintext messages.

Proof. Fix $c \in \mathcal{C}$ with $q_{c} \neq 0$. Then by X.6 $\Gamma_{m c}=q_{c}>0$ for all $m \in \mathcal{M}$. By X. 4

$$
\sum_{\substack{k \in \mathcal{K} \\ E_{k}(m)=c}} r_{k}=\Gamma_{m c}>0
$$

and so for all $m \in \mathcal{M}$ there exists $k_{m} \in \mathcal{K}$ with $E_{k_{m}}(m)=c$. Suppose $k:=k_{m}=k_{\tilde{m}}$ for some $m, \tilde{m} \in \mathcal{M}$. Then $E_{k}(m)=c=E_{k}(\tilde{m})$ and since E_{k} is $1-1, m=\tilde{m}$. So the map $m \rightarrow k_{m}$ is $1-1$ and thus $|\mathcal{M}| \leq|\mathcal{K}|$.

X. 3 The one-time pad

Definition X.8. Let \mathbb{F} be a finite field (or let $(\mathbb{F},+)$ be finite group) and let $n \in \mathbb{Z}^{+}$. For $k \in \mathbb{F}^{n}$ define

$$
E_{k}=D_{k}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}, m \rightarrow m+k
$$

Then $\Omega\left(\mathbb{F}^{n}\right)=\left(\mathbb{F}^{n}, \mathbb{F}^{n},\left(E_{k}\right)_{k \in \mathbb{F}^{n}},\left(D_{k}\right)_{k \in \mathbb{F}^{n}}\right)$ is called the one-time pad determined by \mathbb{F}^{n}.
Lemma X. 9 (One-Time Pad). Any one-time pad is a cryptosystem and has perfect secrecy with respect respect to the equal-probability distribution r on the set of keys.

Proof. Given a one-time pad $\Omega\left(\mathbb{F}^{n}\right)$. Since $(m+k)+(-k)=m+(k+(-k))=m+0=m, D_{-k} \circ E_{k}=\mathrm{id}_{\mathbb{F}^{n}}$. Thus the one-time pad is a cryptosystem.

Put $e=\frac{1}{\left|\mathbb{F}^{n}\right|}$. Then $r_{k}=e$ for all $k \in \mathcal{K}$.
Let $m \in \mathcal{M}$ and $c \in \mathcal{C}$. By definition Γ and E_{k} :

$$
\Gamma_{m c}=\sum_{\substack{k \in \mathcal{K} \\ E_{k}(m)=c}} r_{k}=\sum_{\substack{k \in \mathcal{K} \\ m+k=c}} r_{k}
$$

For any $m \in \mathcal{M}$ and $c \in \mathcal{C}$ there exists a unique $k \in \mathcal{K}$ with $m+k=c$ namely $k=-m+c$. Thus $\Gamma_{m c}=r_{-m+c}=e$. Hence the columns of Γ are constant and so by X.6 the one-time pad has perfect secrecy.

X. 4 Iterative methods

Definition X.10. Let \mathbb{F} be a finite field or $(\mathbb{F},+)$ a finite group. Let $n, r \in \mathbb{Z}^{+}, K$ an alphabet and $F: K \times \mathbb{F}^{n} \rightarrow$ \mathbb{F}^{n} a function. Put $\mathcal{M}=\mathcal{C}=\mathbb{F}^{n} \times \mathbb{F}^{n}$ and $\mathcal{K}=K^{r}$. For $\left(X_{0}, X_{1}\right) \in \mathcal{M}$ and $k=\left(k_{1}, \ldots, k_{r}\right) \in \mathcal{K}$ define $X_{i+1}, 1 \leq i \leq r$ inductively by

$$
X_{i+1}=X_{i-1}+F\left(k_{i}, X_{i}\right)
$$

Define

$$
E_{k}: \mathcal{M} \rightarrow \mathcal{C},\left(X_{0}, X_{1}\right) \rightarrow\left(X_{r+1}, X_{r}\right)
$$

For $\left(Y_{0}, Y_{1}\right) \in \mathcal{C}$ and $k=\left(k_{1}, \ldots, k_{r}\right) \in \mathcal{K}$ define $Y_{i+1}, 1 \leq i \leq r$ inductively by

$$
Y_{i+1}=Y_{i-1}-F\left(k_{i}, Y_{i}\right), 1 \leq i \leq r
$$

Define

$$
D_{k}: \mathcal{C} \rightarrow \mathcal{M},\left(Y_{0}, Y_{1}\right) \rightarrow\left(Y_{r+1}, Y_{r}\right)
$$

Put $\Omega\left(\mathbb{F}^{n}, K, r, F\right)=\left(\mathbb{F}^{n} \times \mathbb{F}^{n}, \mathbb{F}^{n} \times \mathbb{F}^{n},\left(E_{k}\right)_{k \in K^{r}},\left(D_{k}\right)_{k \in K^{r}}\right)$. Then $\Omega\left(\mathbb{F}^{n}, K, r, F\right)$ is called the Feistel system determined by \mathbb{F}^{n}, K, r and F.
Lemma X.11. Any Feistel system is a cryptosystem.
Proof. Let $k=\left(k_{1}, k_{2}, \ldots, k_{r}\right) \in \mathcal{K}$. Let $\left(X_{0}, X_{1}\right) \in \mathcal{M}$ and define X_{i} as above. Put $\left(Y_{0}, Y_{1}\right)=E_{k}\left(X_{0}, X_{1}\right)=$ $\left(X_{r+1}, X_{r}\right)$.

Define $Y_{i}, 0 \leq i \leq r+1$ as above, but with respect to the key $k^{*}=\left(k_{r}, k_{r-1}, \ldots, k_{1}\right)$. Note that $k_{i}^{*}=k_{r+1-i}$. For $0 \leq i \leq r+1$, consider the statement
$P(i)$:

$$
Y_{i}=X_{r+1-i}
$$

Note $P(0)$ and $P(1)$ hold by definition of Y_{0} and Y_{1}. Suppose that $P(i-1)$ and $P(i)$ hold. We will show that also $P(i+1)$ hold:

$$
\begin{array}{rcccc}
Y_{i+1} & \stackrel{\operatorname{def} Y_{i+1}}{=} & Y_{i-1}-F\left(k_{i}^{*}, Y_{i}\right) & P(i-1), P(i) & X_{(r+1)-(i-1)}-F\left(k_{r+1-i}, X_{r+1-i}\right) \\
& = & X_{(r+1-i)+1}-F\left(k_{r+1-i}, X_{r+1-i}\right) & \stackrel{\operatorname{def} X_{(r+1-i)+1}}{=} & X_{(r+1-i)-1}+F\left(k_{r+1-i}, X_{r+1-i}\right)-F\left(k_{r+1-i}, X_{r+1-i}\right) \\
& = & X_{(r+1)-(i+1)} & &
\end{array}
$$

Hence $P(i)$ holds for all $0 \leq i \leq r+1$ and so

$$
D_{k^{*}}\left(Y_{0}, Y_{1}\right)=\left(Y_{r+1}, Y_{r}\right)=\left(X_{0}, X_{1}\right)
$$

Thus $D_{k^{*}} \circ E_{k}=\mathrm{id}_{\mathcal{M}}$ and the Feistel system is indeed a cryptosystem.

Example X.12. Consider the Feistel system with $\mathbb{F}^{n}=\mathbb{F}_{2}^{3}, K=\mathbb{F}_{2}^{3}, r=3$ and

$$
F: F_{2}^{3} \times \mathbb{F}_{2}^{3} \rightarrow F_{2}^{3},(\alpha \beta \gamma, x y z) \rightarrow(\alpha x+y z, \beta y+x z, \gamma z+x y)
$$

Compute $E_{k}(m)$ for $k=(100,101,001)$ and $m=(101,110)$. Verify that $D_{k^{*}}\left(E_{k}(m)\right)=m$.

i	k_{i}	X_{i}	$F\left(k_{i}, X_{i}\right)$
0	-	101	-
1	100	110	$(1 \cdot 1+1 \cdot 0,0 \cdot 1+1 \cdot 0,0 \cdot 0+1 \cdot 1)=101$
2	101	000	000
3	001	110	$(0 \cdot 1+1 \cdot 0,0 \cdot 1+1 \cdot 0,1 \cdot 0+1 \cdot 1)=001$
4	-	001	

So $E_{k}(m)=(001,110)$. To decrypt $(001,110)$ we use the key $k^{*}=(001,101,100)$.

i	k_{i}^{*}	Y_{i}	$F\left(k_{i}^{*}, Y_{i}\right)$
0	-	001	-
1	001	110	$(0 \cdot 1+1 \cdot 0,0 \cdot 1+1 \cdot 0,1 \cdot 0+1 \cdot 1)=001$
2	101	000	000
3	100	110	$(1 \cdot 1+1 \cdot 0,0 \cdot 1+1 \cdot 0,0 \cdot 0+1 \cdot 1)=101$
4	-	101	

So $D_{k^{*}}\left(E_{k}(m)\right)=(101,110)=m$.

X. 5 The Double-Locking Procedure

Two cryptosystems Ω and $\widetilde{\Omega}$ are called compatible if $\mathcal{M}=\mathcal{C}=\widetilde{\mathcal{M}}=\widetilde{\mathcal{C}}$.
Given compatible cryptosystems Ω and $\widetilde{\Omega}$, keys k, k^{*} in Ω and keys \tilde{k}, \tilde{k}^{*} in $\tilde{\Omega}$ with $D_{k^{*}} \circ E_{k}=\operatorname{id}_{\mathcal{M}}$ and $\tilde{D}_{\tilde{k}^{*}} \circ \tilde{E}_{\tilde{k}}=\operatorname{id}_{\mathcal{M}}$

Consider the following procedure to send a message $m_{0} \in \mathcal{M}$ from person X to person \tilde{X}.

