
Chapter 8

Cyclic Codes

Among the first codes used practically were the cyclic codes which were gen-
erated using shift registers. It was quickly noticed by Prange that the class
of cyclic codes has a rich algebraic structure, the first indication that algebra
would be a valuable tool in code design.

The linear code C of length n is a cyclic code if it is invariant under a cyclic cyclic code

shift:
c = (c0, c1, c2 . . . , cn−2, cn−1) ∈ C

if and only if
c̃ = (cn−1, c0, c1 . . . , cn−3, cn−2) ∈ C .

As C is invariant under this single right cyclic shift, by iteration it is invariant
under any number of right cyclic shifts. As a single left cyclic shift is the same
as n− 1 right cyclic shifts, C is also invariant under a single left cyclic shift and
hence all left cyclic shifts. Therefore the linear code C is cyclic precisely when
it is invariant under all cyclic shifts.

There are some obvious examples of cyclic codes. The 0-code is certainly
cyclic as is Fn. Less trivially, repetition codes are cyclic. The binary parity
check code is also cyclic, and this goes over to the sum-0 codes over any field.

Notice that this shift invariance criterion does not depend at all upon the
code being linear. It is possible to define nonlinear cyclic codes, but that is rarely
done. The history of cyclic codes as shift register codes and the mathematical
structure theory of cyclic codes both suggest the study of cyclic invariance in
the context of linear codes.

8.1 Basics

It is convenient to think of cyclic codes as consisting of polynomials as well as
codewords. With every word

a = (a0, a1, . . . , ai, . . . , an−2, an−1) ∈ Fn

101

102 CHAPTER 8. CYCLIC CODES

we associate the polynomial of degree less than n

a(x) = a0 + a1x+ · · ·+ aix
i + · · ·+ an−1x

n−1 ∈ F [x]n .

(We see here why in this chapter we index coordinates from 0 to n− 1.) If c is
a codeword of the code C, then we call c(x) the associated code polynomial.code polynomial

With this convention, the shifted codeword c̃ has associated code polynomial

c̃(x) = cn−1 + c0x+ c1x
2 + · · ·+ cix

i+1 + · · ·+ cn−2x
n−1 .

Thus c̃(x) is almost equal to the product polynomial xc(x). More precisely,

c̃(x) = xc(x)− cn−1(xn − 1) .

Therefore c̃(x) also has degree less than n and is equal to the remainder when
xc(x) is divided by xn − 1. In particular

c̃(x) = xc(x) (mod xn − 1) .

That is, c̃(x) and xc(x) are equal in the ring of polynomials F [x] (mod xn− 1),
where arithmetic is done modulo the polynomial xn − 1.

If c(x) is the code polynomial associated with some codeword c of C, then
we will allow ourselves to abuse notation by writing

c(x) ∈ C .

Indeed, if f(x) is any polynomial of F [x] whose remainder, upon division by
xn − 1, belongs to C then we may write

f(x) ∈ C (mod xn − 1) .

With these notational conventions in mind, we see that our definition of the
cyclic code C has the pleasing polynomial form

c(x) ∈ C (mod xn − 1)if and only ifxc(x) ∈ C (mod xn − 1) .

Since additional shifts do not take us out of the cyclic code C, we have

xic(x) ∈ C (mod xn − 1) ,

for all i. By linearity, for any ai ∈ F ,

aix
ic(x) ∈ C (mod xn − 1)

and indeed
d∑
i=0

aix
i c(x) ∈ C (mod xn − 1) ,

That is, for every polynomial a(x) =
∑d
i=0 aix

i ∈ F [x], the product a(x)c(x)
(or more properly a(x)c(x) (mod xn− 1)) still belongs to C. This observation,
due to Prange, opened the way for the application of algebra to cyclic codes.

8.1. BASICS 103

(8.1.1) Theorem. Let C 6= {0} be a cyclic code of length n over F .
(1) Let g(x) be a monic code polynomial of minimal degree in C. Then g(x)

is uniquely determined in C, and

C = { q(x)g(x) | q(x) ∈ F [x]n−r } ,

where r = deg(g(x)). In particular, C has dimension n− r.
(2) The polynomial g(x) divides xn − 1 in F [x].

Proof. As C 6= {0}, it contains nonzero code polynomials, each of which
has a unique monic scalar multiple. Thus there is a monic polynomial g(x) in
C of minimal degree. Let this degree be r, unique even if g(x) is not.

By the remarks preceding the theorem, the set of polynomials

C0 = { q(x)g(x) | q(x) ∈ F [x]n−r }

is certainly contained in C, since it is composed of those multiples of the code
polynomial g(x) with the additional property of having degree less than n.
Under addition and scalar multiplication C0 is an F -vector space of dimension
n− r. The polynomial g(x) is the unique monic polynomial of degree r in C0.

To prove (1), we must show that every code polynomial c(x) is an F [x]-
multiple of g(x) and so is in the set C0. By the Division Algorithm A.2.5 we
have

c(x) = q(x)g(x) + r(x) ,

for some q(x), r(x) ∈ F [x] with deg(r(x)) < r = deg(g(x)). Therefore

r(x) = c(x)− q(x)g(x) .

By definition c(x) ∈ C and q(x)g(x) is in C0 (as c(x) has degree less than
n). Thus by linearity, the righthand side of this equation is in C, hence the
remainder term r(x) is in C. If r(x) was nonzero, then it would have a monic
scalar multiple belonging to C and of smaller degree than r. But this would
contradict the original choice of g(x). Therefore r(x) = 0 and c(x) = q(x)g(x),
as desired.

Next let
xn − 1 = h(x)g(x) + s(x) ,

for some s(x) of degree less than deg(g(x)). Then, as before,

s(x) = (−h(x))g(x) (mod xn − 1)

belongs to C. Again, if s(x) is not zero, then it has a monic scalar multiple
belonging to C and of smaller degree than that of g(x), a contradiction. Thus
s(x) = 0 and g(x)h(x) = xn − 1, as in (2). 2

The polynomial g(x) is called the generator polynomial for the code C. generator polynomial

The polynomial h(x) ∈ F [x] determined by

g(x)h(x) = xn − 1

104 CHAPTER 8. CYCLIC CODES

is the check polynomial of C.check polynomial

Under some circumstances it is convenient to consider xn − 1 to be the
generator polynomial of the cyclic code 0 of length n. Then by the theorem,
there is a one-to-one correspondence between cyclic codes of length n and monic
divisors of xn − 1 in F [x].

Example. Consider length 7 binary cyclic codes. We have the factor-
ization into irreducible polynomials

x7 − 1 = (x− 1)(x3 + x+ 1)(x3 + x2 + 1) .

Since we are looking at binary codes, all the minus signs can be replaced
by plus signs:

x7 + 1 = (x+ 1)(x3 + x+ 1)(x3 + x2 + 1) .

As there are 3 irreducible factors, there are 23 = 8 cyclic codes (in-
cluding 0 and F7

2). The 8 generator polynomials are:

(i) 1 = 1
(ii) x+ 1 = x+ 1

(iii) x3 + x+ 1 = x3 + x+ 1
(iv) x3 + x2 + 1 = x3 + x2 + 1
(v) (x+ 1)(x3 + x+ 1) = x4 + x3 + x2 + 1

(vi) (x+ 1)(x3 + x2 + 1) = x4 + x2 + x+ 1
(vii) (x3 + x+ 1)(x3 + x2 + 1) = x6 + x5 + x4 + x3 + x2 + x+ 1

(viii) (x+ 1)(x3 + x+ 1)(x3 + x2 + 1) = x7 + 1

Here in (i) the polynomial 1 generates all F7
2. In (ii) we find the parity

check code and in (vii) the repetition code. As mentioned before, in (viii)
we view the 0-code as being generated by x7 + 1.

The polynomials of (iii) and (iv) have degree 3 and so generate [7, 4]
codes, which we shall later see are Hamming codes. The [7, 3] codes of (v)
and (vi) are the duals of the Hamming codes.

(8.1.2) Problem. How many cyclic codes of length 8 over F3 are there? Give a
generator polynomial for each such code.

(8.1.3) Problem. Prove that there is no cyclic code that is (equivalent to) an [8, 4]
extended binary Hamming code.

(8.1.4) Problem. Let cyclic code C have generator polynomial g(x). Prove that C
is contained in the sum-0 code if and only if g(1) = 0.

(8.1.5) Problem. Let C be a cyclic code. Let C− be the code resulting from
shortening C at a single position, and let C− be the code resulting from puncturing C
at a single position.

(a) Give all C for which C− is cyclic.
(b) Give all C for which C− is cyclic.

The check polynomial earns its name by the following

8.1. BASICS 105

(8.1.6) Proposition. If C is the cyclic code of length n with check polynomial
h(x), then

C = { c(x) ∈ F [x]n | c(x)h(x) = 0 (mod xn − 1) } .

Proof. The containment in one direction is easy. Indeed if c(x) ∈ C, then
by Theorem 8.1.1 there is a q(x) with c(x) = q(x)g(x). But then

c(x)h(x) = q(x)g(x)h(x) = q(x)(xn − 1) = 0 (mod xn − 1) .

Now consider an arbitrary polynomial c(x) ∈ F [x]n with

c(x)h(x) = p(x)(xn − 1), say.

Then

c(x)h(x) = p(x)(xn − 1)
= p(x)g(x)h(x) ,

hence
(c(x)− p(x)g(x))h(x) = 0 .

As g(x)h(x) = xn − 1, we do not have h(x) = 0. Therefore

c(x)− p(x)g(x) = 0
and c(x) = p(x)g(x) ,

as desired. 2

If we are in possession of a generator polynomial g(x) =
∑r
j=0 gjx

j for the
cyclic code C, then we can easily construct a generator matrix for C. Consider

G =

g0 g1 · · · · · · · · · · · · gr−1 gr 0 0 . . . 0
0 g0 g1 · · · · · · · · · · · · gr−1 gr 0 . . . 0
...

...
. .

...
...

...
. .

...
0 0 . . . 0 g0 g1 · · · · · · · · · · · · gr−1 gr

The matrix G has n columns and k = n − r rows; so the first row, row g0,
finishes with a string of 0’s of length k − 1. Each successive row is the cyclic
shift of the previous row: gi = g̃i−1, for i = 1, . . . , k− 1. As g(x)h(x) = xn− 1,
we have

g0h0 = g(0)h(0) = 0n − 1 6= 0 .

In particular g0 6= 0 (and h0 6= 0). Therefore G is in echelon form (although
likely not reduced). In particular the k = dim(C) rows of G are linearly inde-
pendent. Clearly the rows of G belong to C, so G is indeed a generator matrix
for C, sometimes called the cyclic generator matrix of C. cyclic generator matrix

106 CHAPTER 8. CYCLIC CODES

For instance, if C is a [7, 4] binary cyclic code with generator polynomial
1 + x+ x3, then the cyclic generator matrix is

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

Given the cyclic generator matrix G, cyclic encoding is the process of en-cyclic encoding

coding the message k-tuple m = (m0, . . . ,mk−1) into the codeword c = mG.
At the polynomial level, this corresponds to encoding the message polynomialmessage polynomial

m(x) =
∑k−1
i=0 mix

i into the code polynomial c(x) = m(x)g(x).
Since the cyclic generator G is in echelon form, the first k coordinate po-

sitions form an information set. Therefore cyclic C has a standard generator
matrix, although the cyclic generator matrix is almost never standard (or even
systematic).

(8.1.7) Problem. (a) Describe all situations in which the cyclic generator matrix
for a cyclic code is the standard generator matrix.

(b) Describe all situations in which the cyclic generator matrix for a cyclic code is
systematic.

We next present for cyclic C a linear encoding method corresponding to the
standard generator matrix. Namely

m = (m0, . . . ,mk−1) 7→ c = (m0, . . . ,mk−1,−s0,−s1, . . . ,−sr−1) ,

where s(x) =
∑r−1
j=0 sjx

j is the remainder upon dividing xrm(x) by g(x). That
is,

xrm(x) = q(x)g(x) + s(x) ,

with deg(s(x)) < deg(g(x)) = r. To see that this is the correct standard encod-
ing, first note that

xrm(x)− s(x) = q(x)g(x) = b(x) ∈ C

with corresponding codeword

b = (−s0,−s1, . . . ,−sr−1,m0, . . . ,mk−1) .

As this is a codeword of cyclic C, every cyclic shift of it is also a codeword. In
particular the c given above is found after k right shifts. Thus c is a codeword of
C. Since C is systematic on the first k positions, this codeword is the only one
with m on those positions and so is the result of standard encoding. To construct
the standard generator matrix itself, we encode the k different k-tuple messages
(0, 0, . . . , 0, 1, 0, . . . , 0) of weight 1 corresponding to message polynomials xi, for
0 ≤ i ≤ k − 1. These are the rows of the standard generator matrix.

When we try this for the [7, 4] binary cyclic code with generator x3 + x+ 1
(so r = 7− 4 = 3), we find, for instance,

x3x2 = (x2 + 1)(x3 + x+ 1) + (x2 + x+ 1)

8.1. BASICS 107

so that the third row of the standard generator matrix, corresponding to message
polynomial x2, is

(m0,m1,m2,m3,−s0,−s1,−s2) = (0, 0, 1, 0, 1, 1, 1) .