- X computes $m_{1}=E_{k}\left(m_{0}\right)$ and sends m_{1} to \tilde{X}.
- \tilde{X} computes $m_{2}=\tilde{E}_{\tilde{k}}\left(m_{1}\right)$ and sends m_{2} to X.
- X computes $m_{3}=D_{k^{*}}(\tilde{m})$ and sends \tilde{X}.
- \tilde{X} computes $m_{4}=\tilde{D}_{\tilde{k}^{*}}\left(m_{3}\right)$.

$$
m_{0} \xrightarrow{E_{k}} m_{1} \xrightarrow{\tilde{E}_{\tilde{k}}} m_{2} \xrightarrow{D_{k^{*}}} m_{3} \xrightarrow{\tilde{D}_{\tilde{k}^{*}}} m_{4}
$$

Is $m_{4}=m_{0}$?
Consider the following example $\mathcal{M}=\mathcal{C}=\{1,2,3\}$,

$$
E_{k}=D_{k^{*}}: \frac{1}{1} 2 \begin{aligned}
& 2 \\
& 1
\end{aligned} 3 \begin{aligned}
& 3
\end{aligned} \quad \quad \tilde{E}_{\tilde{k}}=\tilde{D}_{\tilde{k}^{*}}: \begin{array}{lll}
1 & 2 & 3 \\
\hline 2 & 1 & 3
\end{array}
$$

and $m_{0}=1$

$$
1 \xrightarrow{E_{k}} 1 \xrightarrow{\tilde{E}_{\bar{k}}} 2 \xrightarrow{D_{k^{*}}} 3 \xrightarrow{\tilde{D}_{\bar{k}^{*}}} 3
$$

So $m_{4} \neq m_{0}$.
In general

$$
m_{4}=\left(\tilde{D}_{\tilde{k}^{*}} \circ D_{k^{*}} \circ \tilde{E}_{\tilde{k}} \circ E_{k}\right)\left(m_{0}\right)
$$

If $D_{k^{*}}$ commutes with $\tilde{E}_{\tilde{k}}$, that is $D_{k^{*}} \circ \tilde{E}_{\tilde{k}}=\tilde{E}_{\tilde{k}} \circ D_{k^{*}}$ then

$$
\tilde{D}_{\tilde{k}^{*}} \circ D_{k^{*}} \circ \tilde{E}_{\tilde{k}} \circ E_{k}=\left(\tilde{D}_{\tilde{k}^{*}} \circ \tilde{E}_{\tilde{k}}\right) \circ\left(D_{k^{*}} \circ E_{k}\right)=\operatorname{id}_{\mathcal{M}} \circ \operatorname{id}_{\mathcal{M}}=\operatorname{id}_{\mathcal{M}}
$$

and procedure works.
Since addition in finite field is commutative, one-time pads provide examples where $D_{k^{\star}}$ commutes with $\tilde{E}_{\tilde{k}}$.
Example X.13. Suppose Ω and $\widetilde{\Omega}$ both are the one-time pad determined by \mathbb{F}_{2}^{4}. Given the following public information:

$$
m_{0} \xrightarrow{E_{k}} 1101 \xrightarrow{\tilde{E}_{\bar{k}}} 0110 \xrightarrow{D_{k^{*}}} 1100 \xrightarrow{\tilde{D}_{\bar{k}^{*}}} m_{4}
$$

What is m_{0} ?
Since $0110+k^{*}=1100$ and so $k^{*}={ }_{-}^{1100}=1010$ 1010. So $m_{0}=D_{k}^{*}\left(m_{1}\right)=\underset{+}{11010}=0111$.
So one-time pads should not be used for the double-locking procedure.
Lemma X.14. Let Ω and $\widetilde{\Omega}$ be compatible cryptosystem. Let β be an encryption function in $\widetilde{\Omega}$ and let γ and γ^{\prime} be decryption functions in Ω which commute with β, that is

$$
\gamma \circ \beta=\beta \circ \gamma, \quad \text { and } \quad \gamma^{\prime} \circ \beta=\beta \circ \gamma^{\prime}
$$

Let $m_{1} \in \mathcal{M}$ and put $m_{2}=\beta\left(m_{1}\right)$. Then

$$
\gamma\left(m_{2}\right)=\gamma^{\prime}\left(m_{2}\right) \quad \Longrightarrow \quad \gamma\left(m_{1}\right)=\gamma^{\prime}\left(m_{2}\right)
$$

Proof.

$$
\beta\left(\gamma\left(m_{1}\right)\right)=(\beta \circ \gamma)\left(m_{1}\right)=(\gamma \circ \beta)\left(m_{1}\right)=\gamma\left(\beta\left(m_{1}\right)\right)=\gamma\left(m_{2}\right)
$$

By symmetry, $\beta\left(\gamma^{\prime}\left(m_{1}\right)\right)=\gamma^{\prime}\left(m_{2}\right)$. So if $\gamma\left(m_{2}\right)=\gamma^{\prime}\left(m_{2}\right)$ we conclude that

$$
\beta\left(\gamma\left(m_{1}\right)\right)=\beta\left(\gamma^{\prime}\left(m_{1}\right)\right)
$$

Since encryption functions are $1-1$, we get $\gamma\left(m_{1}\right)=\gamma^{\prime}\left(m_{1}\right)$.
The lemma shows that the double locking procedure is very vulnerable: Anybody who intercepts the message m_{1}, m_{2} and m_{3} and is able to find a decryption function D_{l} in Ω with $D_{l}\left(m_{2}\right)=m_{3}$ can compute m_{0}, namely $m_{0}=D_{l}\left(m_{1}\right)$.

Chapter XI

The RSA cryptosystem

XI. 1 Public-key cryptosytems

Definition XI.1. A public-key cryptosystem is pair (Ω, ξ) where Ω is a cryptosystem and ξ is a function

$$
\xi: A \rightarrow \mathcal{K} \times \mathcal{K}, a \rightarrow\left(k_{a}, k_{a}^{*}\right)
$$

such that for all $a \in A$

$$
D_{k_{a}^{*}} \circ E_{k_{a}}=\mathrm{id}_{\mathcal{M}}
$$

k_{a} is called a public key and k_{a}^{*} a private key.
In public key cryptography, all the ingredients except the privat key are know to the public. Anybody then can encrypt a message using the public key k and the publicly known function E_{k}. But only somebody who knows the private key k^{*} is able to decrypt the encrypted message using the function D_{l}. This can only work if it is virtually impossible to determine k^{*} from k. In particular, A has to be really large, since otherwise one can just compute all the possible pairs (k, k^{*}) using the publicly known function ξ.

In this sections we will describe a public-key cryptosystem discovered by Rivest, Shamir and Adleman in 1977 known as the RSA cryptosystem. But we first need to prove a couple of lemmata about the ring of integers.

XI. 2 The Euclidean Algorithim

Lemma XI.2. Let a, b, q and r be integers with $a=q b+r$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
Proof. Let $d=\operatorname{gcd}(a, b)$ and $e=\operatorname{gcd}(b, r)$. Then d divides a and b and so also $r=a-q b$. Hence d is a common divisor of b and r. Thus $d \leq e$.

Similarly, e divides b and r and so also $a=q b+r$. Thus e is a common divisor of a nd b and so $e \leq d$. Hence $e=d$.

Theorem XI. 3 (Euclidean Algorithm). Let a and b be integers and let E_{-1} and E_{0} be the equations
and suppose inductively we defined equation $E_{k},-1 \leq k \leq i$ of the form

$$
E_{k}: r_{k}=x_{k} a+y_{k} b .
$$

If $r_{i} \neq 0$, let E_{i+1} be equation obtained by subtracting q_{i+1} times equation E_{i} from E_{i-1} where q_{i+1} is the integer quotient of r_{i-1} when divided by $r_{i}\left(\right.$ so $\left.q_{i+1}=\left\lfloor\frac{r_{i-1}}{r_{i}}\right\rfloor\right)$. Let $m \in \mathbb{N}$ be minimal with $r_{m}=0$ and put $d=r_{m-1}$, $x=x_{m-1}$ and $y=y_{m-1}$. Then
(a) $\operatorname{gcd}(a, b)=|d|$
(b) $x, y \in \mathbb{Z}$ and $d=x a+y b$.

Proof. Observe that $r_{i+1}=r_{i-1}-q_{i+1} r_{i}, x_{i+1}=x_{i-1}-q_{i+1} x_{i}$ and $y_{i+1}=y_{i-1}-q_{i+1} x_{i}$. So inductively $r_{i+1}, x_{i+1}, y_{i+1}$ are integers and r_{i+1} is the remainder of r_{i-1} when divided by r_{i}. So $r_{i+1}<\left|r_{i}\right|$ and the algortithm will terminate in finitely many steps.

From $r_{i-1}=q_{i+1} r_{i}+r_{i+1}$ and XI.2 we have $\operatorname{gcd}\left(r_{i-1}, r_{i}\right)=\operatorname{gcd}\left(r_{i}, r_{i+1}\right)$ and so

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{-1}, r_{0}\right)=\operatorname{gcd}\left(r_{0}, r_{1}\right)=\ldots=\operatorname{gcd}\left(r_{m-1}, r_{m}\right)=\operatorname{gcd}(d, 0)=|d|
$$

So (a) holds. Since each x_{i} and y_{i} are integers, x and y are integers. $d=x a+y b$ is just the equation E_{m-1}.

Example XI.4. Let $a=1492$ and $b=1066$. Then

$$
\begin{array}{rlrl}
1492 & =1 \cdot 1492+0 \cdot 1066 & & \\
1066 & =0 \cdot 1492+1 \cdot 1066 & & q_{1}=1 \\
426 & =1 \cdot 1492-1 \cdot 1066 & & q_{2}=2 \\
214 & =-2 \cdot 1492+3 \cdot 1066 & & q_{3}=1 \\
212 & =3 \cdot 1492-4 \cdot 1066 & & q_{4}=1 \\
2 & =-5 \cdot 1492+7 \cdot 1066 & & q_{5}=106 \\
0 & &
\end{array}
$$

So $\operatorname{gcd}(1492,1066)=2$ and $2=-5 \cdot 1492+7 \cdot 1066$.
Definition XI.5. Let $n \in \mathbb{Z}^{+}$and $a, b \in \mathbb{Z}$. Then

$$
\begin{gathered}
\mathbb{Z}_{n}=\{a \in \mathbb{Z} \mid 0 \leq a<n\}, \\
\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\},
\end{gathered}
$$

and

$$
\phi(n)=\left|\mathbb{Z}_{n}^{*}\right| .
$$

If $a \in \mathbb{Z}$, then $[a]_{n}$ denotes the remainder of a when divided by n. We will sometimes also use the notation \bar{a} for $[a]_{n}$.

The relation ' $\equiv(\bmod n)$ ' on \mathbb{Z} is defined by

$$
a \equiv b \quad(\bmod n) \quad \Longleftrightarrow \quad n \mid b-a
$$

Lemma XI.6. Let $a, b, a^{\prime}, b^{\prime}, n \in \mathbb{Z}$ with $n>0$. If

$$
a \equiv a^{\prime} \quad(\bmod n) \quad \text { and } \quad b \equiv b^{\prime} \quad(\bmod n)
$$

then

$$
a b \equiv a^{\prime} b^{\prime} \quad(\bmod n)
$$

Proof. Since $a \equiv a^{\prime}$ there exists $k \in \mathbb{Z}$ with $a^{\prime}-a=k n$. So $a^{\prime}=a+k n$. By symmetry, $b^{\prime}=b+\ln$ for some $l \in \mathbb{Z}$. Thus

$$
a^{\prime} b^{\prime}-a b=(a+k n)(b+l n)-a b=(a l+k b+k l n) n
$$

So n divides $a^{\prime} b^{\prime}-a b$ the lemma holds.
Lemma XI.7. Let $n \in \mathbb{Z}^{+}$and $d \in \mathbb{Z}_{n}^{*}$. Then there exists $e \in \mathbb{Z}_{n}^{*}$ with de $\equiv 1(\bmod n)$.
Proof. By the Euclidean algorithm there exist $r, s \in \mathbb{Z}$ with

$$
1=\operatorname{gcd}(d, n)=r d+s n
$$

Hence $r d \equiv 1(\bmod n)$. Put $e=[r]_{n}$. Then $0 \leq e<n$ and so $e \in \mathbb{Z}_{n}$. Note that $e \equiv r(\bmod n)$ and so by XI.6 $e d \equiv r d \equiv 1(\bmod n)$.

In particular, $n \mid e d-1$ and any divisor of n and e will divide 1 . Thus $\operatorname{gcd}(n, e)=1$ and $e \in \mathbb{Z}_{n}^{*}$.
Lemma XI.8. Let $n, m \in \mathbb{Z}$ with $n>0$. Then $\operatorname{gcd}(n, m)=\operatorname{gcd}\left(n,[m]_{n}\right)$.
Proof. Observe that $m=q n+[m]_{n}$ for some $q \in \mathbb{Z}$ and so the lemma follows from XI. 2 .
Lemma XI.9. Let $n \in \mathbb{Z}^{+}, a, b \in \mathbb{Z}_{n}$ and $d \in \mathbb{Z}_{n}^{*}$.
(a) If $a \equiv b(\bmod n)$, then $a=b$.
(b) If $[a d]_{n}=[b d]_{n}$, then $a=b$.

Proof. (a) Since $a \equiv b(\bmod n), n \mid a-b$. Since $a, b \in \mathbb{Z}_{n}^{*}$ we have $|a-b|<n$. Thus $a-b=0$ and $a=b$.
(b) By XI. 7 there exists $e \in \mathbb{Z}_{n}^{*}$ with $d e \equiv 1(\bmod n)$. Note that $a d \equiv b d(\bmod n)$ and so $e a d \equiv e b d$ $(\bmod n)$ and $d e a \equiv \operatorname{deb}(\bmod n)$. Thus $a \equiv b(\bmod n)$ and so by $a=b$.

Lemma XI.10. Let $n, m \in \mathbb{Z}^{+}$with $\operatorname{gcd}(n, m)=1$. Then $\phi(n m)=\phi(n) \phi(m)$.
Proof. Consider the map

$$
\alpha: \mathbb{Z}_{n m} \rightarrow \mathbb{Z}_{n} \times \mathbb{Z}_{m}, a \rightarrow\left([a]_{n},[a]_{m}\right)
$$

We claim that α is $1-1$ and onto. Let $a, b \in \mathbb{Z}_{n m}$ with $[a]_{n}=[b]_{n}$ and $[a]_{m}=[b]_{m}$. Then n and m divided $a-b$ and since $\operatorname{gcd}(n, m)=1, n m \mid a-b$. Hence $a=b$ by XI.9.a. So α is 1-1. Since $\left|\mathbb{Z}_{n m}\right|=n m=\left|\mathbb{Z}_{n} \times \mathbb{Z}_{m}\right|$, α is also onto.

Since $\operatorname{gcd}(n, m)=1, \operatorname{gcd}(a, n m)=\operatorname{gcd}(a, n) \operatorname{gcd}(a, m)$. Hence $\operatorname{gcd}(a, n m)=1$ if and only if $\operatorname{gcd}(a, n)=1$ and $\operatorname{gcd}(a, m)$ is 1 . By XI. 8 this holds if and only if $\operatorname{gcd}\left([a]_{n}, n\right)=1$ and $\operatorname{gcd}\left([a]_{m},=\right) 1$. We proved that $a \in \mathbb{Z}_{n m}^{*}$ if and only if $\left([a]_{n},[b]_{m}\right) \in \mathbb{Z}_{n}^{*} \times \mathbb{Z}_{m}^{*}$. Thus α induces a bijection

$$
\alpha^{*}: \mathbb{Z}_{n m}^{*} \rightarrow \mathbb{Z}_{n}^{*} \times \mathbb{Z}_{m}^{*}, a \rightarrow\left([a]_{n},[a]_{m}\right)
$$

So

$$
\phi(n m)=\left|\mathbb{Z}_{n m}^{*}\right|=\left|\mathbb{Z}_{n}^{*} \times \mathbb{Z}_{m}^{*}\right|=\phi(n) \phi(m)
$$

Corollary XI.11. Let p and q be distinct primes. The $\phi(p)=p-1$ and $\phi(p q)=(p-1)(q-1)=p q+1-(p+q)$. Proof. $\mathbb{Z}_{p}^{*}=\{1,2, \ldots, p-1\}$ and so $\phi(p)=p-1$. By XI.10 $\phi(p q)=\phi(p) \phi(q)=(p-1)(q-1)$.

Lemma XI.12. Let $a \in \mathbb{Z}_{n}^{*}$. Then $a^{\phi(n)} \equiv 1(\bmod n)$.
 $\overline{a b} \in \mathbb{Z}_{n}^{*}$ and we obtain an map

$$
\alpha: \mathbb{Z}_{n}^{*} \rightarrow \mathbb{Z}_{n}^{*}, b \rightarrow \overline{a b}
$$

By XI. 9α is $1-1$ and so also onto.
It follows that

$$
\prod_{b \in \mathbb{Z}_{n}^{*}} b=\prod_{b \in \mathbb{Z}_{n}^{*}} \overline{a b} .
$$

Since $\overline{a b} \equiv a b(\bmod n)$ we conclude from XI.6 that

$$
\prod_{b \in \mathbb{Z}_{n}^{*}} b \equiv \prod_{b \in \mathbb{Z}_{n}^{*}} a b \quad(\bmod n)
$$

Put $e=\prod_{b \in \mathbb{Z}_{n}^{*}} b$. Then the above equation reads

$$
1 e=e \equiv a^{\phi(n)} e \quad(\bmod n)
$$

Thus by XI. 9

$$
a^{\phi(n)} \equiv 1 \quad(\bmod n)
$$

XI. 3 Definition of the RSA public-key cryptosystem

Definition XI.13. Let \mathcal{M} be any alphabet of plain text messages and c a positive integer. Put

$$
\mathcal{C}=\left\{n \in \mathbb{Z}^{+} \mid n \leq c\right\}, \quad N=\left\{n \in \mathcal{C}|\phi(n) \geq|\mathcal{M}|\}, \quad \text { and } \quad \mathcal{K}=\left\{(n, d) \mid n \in N, d \in \mathbb{Z}_{\phi(n)}^{*}\right\}\right.
$$

For $n \in N$ let $\alpha_{n}: \mathcal{M} \rightarrow \mathbb{Z}_{n}^{*}$ be a code and $\beta_{n}: \mathbb{Z}_{n} \rightarrow \mathcal{M}$ a function with $\beta_{n}\left(\alpha_{n}(m)\right)=m$ for all $m \in \mathcal{M}$.
Given a key $(n, d) \in \mathcal{K}$. For $m \in \mathcal{M}$ define

$$
E_{n, d}(m)=\left[\alpha_{n}(m)^{d}\right]_{n}
$$

and for $z \in \mathcal{C}$ define

$$
D_{n, d}(z)=\beta_{n}\left(\left[z^{d}\right]_{n}\right)
$$

Let π be a set of primes with $|\mathcal{M}| \leq(p-1)^{2} \leq c$ for all $p \in \pi$. Put

$$
A=\left\{(p, q, d, e) \mid p, q \in \pi, p \neq q, d, e \in \mathbb{Z}_{\phi(p q)}^{*}, d e \equiv 1(\bmod \phi(p q))\right\}
$$

Define

$$
\xi: A \rightarrow \mathcal{K} \times \mathcal{K}, \quad(p, q, d, e) \rightarrow((p q, d),(p q, e))
$$

Then $\left(\mathcal{M}, \mathcal{C},\left(E_{n, d}\right)_{(n, d) \in \mathcal{K}},\left(D_{n, d}\right)_{(n, d) \in \mathcal{K}}, \xi\right)$ is called an RSA public-key cryptosystem.