Proceeding in this way, we find that the standard generator matrix is
1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

By Problem 4.1.9, C is a Hamming code (although this can also be checked
easily by hand).

This process of systematic encoding for cyclic codes is important in practice, systematic encoding

since a machine can be transmitting the information symbols from m during
the time it is calculating the check symbols sj .

(8.1.8) Problem. (a) Find the cyclic and standard generator matrices for the [7, 4]
binary cyclic code D with generator polynomial x3 + x2 + 1.

(b) Find the cyclic and standard generator matrices for the [15, 11] binary cyclic
code E with generator polynomial x4 + x+ 1.

(c) Prove that D and E are Hamming codes.

A code equivalent to a cyclic code need not be cyclic itself. For instance,
there are 30 distinct binary [7, 4] Hamming codes; but, as we saw in the example
above, only two of them are cyclic.

One permutation does take cyclic codes to cyclic codes. The reverse code reverse code

C [−1] of a cyclic code C, gotten by reversing each codeword, is still cyclic. We
have

(c0, c1, . . . , ci, . . . , , cn−1) ∈ C ⇐⇒ (cn−1, . . . , cn−1−i, . . . , c1, c0) ∈ C [−1] .

In polynomial notation, this becomes

c(x) ∈ C ⇐⇒ xn−1c(x−1) ∈ C [−1] .

For the polynomial p(x) of degree d, we let its reciprocal polynomial be given by reciprocal polynomial

p[−1](x) =
d∑
i=0

pd−ix
i = xdp(x−1) .

The roots of the reciprocal polynomial are the reciprocals of the nonzero roots
of the original polynomial.

(8.1.9) Lemma. If g(x) generates cyclic C, then g−1
0 g[−1](x) generates C [−1],

the reverse code of C.

108 CHAPTER 8. CYCLIC CODES

Proof. Starting from the cyclic generator matrix for C, we reverse all the
rows and then write them from bottom to top. The result is

gr gr−1 · · · · · · · · · · · · g1 g0 0 0 . . . 0
0 gr gr−1 · · · · · · · · · · · · g1 g0 0 . . . 0
...

...
. .

...
...

...
. .

...
0 0 . . . 0 gr gr−1 · · · · · · · · · · · · g1 g0

 .

The rows of this matrix certainly belong to C [−1]. As before, they are linearly
independent since g0 6= 0. Therefore we have a generator matrix for C [−1]. Its
first row visibly corresponds to a nonzero code polynomial of degree less than
r, which is seen to be g[−1](x). By Theorem 8.1.1 the monic scalar multiple
g−1
0 g[−1](x) is the generator polynomial. (In fact, we have a scalar multiple of

the cyclic generator matrix for C [−1].) 2

It is easy to see that the dual of a cyclic code C is again a cyclic code.
Proposition 8.1.6 suggests that the dual is associated with the check polynomial
of C.

Let the cyclic code C of length n have generator polynomial g(x) of degree
r and check polynomial h(x) of degree k = n− r = dimC. As h(x) is a divisor
of xn − 1, it is the generator polynomial for a cyclic code D of length n and
dimension n− k = n− (n− r) = r. We have

C = { q(x)g(x) | q(x) ∈ F [x]k }

and

D = { p(x)h(x) | p(x) ∈ F [x]r } .

Let c(x) = q(x)g(x) ∈ C, so that deg(q(x)) ≤ k − 1; and let d(x) =
p(x)h(x) ∈ D, so that deg(p(x)) ≤ r − 1. Consider

c(x)d(x) = q(x)g(x)p(x)h(x)
= q(x)p(x)(xn − 1)
= s(x)(xn − 1)
= s(x)xn − s(x) ,

where s(x) = q(x)p(x) with

deg(s(x)) ≤ (k − 1) + (r − 1) = r + k − 2 = n− 2 < n− 1 .

Therefore the coefficient of xn−1 in c(x)d(x) is 0. If c(x) =
∑n−1
i=0 cix

i and d(x) =∑n−1
j=0 djx

j , then in general the coefficient of xm in c(x)d(x) is
∑
i+j=m cidj . In

8.2. CYCLIC GRS CODES AND REED-SOLOMON CODES 109

particular, the two determinations of the coefficient of xn−1 in c(x)d(x) give

0 =
∑

i+j=n−1

cidj

=
n−1∑
i=0

cidn−1−i

= c0dn−1 + c1dn−2 + · · ·+ cidn−i + · · ·+ cn−1d0

= c · d∗ .

where

c = (c0, c1, . . . , ci, . . . , cn−1)andd∗ = (dn−1, dn−2, . . . , dn−i, . . . , d0) .

That is, each codeword c of C has dot product 0 with the reverse of each
codeword d of D.

Therefore C⊥ contains D[−1]. Also

dim(C⊥) = n− dim(C) = n− k = r = n− deg(h[−1](x)) = dim(D[−1]) ,

so from Lemma 8.1.9 we conclude

(8.1.10) Theorem. If C is the cyclic code of length n with check polynomial
h(x), then C⊥ is cyclic with generator polynomial h−1

0 h[−1](x). 2

8.2 Cyclic GRS codes and Reed-Solomon codes

For α a primitive nth root of unity in the field F , set

α(a) = ((α0)a, . . . , (αj)a, . . . , (αn−1)a)
= ((αa)0, . . . , (αa)j , . . . , (αa)n−1) .

In particular, α = α(1) and α(0) = 1, the all 1-vector.
The basic observation is that

α̃(a) = ((αn−1)a, (α0)a, . . . , (αj)a, . . . , (αn−2)a)
= α−a((α0)a, (α1)a, . . . , (αj)a, . . . , (αn−1)a)
= α−aα(a) .

Thus a cyclic shift of α(a) is always a scalar multiple of α(a).

(8.2.1) Proposition. GRSn,k(α,α(a)) is cyclic.

Proof. For 0 ≤ i ≤ k−1 and 0 ≤ j ≤ n−1, the (i, j)-entry of the canonical
generator matix is

vjα
i
j = (αj)a(αj)i

= αjaαji = (αj)a+i .

110 CHAPTER 8. CYCLIC CODES

Therefore the canonical generator matrix has as rows the k codewords α(a+i),
for i = 0, . . . , k − 1. We have seen above that shifting any of these only gives
scalar multiples, so the code itself is invariant under shifting. 2

A cyclic code GRSn,k(α,α(a)) as in Proposition 8.2.1 is a Reed-Solomon
code. It is said to be primitive if n = |F | − 1 and of narrow-sense if a = 0 (so Reed-Solomon code

primitive
narrow-sense

that v = α(a) = 1).

(8.2.2) Lemma. If αn = 1 and α = (α0, . . . , αn−1), then

GRSn,k(α,α(a))⊥ = GRSn,n−k(α,α(1−a)) .