Theorem XI.14. Any RSA public-key cryptosystem is indeed a public-key cryptosystem.
Proof. Let $(n, d) \in \mathcal{K}$ and $e \in \mathbb{Z}_{\phi(n)}^{*}$ with

$$
d e \equiv 1 \quad(\bmod \phi(n))
$$

We will show that $E_{(n, d)}$ is a left inverse of $D_{(n, d)}$. For this let $m \in \mathcal{M}$ and put $w=\alpha_{n}(m)$. Then $w \in \mathbb{Z}_{n}^{*}$ and $E_{n, d}(m)=\left[w^{d}\right]_{n}$. Note that $d e=1+q \phi(n)$ for some $q \in \mathbb{Z}$ and so

$$
w^{d e} \equiv w^{1+q \phi(n)} \equiv w\left(w^{\phi(n)}\right)^{q} \equiv w 1^{q} \equiv w \quad(\bmod n)
$$

Hence

$$
\left[\left(\left[w^{d}\right]_{n}\right)^{e}\right]_{n}=\left[w^{d e}\right]_{n}=w
$$

and so

$$
D_{n, e}\left(E_{n, d}(m)\right)=\beta_{n}\left(\left[E_{n, d}(m)^{e}\right]_{n}\right)=\beta_{n}\left(\left[\left(\left[w^{d}\right]_{n}\right)^{e}\right]_{n}\right)=\beta_{n}(w)=\beta_{n}\left(\alpha_{n}(m)\right)=m
$$

Therefore $D_{n, e}$ is a left-inverse of $E_{n, d}$. Thus $\left(\mathcal{M}, \mathcal{C},\left(E_{n, d}\right)_{(n, d) \in \mathcal{K}},\left(D_{n, d}\right)_{(n, d) \in \mathcal{K}}\right)$ is cryptosystem.
Together with the definition of ξ we also see that $D_{n, e}$ is a left inverse of $E_{n, d}$, whenever $((n, d),(n, e))=$ $\xi(p, q, d, e)$ for some $(p, q, d, e) \in A$. Hence any RSA public-key cryptosystem is a public-key cryptosystem.

Example XI.15. Let

$$
\mathcal{M}=\mathbb{A}=\{\sqcup, A, \ldots, Z\}=\left\{l_{0}, l_{1} \ldots, l_{26}\right\}
$$

and $c=1000$. For $n \in N$ let

$$
\mathbb{Z}_{n}^{*}=\left\{a_{1, n}, \ldots, a_{\phi(n), n}\right\}
$$

with $a_{i, n}<a_{i+1, n}$ for $1 \leq i<\phi(n)$. Define

$$
\alpha_{n}: \mathcal{M} \rightarrow \mathbb{Z}_{n}^{*}, l_{i} \rightarrow a_{i+1, n} \quad \text { and } \quad \beta_{n}: \mathbb{Z}_{n} \rightarrow \mathcal{M} j \rightarrow \begin{cases}l_{[i-1]_{27}} & \text { if } j \in \mathbb{Z}_{n}^{*} \text { and so } j=a_{n, i} \text { for some } 1 \leq i \leq \phi(n) \\ 0 & \text { if } j \notin \mathbb{Z}_{n}^{*}\end{cases}
$$

Compute $c=E_{(667,5)}(K)$. Find the inverse key k^{*} for $(667,5)$ and verify that $D_{k^{*}}(c)=K$.
$K=l_{11}$ and $1,2,3,4,5,6,7,8,9,10,11,12$ all are coprime to 667 . So

$$
\alpha_{667}(K)=12
$$

We need to compute $\left[12^{5}\right]_{667}$:

$$
\begin{gathered}
12^{2}=144 \\
12^{3}=\underset{\substack{1440 \\
1728}}{1728} \\
1728-3 \cdot 667=-(2001-1728)=-273 \\
-273 \cdot 12=-+\frac{{ }_{5}}{2730} 3286 \\
-3286+5 \cdot 667=3335-3286=59 \\
59 * 12=720-12=708 \\
708-667=41
\end{gathered}
$$

Hence $E_{667,5}(K)=41$.
To compute e we need to factorize 29. None of $3,5,11$ divides $667,667-7=660,667+13=680$, $667-17=650,667+23=690$. So $667=23 \cdot 29$. Thus $\phi(667)=667-(23+29)+1=668-52=616$.

$$
1=616-123 \cdot 5
$$

So $e=616-123=493$. Since $41^{493} \equiv 12(\bmod 667)$, we get $D_{667,493}(41)=\beta_{667}(12)=l_{11}=K$.

Appendix A

Rings and Field

A. 1 Basic Properties of Rings and Fields

Definition A.1. A ring is a triple $(R,+, \cdot)$ such that
(i) R is a set;
(ii) + is a function (called ring addition), $R \times R$ is a subset of the domain of + and for $(a, b) \in R \times R, a+b$ denotes the image of (a, b) under + ;
(iii) • is a function (called ring multiplication), $R \times R$ is a subset of the domain of \cdot and for $(a, b) \in R \times R, a \cdot b$ (and also $a b$) denotes the image of (a, b) under $\cdot ;$
and such that the following eight axioms hold:
(Ax 1) $a+b \in R$ for all $a, b \in R$;
[closure for addition]
(Ax 2) $a+(b+c)=(a+b)+c$ for all $a, b, c \in R$;
[associative addition]
(Ax 3) $a+b=b+a$ for all $a, b \in R$. [commutative addition]
(Ax 4) there exists an element in R, denoted by 0_{R} and called 'zero R ',
[additive identity] such that $a+0_{R}=a=0_{R}+a$ for all $a \in R ;$
(Ax 5) for each $a \in R$ there exists an element in R, denoted by $-a$
[additive inverses] and called 'negative a ', such that $a+(-a)=0_{R}$;
(Ax 6) $a b \in R$ for all $a, b \in R$;
[closure for multiplication]
$(\mathrm{Ax} 7) a(b c)=(a b) c$ for all $a, b, c \in R$; [associative multiplication]
(Ax 8) $a(b+c)=a b+a c$ and $(a+b) c=a c+b c$ for all $a, b, c \in R$.
[distributive laws]
Definition A.2. A ring $(R,+, \cdot)$ is called commutative if
(Ax 9) $a b=b a$ for all $a, b \in R$.
[commutative multiplication]
Definition A.3. An element 1_{R} in a ring $(R,+, \cdot)$ is called an (multiplicative) identity if
(Ax 10) $1_{R} \cdot a=a=a \cdot 1_{R}$ for all $a \in R$.
Definition A.4. A field is a commutative ring $(\mathbb{F},+, \cdot)$ with identity $1_{F} \neq 0_{F}$ such that
(Ax 11) for each $a \in R$ with $a \neq 0_{\mathbb{F}}$ there exists an element in R, denoted by a^{-1} [multiplicative inverses] and called ' a inverse ', such that $a \cdot a^{-1}=1_{R}=a^{-1} \cdot a$;

If $(R,+, \cdot)$ is a ring, we will often just say that R is a ring, assuming that there is no confusion about the underlying addition and multiplication. Also we will usually write 0 for 0_{R} and 1 for 1_{R}.

With respect to the usual addition and multiplication:
The real number and the rational numbers are fields. The integers are a commutative ring but not a field. \mathbb{F}_{2} is a field.

Lemma A.5. Let R be ring and $a, b \in R$. Define $a-b=a+(-b)$.
(a) $a+0=a$.
(b) $(b+a)+(-a)=b$.
(c) Let $d \in R$. Then $a=b$ if and only if $d+a=d+b$ if and only if $a+d=b+d$
(d) $x=b-a$ is the unique element in R with $x+a=b$.
(e) $x=-a$ is the unique element in R with $x+a=0$.
(f) $0 a=0=a 0$.
(g) $(-b) a=-(b a)$.
(h) $-(-a)=a$
(i) $-(a+b)=(-a)+(-b)$.
(j) $-(a-b)=b-a$.
(k) If R has an identity, $(-1) a=-a$.

Proof. (a) $a+0=0+a=a$.
(b) $(b+a)+(-a)=b+(a+(-a))=b+0=b$.
(c) If $a=b$, then clearly $d+a=d+b$. If $d+a=d+b$, then since $d+a=a+d$ and $d+b=b+d$, we have $a+d=b+d$.

Suppose that $a+d=b+d$. Adding $(-d)$ to both sides of the equation gives $(a+d)+(-d)=(b+d)+(-d)$ and so by (b), $a=b$.
(d) We have $x+a=b$ if and only if $(x+a)+(-a)=b+(-a)$. bBy b and the definition of $b-a$ this holds if and only if $x=b-a$.
(e) Since $-a=0+(-a)=0-a$, this follows from (d) applied with $b=0$.
(f) We have $0+0 a=0 a=(0+0) a=0 a+0 a$ and so by (c), $0=0 a$. A similar argument shows that $a 0=0$.
(g) $b a+(-b) a=(b+(-b)) a=0 a=0$ and so $-(b a)=(-b) a$ by (e).
(h) By $0=a+(-a)=(-a)+a$ and so by (e), $a=-(-a)$.
(i) $(a+b)+((-a)+(-b))=((a+b)+(-a))+(-b)=((b+a)+(-a))+(-b)=b+(-b)=0$ and so $(-a)+(-b)=-(a+b)$ by (e).
h) $-(a-b)=-(a+(-b)) \stackrel{\text { ®in }}{=}-a+(-(-b)) \stackrel{\text { 内 }}{=}-a+b=b+(-a)=b-a$.
(k) By (g) $-a=-(1 a)=(-1) a$.