Proof. By Theorem 5.1.6

GRSn,k(α,α(a))⊥ = GRSn,n−k(α,u) ,

where, for 0 ≤ j ≤ n−1 and v = α(a), we have uj = v−1
j Lj(αj)−1. By Problem

5.1.5(c), Lj(αj) = n(αj)−1 (6= 0). Thus

uj = ((αj)a)−1(n(αj)−1)−1

= n−1α−jaαj

= n−1(αj)1−a

Therefore u = n−1α(1−a), so by Problem 5.1.3(a)

GRSn,k(α,α(a))⊥ = GRSn,n−k(α, n−1α(1−a))

= GRSn,n−k(α,α(1−a))

as desired. 2

(8.2.3) Theorem. An [n, k] Reed-Solomon code over F is a cyclic code with
generator polynomial

t∏
j=1

(x− αj+b)

where t = n − k, the integer b is a fixed constant, and α is a primitive nth

root of unity in F . This Reed-Solomon code is primitive if n = |F | − 1 and
narrow-sense if b = 0.

Proof. Let C = GRSn,k(α,α(a)). The rows of the canonical generator
matrix of the dual code C⊥ are, by Lemma 8.2.2 and a previous calculation,
the vectors α(j−a), for 1 ≤ j ≤ t. Therefore, for c = (c0, . . . , ci, . . . , cn−1) and

8.3. CYLIC ALTERNANT CODES AND BCH CODES 111

c(x) =
∑n−1
i=0 cix

i,

c ∈ C ⇐⇒ c ·α(j−a) = 0, 1 ≤ j ≤ t

⇐⇒
n−1∑
i=0

ci(αi)j−a = 0, 1 ≤ j ≤ t

⇐⇒
n−1∑
i=0

ci(αj−a)i = 0, 1 ≤ j ≤ t

⇐⇒ c(αj−a) = 0, 1 ≤ j ≤ t .

Thus, writing cyclic C in terms of polynomials, we have by Lemma A.2.8

c(x) ∈ C ⇐⇒ c(αj−a) = 0, 1 ≤ j ≤ t

⇐⇒
t∏

j=1

(x− αj+b)dividesc(x) ,

for b = −a. As
∏t
j=1(x − αj+b) is monic and has degree t = n − k, it is the

generator polynomial of C by Theorem 8.1.1.
Also α is a primitive element of F when n = |F | − 1; and C is narrow-sense

when a = 0, that is, when b = −a = 0. 2

In most places, the statement of Theorem 8.2.3 is taken as the definition
of a Reed-Solomon code. It is then proven that such a code is MDS with
dmin = t + 1 = n − k + 1. Our development is somewhat closer to the original
presentation of Reed and Solomon from 1960.

(8.2.4) Problem. Prove that EGRSq+1,k(β,γ; w), where |F | = q, is monomially
equivalent to a cyclic code when q is even and to a negacyclic code when q is odd. Here
a code C is negacyclic provided negacyclic

(c0, c1, c2 . . . , cn−2, cn−1) ∈ C

if and only if

(−cn−1, c0, c1 . . . , cn−3, cn−2) ∈ C .

(Hint: See Theorem 6.3.4.)

8.3 Cylic alternant codes and BCH codes

Let K ≤ F be fields. Starting with the Reed-Solomon code GRSn,k(α,α(a))
over F , the cyclic, alternant code C = Kn ∩GRSn,k(α,α(a)) is called a BCH
code of designed distance t + 1, where t = n − k. C is primitive if n = |F | − 1
and narrow-sense if a = 0 (that is to say, v = 1).

112 CHAPTER 8. CYCLIC CODES

(8.3.1) Theorem. A BCH code C of length n and designed distance t + 1
over K is a cyclic code composed of all those code polynomials c(x) ∈ K[x] of
degree less than n satisfying

c(αb+1) = c(αb+2) = c(αb+3) = · · · = c(αb+t) = 0 ,

where b is a fixed integer and α is a primitive nth root of unity in the field
F ≥ K. The code is primitive if n = |F | − 1 and is narrow-sense if b = 0.

The code C is linear and cyclic with generator polynomial

lcm1≤j≤t {mαj+b,K(x)} .

It has minimum distance at least t + 1 and dimension at least n − mt, where
m = dimK F .

Proof. The first paragraph is an immediate consequence of Theorem 8.2.3
and the definitions. As C is the alternant code Kn ∩ GRSn,k(α,α(a)), it is
by Theorem 7.5.1 linear of minimum distance at least n − k + 1 = t + 1 and
dimension at least n −m(n − k) = n −mt. The form taken by the generator
polynomial follows from the first paragraph and Lemma A.3.19 of the Appendix.

2

As with Reed-Solomon codes, the first paragraph of this theorem consists of
the usual definition of a BCH code. Indeed, that is essentially the original def-
inition as given by Bose and Ray-Chaudhuri (1960) and Hocquenghem (1959).
(The codes were then given the somewhat inaccurate acronym as name.) It
then must be proven that the designed distance of a BCH code gives a lower
bound for the actual minimum distance. In many places Reed-Solomon codes
are defined as those BCH codes in which the fields F and K are the same.
Historically, the two classes of codes were discovered independently and the
connections only noticed later.

Sometimes one takes a different view of Theorem 8.3.1, viewing it instead
as a general bound on cyclic codes in terms of root patterns for the generator
polynomial.

(8.3.2) Corollary. (BCH Bound.) Let C be a cyclic code of length n over
K with generator polynomial g(x). Suppose that g(αj+b) = 0, for some fixed b
and 1 ≤ j ≤ t, where α is a primitive nth root of unity in the field F ≥ K.
Then dmin(C) ≥ t+ 1.

Proof. In this case, C is a subcode of a BCH code with designed distance
t+ 1. 2

This corollary admits many generalizations, the general form of which states
that a certain pattern of roots for the generator polynomial of a cyclic code
implies a lower bound for the minimum distance.

8.3. CYLIC ALTERNANT CODES AND BCH CODES 113

(8.3.3) Problem. Assume that the cyclic code C has generator polynomial g(x)
with g(1) 6= 0. Prove that (x−1)g(x) is the generator polynomial of the sum-0 subcode
of C (those codewords of C whose coordinate entries sum to 0).

The last sentence in the theorem gives us two lower bounds for BCH codes,
one for the minimum distance (the BCH bound) and one for the dimension.
As we prefer large distance and dimension, we would hope to find situations in
which one or both of these bounds are not met exactly. For any cyclic code,
the generator polynomial has degree equal to the redundancy of the code. In
Theorem 8.3.1 that degree/redundancy is bounded above by mt. This bound
will be met exactly if and only if each of the minimal polynomials mαj+b,K(x)
has the maximum possible degree m and, additionally, all of these polynomials,
for 1 ≤ j ≤ t, are distinct. This sounds an unlikely event but can, in fact,
happen. Conversely we often can make our choices so as to guarantee that the
degree of the generator is dramatically less than this maximum. We shall see
below that the two bounds of the theorem are independent and can be either met
or beaten, depending upon the specific circumstances. (Both bounds are tight
for Reed-Solomon codes, but there are other cases as well where this happens.)