A. 2 Polynomials

Definition A.6. Let R be ring. Then $R[x]$ is the set of \mathbb{N}-tuples $\left(a_{i}\right)_{i \in \mathbb{N}}$ with coefficients in R such that there exists $n \in \mathbb{N}$ with $a_{i}=0$ for all $i>n$. We denote such an \mathbb{N}-tuple by

$$
a_{0}+a_{1} x+\ldots+a_{n} x^{n}
$$

Let $f=\sum_{i=0}^{n} a_{i} x^{i}$ and $g=\sum_{i=0}^{m} b_{i} x^{i}$ be elements of $R[x]$ define

$$
f+g=\sum_{i=0}^{l}\left(a_{i}+b_{i}\right) x^{i}
$$

where $l=\max (n, m), a_{i}=0$ for $i>n$ and $b_{i}=0$ for $i>m$; and

$$
f g=\sum_{k=0}^{n+m}\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right) x^{i}
$$

Define $\operatorname{deg} f=\max \left\{i \mid a_{i} \neq 0\right\}$ with $\operatorname{deg} f=-\infty$ if $f=0$.
Lemma A.7. Let R be a ring. Then $R[x]$ is a ring. If R is commutative, so is $R[x]$.
Proof. Readily verified.
Lemma A.8. Let \mathbb{F} be a field and $f, g \in \mathbb{F}[x]$. Then
(a) $\operatorname{deg}(f+g) \leq \max (\operatorname{deg} f, \operatorname{deg} g)$.
(b) $\operatorname{deg} f g=\operatorname{deg} f+\operatorname{deg} g$.
(c) If $f \neq 0$, then $\operatorname{deg} g \leq \operatorname{deg} f g$.

Proof. Readily verified.
Lemma A.9. Let \mathbb{F} be a field and $h \in \mathbb{F}[x]$ with $h \neq 0$.
(a) $\left(\mathbb{F}^{h}[x], \oplus, \odot\right)$ is a commutative ring with identity.
(b) $(\mathbb{F}[x], \oplus, \odot)$ fulfills Axioms (1)-(9) of a commutative ring, except for Axiom (4) (that is \oplus has not additive identity).

Proof. Let $e, f, g \in \mathbb{F}[x]$. Recall that \bar{f} denotes the remainder of f when divided by h. By definition of \oplus and $\odot:$

1. $\quad f \oplus g=\overline{f+g}$ and $f \odot g=\overline{f g}$.

By IX.8 a
2. $. \quad \bar{f}=f$ for all $f \in \mathbb{F}^{h}[x]$.

By IX.11
3. $\bar{f} \oplus \bar{g}=\bar{f} \oplus g=f \oplus g=\overline{f+g}$ and $\bar{f} \odot \bar{g}=\bar{f} \odot g=f \odot g=\overline{f g}$.

We now will verify all the conditions on a commutative ring (see A.1) Since

$$
f \oplus g=\overline{f+g}=\overline{g+f}=g \oplus f,
$$

condition (i) holds.
We have

$$
e \oplus(f \oplus g)=e \oplus \overline{f+g}=\overline{e+(f+g))}=\overline{(e+f)+g}
$$

and

$$
(e \oplus f) \oplus g=\overline{e+f} \oplus g=\overline{(e+f)+g}
$$

Thus condition (ii) holds.
We have $0 \oplus f=\overline{0+f}=\bar{f}$ and so for $f \in F^{h}[x], 0 \oplus f=f$. Hence condition (iii) holds.

$$
f \oplus-f=\overline{f+(-f)}=\overline{0}=0
$$

and condition (iv) is proved.
Since

$$
e \odot(f \odot g)=e \odot \overline{f g}=\overline{e(f g)}=\overline{(e f) g}
$$

and

$$
(e \odot f) \odot g=\overline{e f} \odot g=\overline{(e f) g}
$$

condition (v) is verified. From

$$
e \odot(f \oplus g)=e \odot \overline{f+g}=\overline{e(f+g)}=\overline{e f+e g}
$$

and

$$
(e \odot f) \oplus(e \odot g)=\overline{e f} \oplus \overline{e g}=\overline{e f+e g}
$$

we conclude that condition (vi) holds.. A similar argument (or using that \odot is commutative) gives condition (vii).

We have

$$
1 \odot f=\overline{1 f}=\bar{f}
$$

and so $1 \odot f=f$ for all $f \in \mathbb{F}^{h}[x]$. Thus condition (viii) is verified.
Finally

$$
f \odot g=\overline{f g}=\overline{g f}=g \odot f
$$

and condition (ix) holds.

A. 3 Irreducible Polynomials

Lemma A.10. Let \mathbb{F} be a field, $f, g, h \in \mathbb{F}[x]$ and suppose that h is irreducible and $h \mid f g$. Then $h \mid f$ or $h \mid g$.
Proof. Since $h \mid f g$, the remainder of $f g$ when divided by h is 0 . So $\bar{f} \odot \bar{g}=f \odot g=0$ in $\mathbb{F}^{h}[x]$. By IX. 33 . $\mathbb{F}^{h}[x]$ is a field and we conclude that $\bar{f}=0$ or $\bar{g}=0$. Hence $h \mid f$ or $h \mid g$.

Lemma A.11. Let \mathbb{F} be a field and $f, g \in \mathbb{F}[x]$. Suppose f and g are monic, $\operatorname{deg} f>0, f \mid g$ and g is irreducible. Then $f=g$.

Proof. Since $f \mid g, g=f h$ for some $h \in \mathbb{F}[x]$. Since $\operatorname{deg} f>0$ and g is irreducible, $\operatorname{deg} h=0$. Since both f and g are monic, $h=1$ and so $f=g$.

Lemma A.12. Let \mathbb{F} be a field, $0 \neq a \in \mathbb{F}, r \in \mathbb{N}$ and let g, f_{1}, \ldots, f_{r} be irreducible monic polynomials in $\mathbb{F}[x]$. If g divides a $f_{1} \ldots f_{r}$ in $F[x]$, then $r \geq 1$ and there exists $1 \leq i \leq r$ with $g=f_{i}$.

Proof. Since deg $g>0$ we must have $r \geq 1$. Put $h=a f_{1} \ldots f_{r-1}$. Then g divides $h f_{r}$ and so by A.10, g divides h or f_{r}. If g divides f_{r}, then by A.11 $h=f_{r}$. So suppose g divides h. Then $r-1>0$ and by induction on r, $g=f_{i}$ for some $1 \leq i \leq r-1$.

Lemma A.13. Let \mathbb{F} be a field and $0 \neq f \in \mathbb{F}[x]$. Put $a=\operatorname{lead}(f)$.
(a) There exists monic irreducible polynomials $f_{1}, f_{2} \ldots, f_{r} \in \mathbb{F}[x]$ with

$$
f=a f_{1} f_{2} \ldots f_{r}
$$

Moreover, the $f_{1}, f_{2}, \ldots f_{r}$ are unique up to reordering.
(b) Let $g \in \mathbb{F}[x]$ and put $b=\operatorname{lead}(g)$. Then g divides f in $\mathbb{F}[x]$ if and only if $b \neq 0$ and there exist $\epsilon_{i} \in\{0,1\}$, $1 \leq i \leq r$ with

$$
g=b f_{1}^{\epsilon_{1}} f_{2}^{\epsilon_{2}} \ldots f_{r}^{\epsilon_{r}}
$$

Moreover, if g is of this form, then $f=g h$, where

$$
h=c f_{1}^{\delta_{1}} f_{2}^{\delta_{2}} \ldots f_{r}^{\delta_{r}}
$$

with $c=\frac{a}{b}$ and $\delta_{i}=1-\epsilon_{i}$.
Proof. We prove (a) by induction on $\operatorname{deg} f$.
If $\operatorname{deg} f=0$, then holds with $r=0$.
So suppose $\operatorname{deg} f>0$ and that the lemma holds for all non-zero polynomials of smaller degree.
We will now show the existence of $f_{1}, \ldots f_{r}$. If f is irreducible, we can choose $r=1$ and $f_{1}=\frac{1}{a} f$. Suppose f is not irreducible. Then $f=g h$ with $g, h \in \mathbb{F}[x]$ and $\operatorname{deg} g \neq 0 \neq \operatorname{deg} h$. Then $\operatorname{deg} g<\operatorname{deg} f$ and $\operatorname{deg} h<\operatorname{deg} f$. Hence by induction

$$
g=b g_{1} g_{2} \ldots g_{s} \text { and } h=c h_{1} \ldots h_{t}
$$

where $b=\operatorname{lead}(g), c=\operatorname{lead}(h)$ and $g_{1}, \ldots, g_{s}, h_{1} \ldots, h_{t}$ are monic irreducible polynomials. Since $a=b c$ we can choose $r=s+t$ and

$$
f_{1}=g_{1}, \ldots, f_{s}=g_{s}, f_{s+1}=h_{1}, \ldots, f_{s+t}=h_{t}
$$

To prove the existence suppose that

$$
f=a f_{1} \ldots f_{r}=a g_{1} \ldots g_{s}
$$

for some monic irreducible polynomials $f_{1}, \ldots, f_{r}, g_{1}, \ldots g_{s}$.
Then $f_{1} \mid f=a g_{1} \ldots g_{s}$ and so A. 12 show that $f_{1}=g_{i}$ for some $1 \leq i \leq r$. Reordering the $g_{i}^{\prime} s$ we may assume that $f_{1}=g_{1}$. Hence also

$$
a f_{2} \ldots f_{r}=a g_{2} \ldots g_{s}
$$

The induction assumptions implies that $r=s$ and after reordering $f_{2}=g_{2}, \ldots, f_{r}=g_{r}$.
So the f_{i} 's are unique up to reordering.
(b) If g and h are of the given form then $g h=f$ and so g is a divisor of f.

Suppose now that g divides f. Then $f=g h$ for some $h \in \mathbb{F}[x]$. If $\operatorname{deg} g=0$, then (a) holds with $\epsilon_{i}=0$ for all $1 \leq i \leq r$. So suppose $\operatorname{deg} g=0$. By (a) we can write $g=t \tilde{g}$ where t is an irreducible monic polynomial. Since $f=g h=t \tilde{g} h, t$ divides f and so by A.12, $t=f_{i}$ for some $1 \leq i \leq t$. Without loss $i=1$. Then

$$
\tilde{g} h=a f_{2} \ldots f_{n}
$$

Note that $\operatorname{lead}(\tilde{g})=\operatorname{lead}(g)=b$. By induction

$$
\tilde{g}=b f_{2}^{\epsilon_{2}} \ldots f_{r}^{\epsilon_{r}} \text { and } h=f_{2}^{\delta_{2}} \ldots f_{n}^{\delta_{n}}
$$

where $c=\frac{a}{b}, \epsilon_{i} \in\{0,1\}$ and $\delta_{i}=1-\epsilon_{i}$ for $2 \leq i \leq r$. Thus bb holds with $\epsilon_{1}=1$ and $\delta_{1}=0$.

A. 4 Primitive elements in finite field

Lemma A.14. Let \mathbb{E} be a finite field and put $t=|\mathbb{E}|-1$. Let $e \in \mathbb{E}^{\sharp}$. Then
(a) There exists positive integer m with $e^{m}=1$. The smallest such positive integer is called the order of e in \mathbb{E}^{\sharp} and is denoted by $|e|$.
(b) The elements $e^{i}, 0 \leq i<|e|$, are pairwise distinct.
(c) Let $n \in \mathbb{Z}$ and r the remainder of n, then divided by $|e|$. Then $e^{n}=e^{r}$.
(d) Let $n, m \in \mathbb{Z}$. Then $e^{n}=e^{m}$ if and only if n and m have the same remainder when divided by $|e|$ and if and only if $|e|$ divides $n-m$.
(e) $|e|$ divides t.

Proof. We first prove:
$\mathbf{1}^{\circ}$. Let s be a positive integer, then $e^{i}, 0 \leq i \leq s$ are pairwise distinct if and only $e^{i} \neq 1$ for all $1 \leq i \leq s$.
Indeed $e^{i} \neq e^{j}$ for all $0 \leq i<j \leq s$, if and only if $e^{j-i} \neq 1$ for all $0 \leq i<j \leq s$ and so if and only $e^{i} \neq 1$ for some $1 \leq i \leq s$.
(a): Since $\left|\mathbb{E}^{\sharp}\right|=t$, the elements $e^{i}, 0 \leq i \leq t$ cannot be pairwise distinct. So by 1° there exists $1 \leq m \leq t$ with $e^{m}=1$.
(b) By minimality of $|e|, e^{i} \neq 1$ for all $1 \leq i<|e|$. So (b) follows from $\left.1^{\circ}\right\rangle$.
(c) Let r be the remainder of n. Then $n=q|e|+r$ for some $q \in \mathbb{Z}$ and so $e^{q|e|+r \mid}=\left(e^{|e|}\right)^{q} e^{r}=1^{q} e^{r}=e^{r}$.
(d) Let r and s be the remainders of n and m when divides by $|e|$. By (c), $e^{n}=e^{r}$ and $e^{m}=e^{s}$. By (b), $e^{n}=e^{m}$ if and only if $r=s$ and so if and only if $|e|$ divides $n-m$.
(e) Define a relation \sim on \mathbb{E}^{\sharp}, by $a \sim b$ of $a=b e^{i}$ for some $i \in \mathbb{Z}$. Since $a=a e^{0}, \sim$ is reflexive. If $a=b e^{i}$, then $b=a e^{-i}$ and so \sim is symmetric. If $a=b e^{i}$ and $c=b e^{j}$, then $c=a e^{i} e^{j}=a e^{i+j}$ and so \sim is transitive. Thus \sim is an equivalence relation. Note that $a e^{i}=a e^{j}$ if and only if $e^{i}=e^{j}$ and if and only if i and j have the same remainder then divided by $|e|$. Since there are $|e|$ such remainders, each equivalence class has exactly $|e|$ elements. Let d be the number of equivalence class of \sim. Since each element of \mathbb{E}^{\sharp} lies in exactly one equivalence class and since each equivalence class has $|e|$ elements, $\left|\mathbb{E}^{\sharp}\right|=d|e|$. Thus $t=d|e|$ and $|e|$ divides t.

Lemma A.15. Let n and d be positive integers with $d \mid n$. Define

$$
D_{d}(n)=\{m \mid 0 \leq m<n, \operatorname{gcd}(n, m)=d\} .
$$

Then
(a) $D_{d}(n)=\left\{e d \left\lvert\, e \in \mathbb{Z}_{\frac{n}{d}}^{*}\right.\right\}$.
(b) $\left|D_{d}(n)\right|=\phi\left(\frac{n}{d}\right)$.
(c) $n=\sum_{\substack{d \in \mathbb{Z}^{+} \\ d \mid n}} \phi(d)$.
(d) $\phi(n) \geq 1$.

Proof. (a) Let $0 \leq m<n$. Suppose $\operatorname{gcd}(m, n)=d$. Then $d \mid m$ and so $m=e d$ for some $e \in \mathbb{Z}$. Since $0 \leq m<n$ we have $0 \leq e<\frac{n}{d}$. Since $\operatorname{gcd}(m, n)=d$ we have $\operatorname{gcd}\left(e, \frac{n}{d}\right)=1$ and so $e \in \mathbb{Z}_{\frac{n}{d}}^{*}$.

Conversely, if $e \in \mathbb{Z}_{\frac{n}{d}}^{*}$, then $0 \leq e d<n$ and $\operatorname{gcd}(e d, n)=d \operatorname{gcd}\left(d, \frac{n}{d}\right)=d$. Thus $e d \in D_{d}(n)$ and ab holds. (b) follows from (a).
(c) Let $0 \leq m<n$. Then there exists a unique divisor f of n with $m \in D_{f}(n)$, namely $f=\operatorname{gcd}(n, m)$. Thus

$$
n=|\{m \mid 0 \leq m<n\}|=\left|\sum_{f \mid n} D_{f}(n)\right|=\sum_{f \mid n}\left|D_{f}(n)\right|=\sum_{f \mid n} \phi\left(\frac{n}{f}\right)=\sum_{d \mid n} \phi(d)
$$

(d) Just note that $\operatorname{gcd}(n-1, n)=1$ and so $n-1 \in \mathbb{Z}_{n}^{*}$.

Definition A.16. Let \mathbb{F} be a field and $n \in \mathbb{Z}^{+}$. The $\alpha \in \mathbb{F}$ is called a primitive root of $x^{n}-1$ if $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$ are pairwise distinct root of $x^{n}-1$.

Note that if α is primitive root of $x^{n}-1$. Then

$$
x^{n}-1=(x-1)(x-\alpha) \ldots\left(x-\alpha^{n-1}\right) .
$$

Lemma A.17. Let \mathbb{F} be a field, $n \in \mathbb{Z}^{+}$and $e \in \mathbb{F}^{\sharp}$ an element of order n. Then
(a) e is a primitive root of $x^{n}-1$.
(b) Let $m \in \mathbb{Z}$ and put $d=\operatorname{gcd}(m, n)$. Then e^{m} has order $\frac{n}{d}$.
(c) Let $d \in \mathbb{Z}^{+}$with $d \mid n$. Then \mathbb{F}^{\sharp} has exactly $\phi(d)$ elements of order d, namely the elements $e^{i}, i \in D_{\frac{n}{d}}(n)$.

Proof. (a) Let $0 \leq i<n$. Then $\left(e^{i}\right)^{n}=\left(e^{n}\right)^{i}=1$ and so e^{i} is a root of $x^{n}-1$. Since the $e^{i}, 0 \leq i<n$ are pairwise distinct, (a) holds.
(b) Let $l \in \mathbb{Z}^{+}$. Then $\left(e^{m}\right)^{l}=1$ if and only if $e^{m l}=1=e^{0}$, if and only if $n \mid m l$ and if and only if $\left.\frac{n}{d} \right\rvert\, l$. Thus e^{m} has order $\frac{n}{d}$.
(c) Let $a \in \mathbb{F}^{\sharp}$. If a has order d, then $a^{n}=1$ and so a is root of $x^{n}-1$. So by (a), $a=e^{i}$ for some $0 \leq i<n$. By b), e^{i} has order d if and only if $\operatorname{gcd}(i, n)=\frac{n}{d}$ and so if and only if $i \in D_{\frac{n}{d}}(n)$. Since $\left|D_{\frac{n}{d}}(n)\right|=\phi\left(\frac{n}{\frac{n}{d}}\right)=\phi(d)$, (c) holds.