(8.3.4) Corollary. (1) A binary, narrow-sense, primitive BCH code of
designed distance 2 is a cyclic Hamming code.

(2) A binary, narrow-sense, primitive BCH code of designed distance 3 is a
cyclic Hamming code.

Proof. Let n = 2m − 1 and K = F2 ≤ F2m = F . Let α be a primitive
element in F2m (so it has order n). Then the associated designed distance 2
code C2 has generator polynomial

m(x) = mα(x) = mα,F2(x)

of degree m, the minimal polynomial of α over the prime subfield F2. The
corresponding designed distance 3 code C3 has generator polynomial

lcm{mα(x),mα2(x)} .

From Theorem A.3.20 we learn that mα2(x) = mα(x). Therefore this lcm is
again equal to m(x), and C2 and C3 both have generator polynomial m(x) of
degree m. Thus C2 = C3 has dimension n −m = 2m − 1 −m and minimum
distance at least 3. It is therefore a Hamming code by Problem 4.1.3 or Problem
4.1.9. (Alternatively C2 is, by Lemma 8.2.2, equal to the alternant code Fn2 ∩
GRSn,1(α,α)⊥, which we have already identified as a Hamming code in Section
7.5.) 2

From this corollary we learn that it is possible to find BCH codes with
inequality in the distance bound (BCH bound) and equality in the dimension
bound of Theorem 8.3.1 (dmin(C2) = 3 > 1 + 1 and dim(C2) = n − m · 1)
and also BCH codes with equality in the distance bound and inequality in the
dimension bound (dmin(C3) = 3 = 2 + 1 and dim(C3) = n−m > n−m · 2).

114 CHAPTER 8. CYCLIC CODES

As in the corollary, narrow-sense codes frequently have better parameters
than those that are not. For instance, in the situation of the corollary, the
designed distance 2 code with b = −1 has generator polynomial mα1−1,F2(x) =
x − 1. This code is the parity check code with dmin indeed equal to 2 and
dimension n − 1 (> n − m). When n = 15 (so that m = 4), the designed
distance 2 code with b = 2 has generator polynomial

mα1+2,F2(x) = x4 + x3 + x2 + x+ 1 = (x5 − 1)/(x− 1) ,

since (α3)5 = α15 = 1. Therefore this code meets both bounds exactly, hav-
ing dimension 11 = 15 − 4 and minimum distance 2, as it contains the code
polynomial x5 − 1.

Consider next the binary, narrow-sense, primitive BCH code with length
15 and designed distance 5, defined using as primitive element α a root of the
primitive polynomial x4+x+1. The generator polynomial is, by Theorem 8.3.1,

g(x) = lcm1≤j≤4 {mαj (x)} .

By definition mα(x) = x4 + x+ 1, and we found mα3(x) = x4 + x3 + x2 + x+ 1
above. By Theorem A.3.20 of the Appendix,

mα(x) = mα2(x) = mα4(x) ,

therefore

g(x) = mα(x)mα3(x) = (x4 + x+ 1)(x4 + x3 + x2 + x+ 1)
= x8 + x7 + x6 + x4 + 1 .

In particular, the code has dimension 15−8 = 7, whereas the bound of Theorem
8.3.1 is useless, claiming only that the dimension is at least 15 − 4 · 4 = −1.
Furthermore g(x) itself has weight 5, so in this case the designed distance 5 code
has minimum distance exactly 5. (Although the generator polynomial always
has relatively low weight, in general it will not have the minimum weight. Still it
is often worth checking.) We see again here the advantage of looking at narrow-
sense codes. By Theorem A.3.20, whenever αi is a root of m(x), then α2i is
as well (in the binary case). In particular, the binary, narrow-sense, designed
distance 2d code, given by roots αj , for 1 ≤ j ≤ 2d − 1, is also equal to the
designed distance 2d + 1 code, given by roots αj , for 1 ≤ j ≤ 2d, since αd

a root implies α2d is as well. (We saw a particular case of this in Corollary
8.3.4.) Similar but weaker statements can be made for nonbinary BCH codes
by appealing to Theorem A.3.20 or the more general Problem A.3.21.

We also see that Theorem A.3.20 and Problem A.3.21 can be used effec-
tively to calculate the parameters and generator polynomials of BCH codes.
Consider next a binary, narrow-sense, primitive BCH code C of length 31 with
designed distance 8. The previous paragraph already tells us that C is also the
corresponding designed distance 9 code, but more is true. We have generator
polynomial

g(x) = lcm1≤j≤8 {mαj (x)}
= mα(x)mα3(x)mα5(x)mα7(x) ,

8.3. CYLIC ALTERNANT CODES AND BCH CODES 115

where α is an arbitrary but fixed primitive 31st root of unity in F32. By Theorem
A.3.20

mα(x) = (x− α)(x− α2)(x− α4)(x− α8)(x− α15) ;
mα3(x) = (x− α3)(x− α6)(x− α12)(x− α24)(x− α17) ;
mα5(x) = (x− α5)(x− α10)(x− α20)(x− α9)(x− α18) ;
mα7(x) = (x− α7)(x− α14)(x− α28)(x− α25)(x− α19) .

Therefore C has dimension 31−4 ·5 = 11. We also discover that we have gotten
the roots α9 and α10 ‘for free’, so that the designed distance 8(9) BCH code is
actually equal to the designed distance 11 code (so in this case, neither of the
bounds of Theorem 8.3.1 hold with equality). It is worth noting that we can
calculate this dimension and improved BCH bound without explicitly finding
the generator polynomial. The calculations are valid no matter which primitive
element α we choose. Examples below find explicit generator polynomials, using
similar calculations based upon Theorem A.3.20.

The good fortune seen in the previous paragraph can often be dramatic.
Berlekamp has noted that the binary, narrow-sense, primitive BCH code of
length 212− 1 and designed distance 768 is equal to the corresponding designed
distance 819 code. On the other hand, there are many situations where the
BCH bound still does not give the true minimum distance. Roos, Van Lint,
and Wilson have noted that the binary length 21 code with generator polynomial

mβ(x)mβ3(x)mβ7(x)mβ9(x) ,

which has as roots βj (β a 21st root of unity) for

j ∈ {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 16, 18} ,

has true minimum distance 8, whereas the BCH bound only guarantees distance
at least 5.

Examples. (i) Let α be a root of the primitive polynomial x4 +x3 + 1 ∈
F2[x]. What is the generator of the binary, narrow-sense, primitive BCH
code C1 of length 15 and designed distance 5?