Lemma A.18. Let \mathbb{E} be a finite field and put $t=|\mathbb{E}|-1$. Then there exists an element $\beta \in \mathbb{E}$ such $\beta^{t}=1$ and that

$$
\mathbb{E}^{\sharp}=\left\{\alpha^{i} \mid 0 \leq i<t\right\}
$$

Such an β is called a primitive element in \mathbb{E}.
Proof. For $n \in \mathbb{Z}^{+}$, let A_{n} be set of elements of order n in \mathbb{E}^{\sharp}. If $e \in \mathbb{E}^{\sharp}$ then $|e|$ is a divisor of t and so

$$
\begin{equation*}
t=\left|\mathbb{E}^{\sharp}\right|=\left|\sum_{n \mid t} A_{n}\right|=\sum_{n \mid t}\left|A_{n}\right| . \tag{*}
\end{equation*}
$$

Let $n \mid t$. Suppose $A_{n} \neq \varnothing$. Then \mathbb{E}^{\sharp} has an element of order n and so by A.17 $\left|A_{n}\right|=\phi(n)$. Hence either $\left|A_{n}\right|=0$ or $\left|A_{n}\right|=\phi(n)$. Therefore

$$
\begin{equation*}
\sum_{n \mid t}\left|A_{n}\right| \leq \sum_{n \mid t} \phi(n)=t \tag{**}
\end{equation*}
$$

Together with $\left({ }^{*}\right)$ we conclude that equaliy must holds everywhere in $(*)$ and $\left({ }^{* *}\right)$. In particular, $\left|A_{n}\right|=$ $\phi(n)$ for all $n \mid t$. Thus $A_{t}=\phi(t) \neq 1$ and so \mathbb{E} has an element β of order t. Then $\left\{\beta^{i} \mid 0 \leq i<t\right\}$ are t-pairwise distinct elements in \mathbb{E}^{\sharp} and the the lemma is proved..

Lemma A.19. Let n be a positive integer. Let $n=2^{k} m$ where $m, k \in \mathbb{N}$ with m odd. Let \mathbb{E} be a splitting field for $x^{m}-1$ over \mathbb{F}_{2} and let $\alpha_{1}, \alpha_{2} \ldots, \alpha_{m} \in \mathbb{E}$ with

$$
x^{m}-1=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{m}\right) .
$$

Then
(a) $x^{n}-1=\left(x^{m}-1\right)^{2^{k}}$.
(b) $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{m}$ are pairwise distinct.

Proof. (a) Note that $\left(x^{m}-1\right)^{2}=x^{2 m}-1$ in $\mathbb{F}_{2}[x]$ and so follows by induction on k.
(b) Suppose that $\alpha_{i}=\alpha_{j}$ for some $1 \leq i<k \leq m$. Put $\alpha=\alpha_{i}$. Then

$$
x^{m}-1=(x-\alpha)^{2} g
$$

for some $g \in \mathbb{E}[x]$. Taking derivatives gives

$$
m x^{m-1}=2(x-\alpha) g+(x-\alpha)^{2} g^{\prime}
$$

Obseerve that in $\mathbb{E}, 2=0$ and, since m is odd, $m=1$. Therefore,

$$
x^{m-1}=(x-\alpha)^{2} g^{\prime}
$$

Hence α is a root of x^{m-1} and so $\alpha=0$, a contradiction to $\alpha^{m}=1$.

Lemma A.20. Let n be a positive odd integers and let \mathbb{E} be a finite field containg \mathbb{F}_{2}. Put $t=|\mathbb{E}|-1$ and let β be a primitive root for \mathbb{E}.
(a) \mathbb{E} is a splitting field for $x^{n}-1$ if and only if n divides t.
(b) Suppose n divides t and put $\alpha=\beta^{\frac{t}{n}}$. Then α is a primitive root of $x^{n}-1$.

Proof. Let $d=\operatorname{gcd}(t, n)$ and put $s=\frac{t}{d}$. Then β^{m} is a root of $x^{n}-1$ if and only if $\beta^{m n}=1$, if and only if $t \mid m n$ and if and only if $s \mid m$. Thus the roots of $x^{n}-1$ in \mathbb{E} are

$$
\beta^{i s}, \quad 0 \leq i<d .
$$

Therefore \mathbb{E} contains exactly d roots of $x^{n}-1$.
From A. 19 E is a splitting field for $x^{n}-1$ if and only if \mathbb{E} contains exactly n-roots of $x^{n}-1$, if and only of $d=n$, and if and only if $n \mid t$.

If $n \mid t$, then $\beta^{s}=\beta^{\frac{t}{n}}=\alpha$ and so the roots of $x^{n}-1$ are $\alpha^{i}, 0 \leq i<n$.

Appendix B

Constructing Sources

B. 1 Marginal Distributions on Triples

Lemma B.1. Let I, J, K be finite sets. Let $f: I \times J \times K \rightarrow \mathbb{R}$ be function. $f_{I \times J}$ the marginal tuple of f on $I \times J$ (via $I \times J \times K=(I \times J) \times K)$ and let f_{I} the marginal tuple of f on $I($ via $I \times J \times K=I \times(J \times K))$. Then f is the marginal tuple of $f_{I \times J}$ on I.

Proof. Let g be the marginal tuple of $f_{I \times J}$ on I and let $i \in I$. Then

$$
\begin{aligned}
g(i) & =\sum_{j \in J} f_{I \times J}(i, j) \\
& =\sum_{j \in J}\left(\sum_{k \in K} f(i, j, k)\right) \\
& =\sum_{(j, k) \in J \times K} f(i, j, k) \\
& =f_{I}(i)
\end{aligned}
$$

Lemma B.2. $A(S, P)$ be source. Then the following statements are equivalent:
(a) For all $r \in \mathbb{Z}^{+}$, all strictly increasing r-tuples $\left(l_{1}, \ldots, l_{r}\right)$ of positive integers and all $t \in \mathbb{N}$

$$
p^{\left(l_{1}, \ldots, l_{r}\right)}=p^{\left(l_{1}+t, \ldots, l_{r}+t\right)}
$$

(b) (S, P) is stationary.
(c) For all $r \in \mathbb{Z}^{+}, p^{r}=p^{(2, \ldots, r+1)}$.

Proof. Suppose (a) holds. Choosing $\left(l_{1}, \ldots, l_{r}\right)=(1, \ldots, r)$ we see that

$$
p^{r}=p^{(1, \ldots, r)}=p^{(1+t, \ldots, r+t)}
$$

and so (S, P) is stationary.
Suppose (S, P) is stationary. Choosing $t=1$ in the definition of stationary gives (c).
Suppose (c) holds. We need to prove that (a) holds. So let $r \in \mathbb{Z}^{+}$, let $\left(l_{1}, \ldots, l_{r}\right)$ be increasing r-tuples of positive integers and let $t \in \mathbb{N}$. If $t=0$, (a) obviously holds. By induction on t it suffices to consider the
case $t=1$. Put $u=l_{r}, v=u-l$ and let $k=\left(k_{1}, \ldots, k_{v}\right)$ be the increasing t-tuple of positive integers with $\{1,2, \ldots, u\}=\left\{l_{1}, \ldots, l_{r}\right\} \cup\left\{k_{1}, \ldots, k_{v}\right\}$. Let $l=\left(l_{1}, \ldots, l_{r}\right)$. Identifying S^{u} with $S^{r} \times S^{v}$ via $s \rightarrow\left(s_{l}, s_{k}\right)$ we see that p^{l} is the marginal distribution of p^{u} on S^{r}.

Let $\tilde{k}=\left(k_{1}+1, \ldots, k_{t}+1\right)$ and $\tilde{l}=\left(l_{1}+1, \ldots, l_{r}+1\right)$
Identifying S^{u+n} with $S^{r} \times S^{v} \times S$ via $s \rightarrow\left(s_{\tilde{l}}, s_{\tilde{k}}, s_{1}\right)$ we see that $p^{\tilde{l}}$ is the marginal distribution of p^{u+1} on S^{r}. Also $p^{(2, \ldots, u+1)}$ is the marginal distribution of p^{u+1} on $S^{r} \times S^{v}$. Thus B.1 shows that $p^{\tilde{l}}$ is the marginal distribution of $p^{(2, \ldots, u+1)}$ on S^{r}.

Since (c) holds, $p^{u}=p^{(2, \ldots, u+1)}$. Hence also the marginal distribution p^{l} and $p^{\tilde{l}}$ of these distribution on S^{r} are equal.

B. 2 A stationary source which is not memory less

Example B.3. An example of a stationary source which is not mememory less.
For $z=z_{1} \ldots z_{n} \in B^{*}$ define $u(z)=\left|\left\{i \mid 1 \leq i<n, z_{i}=z_{i+1}\right\}\right|$. Define $P(\varnothing)=1$ and if $n \geq 1$,

$$
P(z)=\frac{1}{2} \frac{3^{u(z)}}{4^{n-1}}
$$

Note that $P(0)=P(1)=\frac{1}{2} \frac{3^{0}}{4^{1-1}}=\frac{1}{2}$. Also $u(z s)=u(z)+1$ if $s=s_{n}$ and $u(z s)=u(s)$ if $z_{n} \neq s$. Hence for $z \in \mathbb{B}^{n}$ with $n \geq 1$ and $s \in \mathbb{B}$:

$$
P(z s)=\left\{\begin{array}{l}
\frac{3}{4} P(z) \text { if } s=z_{n} \\
\frac{1}{4} P(z) \text { if } s \neq z_{n}
\end{array}\right.
$$

Thus $P(z)=P(z 0)+P(z 1)$ and P is source. Similarly

$$
P(s z)=\left\{\begin{array}{l}
\frac{3}{4} P(z) \text { if } s=z_{1} \\
\frac{1}{4} P(z) \text { if } s \neq z_{1}
\end{array}\right.
$$

Thus $P(z)=P(0 z)+P(1 z)$ and so

$$
p^{n}(z)=P(z)=P(0 z)+P(1 z)=p^{(2, \ldots, n+1)}(z)
$$

and so by B. $2 P$ is stationary.