The code is composed of all polynomials c(x) ∈ F2[x] that have each
of α1, α2, α3, α4 as a root. Therefore c(x) is divisible by

mα(x) = (x− α1)(x− α2)(x− α4)(x− α8) = x4 + x3 + 1

and also by

mα3(x) = (x− α3)(x− α6)(x− α12)(x− α9) = x4 + x3 + x2 + x+ 1.

So C1 has generator

g1(x) = (x4 + x3 + 1)(x4 + x3 + x2 + x+ 1) = x8 + x4 + x2 + x+ 1.

116 CHAPTER 8. CYCLIC CODES

As g1(x) has degree 8, the code has dimension 15 − 8 = 7. (Here again
the generator has weight 5, so the minimal distance of this code equals
5.)

(ii) Let α be a root of the primitive polynomial x5 +x2 +1 ∈ F2[x]. What
is the generator of the binary, narrow-sense, primitive BCH code C2 of
length 31 and designed distance 5?

Again the code is composed of all polynomials c(x) ∈ F2[x] that have
each of α1, α2, α3, α4 as a root. Therefore c(x) is divisible by

mα(x) = (x− α1)(x− α2)(x− α4)(x− α8)(x− α16) = x5 + x2 + 1

and also

mα3(x) = (x−α3)(x−α6)(x−α12)(x−α24)(x−α17) = x5+x4+x3+x2+1.

So C2 has generator

g2(x) = (x5+x2+1)(x5+x4+x3+x2+1) = x10+x9+x8+x6+x5+x3+1.

As g2(x) has degree 10, the code has dimension 31− 10 = 21. (But notice
that here the weight of the generator is larger than 5.)

(iii) Maintaining the notation of Example (ii), find the generator of the
BCH code C3 of length 31 with designed distance 7.

The code polynomials c(x) must satisfy

c(α1) = c(α2) = c(α3) = c(α4) = c(α5) = c(α6) = 0.

In particular c(x) must be a multiple of g2(x), calculated in the previous
example. But c(x) must also be a multiple of

mα5(x) = (x−α5)(x−α10)(x−α20)(x−α9)(x−α18) = x5+x4+x2+x+1.

(This calculation is done in detail in section A.3.3 of the Appendix on
algebra.) Thus the generator g3(x) for C3 is

g2(x)(x5+x4+x2+x+1) = x15+x11+x10+x9+x8+x7+x5+x3+x2+x+1.

This code has dimension 31− 15 = 16.

(iv) Let β be a root of the irreducible but imprimitive polynomial x3 +
2x + 2 ∈ F3[x] so that β is a 13th root of unity. We can, using β, find
the generator polynomial of the ternary, narrow-sense BCH code D1 of
length 13 with designed distance 4.

The code polynomials must have as roots β, β2, and β3. Thus they
must be multiples of

mβ(x) = mβ3(x) = (x− β)(x− β3)(x− β9) = x3 + 2x+ 2

and of

mβ2(x) = (x− β2)(x− β6)(x− β5) = x3 + x2 + x+ 2.

8.4. CYCLIC HAMMING CODES AND THEIR RELATIVES 117

Therefore D1 has generator

g4(x) = (x3 + 2x+ 2)(x3 + x2 + x+ 2) = x6 + x5 + x2 + 1.

In particular the code has dimension 13 − 6 = 7. Also its generator has
weight 4, so its minimal distance is equal to its designed distance 4.

(8.3.5) Problem. Give the generator polynomial of the ternary, narrow-sense
BCH code D2 of length 13 with designed distance 5, using β of Example (iv) above as
a primitive 13th root of unity. What is the dimension of D2?

(8.3.6) Problem. Give the generator polynomial of the ternary, narrow-sense,
primitive, BCH code D3 of length 26 with designed distance 4, using as primitive
element γ a root of the polynomial x3 + 2x+ 1 ∈ F3[x]. What is the dimension of D3?

(8.3.7) Problem. (a) What is the dimension of a binary, narrow-sense, primitive
BCH code of length 63 and designed distance 17.

(b) Does this code contain any codewords of weight 17? Explain your answer.

(8.3.8) Problem. Prove that a narrow-sense, primitive BCH code of length 24 over
F5 with designed distance 3 has minimum distance 3 and dimension 20 = 24−2(3−1).

8.4 Cyclic Hamming codes and their relatives

Cyclic binary Hamming codes and codes related to them are of particular in-
terest.

(8.4.1) Theorem. For every m, there is a cyclic, binary Hamming code of
redundancy m. Indeed any primitive polynomial of degree m in F2[x] generates
a cyclic Hamming code of redundancy m.

Proof. This is essentially equivalent to Corollary 8.3.4 (in view of Theorems
A.3.8 and A.3.10 on the general structure and existence of finite fields). 2

(8.4.2) Theorem. The polynomial g(x) ∈ F2[x] generates a cyclic, binary
Hamming code if and only if it is primitive.

Proof. In Theorem 8.4.1 we have seen that a binary primitive polynomial
generates a cyclic Hamming code.

Now let C be a binary, cyclic Hamming code of length 2m−1 = n. Let g(x) =∏r
i=1 gi(x), where the gi(x) are distinct irreducible polynomials of degree mi,

so that
∑r
i=1mi = m = deg g(x). Then gi(x) divides xni −1 with ni = 2mi −1,

hence g(x) divides xn0 − 1 where n0 =
∏r
i=1 ni. Now

n+ 1 = 2m − 1 + 1 =
r∏
i=1

2mi =
r∏
i=1

(ni + 1) .

If r 6= 1, then n > n0 and xn0 − 1 is a codeword of weight 2 in C, which is
not the case. Therefore g(x) = g1(x) is irreducible and divides xn − 1. Indeed
g(x) is primitive, as otherwise again there would be a code polynomial xp − 1
of weight 2. 2

118 CHAPTER 8. CYCLIC CODES

(8.4.3) Problem. Prove that there exists a cyclic Hamming code of redundancy m
and length (qm − 1)/(q − 1) over Fq if gcd((qm − 1)/(q − 1), q − 1) = 1. (Hint: For
construction try as before to find such a code as a subfield subcode of a Reed-Solomon
code.)

8.4.1 Even subcodes and error detection

(8.4.4) Lemma. Let F = F2m (m > 1), and let p(x) be a primitive polynomial
of degree m in F2[x]. The polynomial g(x) = (x + 1)p(x) generates the even
subcode E composed of all codewords of even weight in the Hamming code with
generator p(x). In particular, E has minimum weight 4.

Proof. The generator polynomial for E is a multiple of the generator
polynomial p(x) for the Hamming code, and so E is contained in the Hamming
code. For any

c(x) = a(x)q(x) = a(x)(x+ 1)p(x) ∈ E ,

we have
c(1) = a(1)(1 + 1)p(1) = 0 .