B. 3 Matrices with given Margin

Let I and J be non empty alphabets, f an I-tuple and g an J tuple with coefficients in $\mathbb{R}^{\geq 0}$ such that

$$
\begin{equation*}
t:=\sum_{i \in I} f_{i}=\sum_{j \in J} g_{j} \tag{*}
\end{equation*}
$$

We will give an inductive construction to determine all $I \times J$ matrices h with coefficients in $\mathbb{R}^{\geq 0}$ whose marginal tuples are f and g.

Suppose first that $|I|=1$ and let $i \in I$ and $j \in J$. Then $g_{j}=\sum_{i \in I} h_{i j}=h_{i j}$ and so only row of h is equal to g. So there is just one solution in this case.

Suppose next that $|J|=1$. Then the only column of h is equal to equal to f.

Suppose that $|I|=|J|=2$. Let $I=\{a, b\}$ and $J=\{c, d\}$ with $f_{a} \leq f_{b}$ and $g_{c} \leq g_{d}$. Let $u \in \mathbb{R}$ with $0 \leq u \leq \min \left(f_{a}, g_{c}\right) . \operatorname{By}(*)$

$$
f_{a}+f_{b}=k=g_{c}+g_{d} \quad \text { and so } g_{d}-f_{a}=f_{b}-g_{c}
$$

So we can define h as follows

h	c	d	f
a	u	$f_{a}-u$	f_{a}
b	$g_{c}-u$	$g_{d}-f_{a}+u=f_{b}-g_{c}+u$	f_{b}
g	g_{c}	g_{d}	t

By choice of $u, u \leq f_{a}$ and $u \leq g_{c}$. So both $f_{a}-u$ and $g_{c}-u$ are non-negative. Note that $t=f_{a}+f_{b} \geq 2 f_{a}$ and $t=g_{c}+g_{d} \leq 2 g_{d}$. Hence $g_{d} \geq \frac{k}{2} \geq f_{a}$ and so $g_{d}-f_{a}+u \geq u \geq 0$.

Suppose now that $|I|>2$ or $|J|>2$. By symmetry we may assume that $|J|>2$.
Pick $u, v \in J$ with $u \neq v$ and put $\tilde{J}=J \backslash\{v\}$. Define a \tilde{J}-tuple \tilde{g} on \tilde{J} by

$$
\tilde{g}_{j}= \begin{cases}g_{j} & \text { if } j \neq u \\ g_{u}+g_{v} & \text { if } j \neq u\end{cases}
$$

Then

$$
\sum_{j \in \tilde{J}} \tilde{g}_{j}=\tilde{g}_{u}+\sum_{\substack{j \in \tilde{J} \\ j \neq u}} \tilde{g}_{j}=g_{u}+g_{v}+\sum_{\substack{j \in J \\ j \neq u, v}} g_{j}=\sum_{j \in J} g_{j}=t=\sum_{i \in I} f_{i}
$$

Inductively we may assume that we found all possible $I \times \tilde{J}$-matrices \tilde{h} with coeffcients in $\mathbb{R}^{\geq 0}$ and marginal distribution f and \tilde{g}.

Put $\hat{J}=\{u, v\}$. Let $\hat{g}=\left.g\right|_{\hat{J}}$ and let \hat{f} be column u of \tilde{h}. So \hat{g} is a \hat{J}-tuple and \hat{f} is an I-tuple. Since \tilde{g} is the marginal distribution of \tilde{h}, the sum of \hat{f} is $\tilde{g}_{u}=g_{u}+g_{v}$. The sum of \hat{g} is also $g_{u}+g_{v}$. Since $|\hat{J}|=2<|J|$ we may assume by induction that we found all $I \times \hat{J}$-matrices \hat{h} with coeffcients in $\mathbb{R}^{\geq 0}$ and marginal distribution \hat{f} and \hat{g}. Define the $I \times J$-matrix h by

$$
h_{i j}= \begin{cases}\tilde{h}_{i j} & \text { if } j \in J \backslash \tilde{J} \\ \hat{h}_{i j} & \text { if } j \in \hat{J}\end{cases}
$$

So columns u and v of h come form \hat{h}, while the remaining columns come from \tilde{h}.

Appendix C

More On channels

C. 1 Sub channels

Lemma C.1. Let $\Gamma: I \times J \rightarrow[0,1]$ be a channel. Let $K \subseteq I$ and let Ξ be the restriction of Γ to $K \times J$. (So Ξ is the function from $K \times I \rightarrow[0,1]$ with $\Xi_{k j}=\Gamma_{k j}$ for all $k \in K, j \in J$.) Let p be a probability distribution on K, and define $\hat{p}: I \rightarrow[0,1]$ by $\hat{p}_{i}=p_{i}$ if $i \in K$ and $\hat{p}_{i}=0$ of $i \in I \backslash K$. Put $q=p \Xi$. Then
(a) Ξ is a channel.
(b) \hat{p} is a probability distribution on I.
(c) $q=p \Xi=\hat{p} \Gamma$.
(d) $H^{\Xi}(q \mid k)=H^{\Gamma}(q \mid k)$ for all $k \in K$.
(e) $H^{\Xi}(q \mid p)=H^{\Gamma}(q \mid \hat{p})$.
(f) $\gamma(\Xi) \leq \gamma(\Gamma)$

Proof. (a) Let $k \in K$. Then $\operatorname{Row}_{k}(\Xi)=\operatorname{Row}_{k}(\Gamma)$ and so $\operatorname{Row}_{k}(\Xi)$ is a probability distribution on J.
(b) Since $\hat{p}_{i}=0$ for all $i \in I \backslash K$,

$$
\sum_{i \in I} \hat{p}_{i}=\sum_{i \in K} \hat{p}_{i}=\sum_{i \in K} p_{i}=1 .
$$

(C) $\hat{p} \Gamma=\sum_{i \in I} \hat{p}_{i} \Gamma_{i j}=\sum_{i \in K} p_{i} \Gamma_{i j}=\sum_{i \in K} p_{i} \Xi_{i j}=p \Xi$.
(d) $H^{\Xi}(q \mid k)=H\left(\operatorname{Row}_{k}(\Xi)\right)=H\left(\operatorname{Row}_{k}(\Gamma)\right)=H^{\Gamma}(q \mid k)$.
(e) Using V.24 twice we have

$$
H^{\Xi}(q \mid p)=\sum_{i \in K} p_{i} H^{\Xi}(q \mid i)=\sum_{i \in K} p_{i} H^{\Gamma}(q \mid i)=\sum_{i \in} \hat{p}_{i} H^{\Gamma}(q \mid i)=H^{\Gamma}(q \mid \hat{p}) .
$$

(f) Let $\mathcal{P}(I)$ and $\mathcal{P}(K)$ be the set of probability distribution on I and K respectively. Then using (c) and (e),

$$
\gamma(\Xi)=\max _{p \in \mathcal{P}(K)} H(q)-H^{\Xi}(q \mid p)=\max _{p \in \mathcal{P}(K)} H(q)-H^{\Gamma}(q \mid \hat{p}) \leq \max _{p \in \mathcal{P}(I)} H(q)-H^{\Gamma}(q \mid p)=\gamma(\Gamma)
$$

Appendix D

Examples of codes

D. 1 A 1-error correcting binary code of length 8 and size 20

Example D.1. The rows of following matrix form a binary code of size 20, length 9 and minimum distance 4. Deleting any of the columns produces a 1-error correcting code of size 20 and length 8.

$$
\left[\begin{array}{ccc}
\overrightarrow{0} & \overrightarrow{0} & \overrightarrow{0} \\
J & P^{2} & P \\
P & J & P^{2} \\
P^{2} & P & J \\
I & I+P & I+P^{2} \\
I+P^{2} & I & I+P \\
I+P & I+P^{2} & I \\
\overrightarrow{1} & \overrightarrow{1} & \overrightarrow{1}
\end{array}\right]
$$

Here

$$
\overrightarrow{0}=000, \quad \overrightarrow{1}=111, \quad I=I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad J=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \quad P=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

and so

$$
P^{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad I+P=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right], \quad I+P^{2}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Bibliography

[Text Book] Norman L.Biggs Codes, An introduction to information communication and cryptography Springer UMS 2008

[^0]: ${ }^{1}$ Note that all symbols of S appear in D_{k-1} so such a prefix exists and has length at least 1
 ${ }^{2}$ Note that by maximality of $Y_{k}, Y_{k} z_{k}$ does not appear in D_{k}. So D_{k} is a dictionary

[^1]: ${ }^{3}$ In this case $Y_{k+1}=Y_{k} z_{k}$

[^2]: ${ }^{1}$ Since $l x=\overrightarrow{0}$ or $l x=x$, this condition is redundant

[^3]: Algorithm VIII.48. Let C be linear code with an $m \times n$ check matrix H. Choose an ordering $\left\{z_{1}, \ldots, z_{2^{n}}\right\}$ of \mathbb{F}_{2}^{n} such that $\mathrm{wt}\left(z_{i}\right) \leq \mathrm{wt}\left(z_{j}\right)$ for all $1 \leq i<j \leq 2^{n}$. Define functions $\tau_{l}: S_{l} \rightarrow \mathbb{F}_{2}^{m}$ inductively as follows:

 For $l=0$ let $S_{0}=\varnothing$ and $\tau_{0}=\varnothing$.
 Suppose $l>0$ and τ_{l-1} has been defined. Compute $s_{l}=H z_{l}$.

 - If $s_{l} \in S_{l-1}$, put $\tau_{l}=\tau_{l-1}$
 - If $s_{l} \notin S_{l}$, put $S_{l}=S_{l-1} \cup\left\{s_{l}\right\}$ and extend τ_{l-1} to a function τ_{l} on S_{l} by $\tau_{l}\left(s_{l}\right)=z_{l}$.

 Stop the algorithm if $l=2^{n}$ or $\left|S_{l}\right|=2^{m}$.
 The last τ_{l} is a syndrome look up table for C with respect to H.