Therefore E is contained in the even subcode of the Hamming code. As the codes
have the same dimension, they are equal. The Hamming code has minimum
weight 3, so E has minimum weight 4. 2

The even cyclic Hamming subcodes like E have often been used for detecting
errors in computer applications. In that context, they are often called CRC
codes (for ‘cyclic redundancy checking’). We devote some time to detectionCRC codes

issues for general linear and cyclic codes.
We recall that error detection is the particularly simple type of error control

in which a received word is decoded to itself if it is a codeword and otherwise a
decoding default is declared. (See Problems 2.2.2 and 2.2.3.) For a linear code,
this can be gauged by whether or not the received word has syndrome 0.

(8.4.5) Lemma. Let C be a linear code.
(1) C detects any error pattern that is not a codeword.
(2) C detects any nonzero error pattern whose nonzero entries are restricted

to the complement of an information set.

Proof. An error pattern that is not a codeword has nonzero syndrome as
does any word in its coset.

If a codeword is 0 on an information set, then it is the 0 codeword. Thus
any nonzero word that is 0 on an information set is not a codeword. 2

(8.4.6) Lemma. A cyclic code of redundancy r detects all nonzero bursts of
length at most r.

Proof. By Lemma 8.4.5, we must show that a codeword that is a burst
of length r or less must be 0. Let c be such a codeword. Then it has a cyclic

8.4. CYCLIC HAMMING CODES AND THEIR RELATIVES 119

shift that represents a nonzero code polynomial of degree less than r. But by
Theorem 8.1.1, the generator polynomial is a nonzero polynomial of minimal
degree and that degree is r. Therefore c = 0, as desired. 2

The same argument shows that ‘wrap around’ burst errors, whose nonzero
errors occur in a burst at the front of the word and a burst at the end, are also
detected provided the combined length of the two bursts is at most r.

(8.4.7) Problem. If C is a cyclic code of redundancy r, prove that the only bursts
of length r+ 1 that are codewords (and so are not detectable error patterns) are shifts
of scalar multiples of the generator polynomial.

(8.4.8) Problem. Starting with a cyclic code C of redundancy r, shorten C in its
last s coordinates (or first s coordinates) by choosing all codewords that are 0 in those
positions and then deleting those positions.

Prove that the resulting code D still can be used to detect all bursts of length at
most r. (Remark. The code D will no longer be cyclic and can not be relied upon for
detecting burst errors that ‘wrap around’.)

(8.4.9) Problem. Have an existentialist discussion (or write such an essay) as to
whether or not linear codes should be said to detect the 0 error pattern.

Now we return to the CRC code E of Lemma 8.4.4, the even subcode of
a binary cyclic Hamming code. E has redundancy r = 1 + m, where m is the
redundancy of the Hamming code. Thus E can be used to detect:

(i) all odd weight errors,
(ii) all weight 2 errors,
(iii) most weight 4 errors,
(iv) all nonzero burst errors of length at most r,
(v) most burst errors of length r + 1.

Here C detects ‘most’ weight 4 errors because (at least for reasonably large r)
the codewords of weight 4 form only a small fraction of the total number of
words of weight 4. (See Problem 7.3.7; the total number of words of weight 4
is quartic in n = 2r−1 − 1, while the number of codewords of weight 4 is cubic
in n.) The only bursts of length r + 1 that are codewords are the n shifts of
the generator polynomial g(x). (See Problem 8.4.7.) So we see that the various
most likely error patterns are all detected.

Examples. (i) CRC-12 of length 2047 = 211 − 1 with generator poly-
nomial

(x+ 1)(x11 + x2 + 1) = x12 + x11 + x3 + x2 + x+ 1 .

(ii) CRC-ANSI of length 32767 = 215 − 1 with generator polynomial

(x+ 1)(x15 + x+ 1) = x16 + x15 + x2 + 1 .

(iii) CRC-CCITT of length 32767 = 215 − 1 with generator polyno-
mial

(x+ 1)(x15 +x14 +x13 +x12 +x4 +x3 +x2 +x+ 1) = x16 +x12 +x5 + 1 .

120 CHAPTER 8. CYCLIC CODES

The last two examples have generator polynomials of the minimum weight 4.
This is advantageous since the linear feedback circuitry required to implement
encoding and decoding is simpler for generator polynomials of small weight.

As in Problem 8.4.8 the detection properties (i)-(v) are not lost by shortening
E, so various shortened versions of even subcodes of binary cyclic Hamming
codes are also used as CRC codes. If the code is shortened in its last s positions,
then ‘cyclic’ encoding is still available, encoding the message polynomial a(x)
of degree less than k − s (the dimension of the shortened code) into the code
polynomial a(x)g(x) of degree less than r + k − s = n − s (the length of the
shortened code).

8.4.2 Simplex codes and pseudo-noise sequences

As there are cyclic, binary Hamming codes of every redundancy m, there are
also cyclic, binary dual Hamming codes of every dimension m. Recall that these
codes are called simplex codes (or shortened first order Reed-Muller codes).
They were studied previously in Section 4.3. By Theorem 8.4.2 they are precisely
those cyclic, binary codes whose check polynomials are primitive.

(8.4.10) Theorem. Let C be a cyclic simplex code of dimension m and length
n = 2m − 1. Then C is composed of the codeword 0 plus the n distinct cyclic
shifts of any nonzero codeword.

Proof. Let C have generator polynomial g(x) and primitive check poly-
nomial h(x), so that g(x)h(x) = xn − 1. Since |C| = 2m = n + 1, we need
only prove that the n cyclic shifts of g(x) are distinct. Suppose g(x) = xjg(x)
(mod xn − 1), for some 0 < j ≤ n. Thus

(xj − 1)g(x) = q(x)(xn − 1)
(xj − 1)g(x) = q(x)g(x)h(x)

xj − 1 = q(x)h(x) .

As h(x) is primitive, we must have j ≥ n hence j = n. Therefore the n shifts
xjg(x) (mod xn − 1), for 0 ≤ j < n, are all distinct, as desired. 2

(8.4.11) Corollary. Let 0 6= c ∈ C, a cyclic simplex code of dimension m.
Then, for every nonzero m-tuple m, there is exactly one set of m consecutive
coordinate entries in c (including those that wrap around) that is equal to m.

Proof. As C is cyclic, its first m coordinate positions form an information
set. Every m occurs in these positions in exactly one codeword b. By the theo-
rem, b is a cyclic shift of c when m is one of the 2m− 1 nonzero m-tuples. The
nonzero codeword c has only n = 2m−1 sets of m consecutive positions. There-
fore nonzero m occurs exactly once among the sets of m consecutive positions
in c. 2

The property described in the corollary can be thought of as a randomness
property. If we were to flip an unbiased coin any number of times, then no

8.4. CYCLIC HAMMING CODES AND THEIR RELATIVES 121

particular combination of m consecutive heads/tails would be expected to occur
more often than any other. We will call a binary sequence of length 2m − 1
in which each nonzero m-tuple occurs exactly once in consecutive positions a
pseudo-noise sequence or PN -sequence, for short. (Here and below, when we pseudo-noise sequence

PN -sequencespeak of consecutive positions, we allow these positions to wrap around from
the end of the word to the front.) We call it a sequence rather than word
because, when we repeat it any number of times, we get a sequence of 0’s and
1’s whose statistical properties mimic, in part, those of a random sequence, that
is, those of noise. The length n = 2m − 1 is then the period of the sequence. period

With these definitions in hand, the corollary can be restated as

(8.4.12) Corollary. A nonzero codeword from a cyclic simplex code of
dimension m is a PN -sequence of period 2m − 1. 2

There are other consequences of the PN definition that are similar to prop-
erties of random sequences. A run is a maximal set of consecutive entries con- run

sisting entirely of 0’s or entirely of 1’s. The length of a run is the number of its
entries. In a random sequence, one would expect, for a fixed length, the same
number of runs of 0’s as 1’s and that runs of length p would be twice as likely
as runs of length p+ 1.

(8.4.13) Proposition. Let s be a PN -sequence of period 2m − 1.
(1) (Run balance) There are exactly 2m−p−2 runs of 0’s of length p (≤ m−2)

and exactly 2m−p−2 runs of 1’s of length p (≤ m− 2). The sequence s contains
exactly 2m−1 runs.

(2) (General balance) If p is a nonzero p-tuple with p ≤ m, then p occurs
in consecutive positions of s exactly 2m−p times. If p is a p-tuple of 0’s, then
it occurs in consecutive positions exactly 2m−p − 1 times. In particular, s has
weight 2m−1.

Proof. For (2), the p-tuple p is the initial segment of 2m−p distinct m-
tuples. If p is nonzero, then each of these m-tuples occurs within s. If p = 0,
then the m-tuple 0 is the only completion of p that does not occur within s. In
particular, the 1-tuple 1 occurs exactly 2m−1 times, completing (2).

A run aa · · · aa of length p (≤ m−2) corresponds to a (p+2)-tuple baa · · · aab
with {a, b} = {0, 1} (which is never 0). Therefore by (2), the number of runs
aa · · · aa of length p is 2m−(p+2) = 2m−p−2.

If m = 1, then certainly there is only one run. For m ≥ 2, a transition
between two runs occurs precisely when we encounter either 01 or 10. By (2)
there are 2m−2 of each. Therefore the number of runs, being equal to the number
of transitions, is 2m−2 + 2m−2 = 2m−1. 2

Although pseudo-noise and pseudo-random sequences have been studied a
great deal, there is no consensus about the terminology or definitions. In some
places there is no distinction made between PN -sequences in general and those
special ones coming from simplex codes (so that Corollary 8.4.12 becomes the

122 CHAPTER 8. CYCLIC CODES

definition). We will call the nonzero codewords of cyclic simplex codes m-
sequences. (This is an abbreviation for maximal length feedback shift register m-sequences

sequences.)
It might seem more natural to consider sequences of length 2m in which every

m-tuple occurs. Such sequences are called DeBruijn cycles. The two conceptsDeBruijn cycles

are in fact equivalent. If in a PN -sequence s of period 2m − 1 we locate the
unique run of m − 1 0’s, then we can construct a DeBruijn cycle by inserting
one further 0 into the run. Conversely, if we delete a 0 from the unique run of m
0’s in a DeBruijn cycle, we are left with a PN -sequence. Given the connection
with simplex codes, we prefer the present formulation.

(8.4.14) Problem. Prove that every PN-sequence of length 7 is an m-sequence.
(Remark. Up to cycling, there are 16 PN-sequences of length 15, only 2 of which are
m-sequences.)

An important property of m-sequences is not shared by all PN -sequences.

(8.4.15) Lemma. (Shift-and-add property) If s is an m-sequence and s′ is
a cyclic shift of s, then s + s′ is also a cyclic shift of s (or 0). In particular
nonzero s + s′ is itself an m-sequence.

Proof. This is a direct consequence of Theorem 8.4.10. 2

(8.4.16) Problem. Prove that a PN-sequence possessing the shift-and-add property
must be an m-sequence.

One last property is more striking if we change to the ±-version of the
simplex code, as described in Section 4.3. With each binary sequence s we
associate the±1-sequence s∗ by replacing each 0 with the real number 1 and each
1 with the real number −1. If s is an m-sequence, then we abuse terminology
by also referring to the associated sequence s∗ as an m-sequence.

(8.4.17) Proposition. (Perfect autocorrelation)
If (s0, . . . , sn−1) = s∗ ∈ {±1}n ⊂ Rn is an m-sequence with n = 2m − 1, then∑n−1

i=0 sisi+p = n forp = 0
= −1 for0 < p < n ,

where indices are all read modulo n.

Proof. The summation is the dot product of s∗ with a cyclic shift of itself.
The associated binary vectors are also cyclic shifts and are either equal (when
p = 0) or at Hamming distance 2m−1 by Proposition 8.4.13(2) and Lemma
8.4.15. By Lemma 4.3.4 the dot product is n (= 2m − 1) when p = 0 and
otherwise (2m−1)−2 ·2m−1 = −1 . (In fact this proposition is nearly equivalent
to Lemma 4.3.5.) 2

The function a(p) =
∑n−1
i=0 sisi+p, for 0 ≤ p < n, of the proposition is

the autocorrelation function for s∗. As n is odd, the sequences could never beautocorrelation function

8.4. CYCLIC HAMMING CODES AND THEIR RELATIVES 123

orthogonal; so the proposition says, in a sense, that s∗ and its shifts are as close
to being orthogonal as possible. This is why the autocorrelation function is
called perfect.

Thus the ±1 m-sequences are very unlike nontrivial shifts of themselves. For
this reason, they are at times used for synchronization of signals. They are also
used for modulation of distinct signals in multiple user situations. This is an
example of spread spectrum communication. The idea is that multiplication
by a PN -sequence will make a coherent signal look noise-like (taking its usual
spiked frequency spectrum and spreading it out toward the flat spectrum of
noise).

For such applications, it is often helpful to have not just one sequence with
good autocorrelation properties but large families of them with good crosscor-
relation properties. The constructions of such families may start from nice
m-sequences. Their investigation is of on-going interest.

Pseudo-random binary sequences are also important for cryptography. In
that context m-sequences are bad, since the shift-and-add property implies that
they have low computational complexity.

